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Abstract. We study the problem of novel view synthesis of objects
from a single image. Existing methods have demonstrated the poten-
tial in single-view view synthesis. However, they still fail to recover the
fine appearance details, especially in self-occluded areas. This is because
a single view only provides limited information. We observe that man-
made objects usually exhibit symmetric appearances, which introduce
additional prior knowledge. Motivated by this, we investigate the po-
tential performance gains of explicitly embedding symmetry into the
scene representation. In this paper, we propose SymmNeRF, a neural
radiance field (NeRF) based framework that combines local and global
conditioning under the introduction of symmetry priors. In particular,
SymmNeRF takes the pixel-aligned image features and the correspond-
ing symmetric features as extra inputs to the NeRF, whose parameters
are generated by a hypernetwork. As the parameters are conditioned on
the image-encoded latent codes, SymmNeRF is thus scene-independent
and can generalize to new scenes. Experiments on synthetic and real-
world datasets show that SymmNeRF synthesizes novel views with more
details regardless of the pose transformation, and demonstrates good
generalization when applied to unseen objects. Code is available at:
https://github.com/xingyi-li/SymmNeRF.
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1 Introdution

Novel view synthesis is a long-standing problem in computer vision and graph-
ics [4,9,20]. The task is to synthesize novel views from a set of input views
or even a single input view, which is challenging as it requires comprehensive
3D understanding [36]. Prior works mainly focus on explicit geometric repre-
sentations, such as voxel grids [14,21,32,42], point clouds [1,7], and triangle
meshes [16,29,39]. However, these methods suffer from limited spatial resolution
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Fig. 1: Novel views from a single image synthesized by SRN [33], PixelNeRF [44]
and our SymmNeRF. The competitive methods are prone to miss some texture
details, especially when the pose difference between the reference view and target
view is large. By contrast, SymmNeRF augmented with symmetry priors recovers
more appearance details.

and representation capability because of the discrete properties. Recently, differ-
entiable neural rendering methods [25,27,28,31,33,37] have shown great progress
in synthesizing photo-realistic novel views. For example, neural radiance fields
(NeRFs) [26], which implicitly encode volumetric density and color via multi-
layer perceptrons (MLPs), show an impressive level of fidelity on novel view
synthesis. However, these methods usually require densely captured views as
input and test-time optimization, leading to poor generalization across objects
and scenes. To reduce the strong dependency on dense inputs and enable better
generalization to unseen objects, in this paper, we explore novel view synthesis
of object categories from only a single image.

Novel view synthesis from a single image is challenging, because a single
view cannot provide sufficient information. Recent NeRF-based methods [13,44]
learn scene priors for reconstruction by training on multiple scenes. Although
they have shown the potential in single-view view synthesis, it is particularly
challenging when the pose difference between the reference and target view is
large (see Fig. 1). We observe that man-made objects in real world usually exhibit
symmetric appearances. Based on this, a question arises: can symmetry priors
benefit single-view view synthesis?

To answer this question, we explore how to take advantage of symmetry
priors to introduce additional information for reconstruction. To this end, we
present SymmNeRF, a NeRF-based framework that is augmented by symmetry
priors. Specifically, we take the pixel-aligned image features and the correspond-
ing symmetric features as extra inputs to NeRF. This allows reasonable recovery
of occluded geometry and missing texture. During training, given a set of posed
input images, SymmNeRF simultaneously optimizes a convolutional neural net-
work (CNN) encoder and a hypernetwork. The former encodes image features,
and generates latent codes which represent the coarse shape and appearance of
unseen objects. The latter maps specific latent codes to the weights of the neural
radiance fields. Therefore, SymmNeRF is scene-independent and can generalize
to unseen objects. Unlike the original NeRF [26], for a single query point, we
take as input its original and symmetric pixel-aligned image features besides its
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3D location and viewing direction. At the inference stage, SymmNeRF generates
novel views by feed-forward prediction without test-time optimization.

In the present paper, we investigate the potential performance gains by com-
bining local and global conditioning under the introduction of the symmetry
prior. To this end, we add the assumptions on the data distribution that objects
are in a canonical coordinate frame. We demonstrate that such a symmetry prior
can lead to significant performance gains. In summary, our main contributions
are:

– We propose SymmNeRF, a NeRF-based framework for novel view synthesis
from a single image. By introducing symmetry priors into NeRF, SymmN-
eRF can synthesize high-quality novel views with fine details regardless of
pose transformation.

– We combine local features with global conditioning via hypernetworks and
demonstrate significant performance gains. Note that we perform inference
via a CNN instead of auto-decoding, i.e., without test-time optimization,
which is different from SRN [33].

– Given only a single input image, SymmNeRF demonstrates significant im-
provement over state-of-the-art methods on synthetic and real-world datasets.

2 Related Work

Novel View Synthesis. Novel view synthesis is the task of synthesizing novel
camera perspectives of a scene, given source images and their camera poses. The
key challenges are understanding the 3D structure of the scene and inpainting
of invisible regions of the scene [11]. The research of novel view synthesis has
a long history in computer vision and graphics [4,9,20]. Pioneer works typically
synthesize novel views by warping, resampling, and blending reference views to
target viewpoints, which can be classified as image-based rendering methods [4].
However, they require densely captured views of the scene. When only a few
observations are available, ghosting-like artifacts and holes may appear [36].
With the advancement of deep learning, a few learning-based methods have
been proposed, most of which focus on explicit geometric representations such
as voxel grids [14,21,32,42], point clouds [1,7], triangle meshes [16,29,39], and
multiplane images (MPIs) [8,38,46].

Recent works [3,25,27,28,37] show that neural networks can be used as an
implicit representation for 3D shapes and appearances. DeepSDF [28] maps con-
tinuous spatial coordinates to signed distance and proves the superiority of neural
implicit functions. SRN [33] proposes to represent 3D shapes and appearances
implicitly as a continuous, differentiable function that maps a spatial coordinate
to the local features of the scene properties at that point. Recently, NeRF [26]
shows astonishing results for novel view synthesis, which is an implicit MLP-
based model that maps 3D coordinates plus 2D viewing directions to opacity
and color values. However, NeRF requires enormous posed images and must be
independently optimized for every scene. PixelNeRF [44] tries to address this
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issue by conditioning NeRF on image features, which are extracted by an im-
age encoder. This enables its ability to render novel views from only a single
image and its generalization to new scenes. Rematas et al. [30] propose ShaRF,
a generative model aiming at estimating neural representation of objects from
a single image, combining the benefits of explicit and implicit representations,
which is capable of generalizing to unseen objects. CodeNeRF [13] learns to
disentangle shape and texture by learning separate embeddings from a single
image, allowing single view reconstruction and shape/texture editing. However,
these methods usually struggle to synthesize reasonable novel views from a sin-
gle image when self-occlusion occurs. In contrast, SymmNeRF first estimates
coarse representations and then takes reflection symmetry as prior knowledge to
inpaint invisible regions. This allows reasonable recovery of occluded geometry
and missing texture.

HyperNetworks. A hypernetwork [10] refers to a small network that is trained
to predict the weights of a large network, which has the potential to generalize
previous knowledge and adapt quickly to novel environments. Various methods
resort to hypernetworks in 3D vision. Littwin et al. [22] recover shape from a
single image using hypernetworks in an end-to-end manner. SRN [33] utilizes
hypernetworks for single-shot novel view synthesis with neural fields. In this
work, we condition the parameters of NeRF on the image-encoded latent codes
via the hypernetwork, which allows SymmNeRF to be scene-independent and
generalize to new scenes.

Reflection Symmetry. Reflection symmetry plays a significant role in the
human visual system and has already been exploited in the computer vision
community. Wu et al. [41] infer 3D deformable objects given only a single image,
using a symmetric structure to disentangle depth, albedo, viewpoint and illumi-
nation. Ladybird [43] assigns occluded points with features from their symmetric
points based on the reflective symmetry of the object, allowing recovery of oc-
cluded geometry and texture. NeRD [47] learns a neural 3D reflection symmetry
detector, which can estimate the normal vectors of objects’ mirror planes. They
focus on the task of detecting the 3D reflection symmetry of a symmetric object
from a 2D image. In this work, we focus on exploring the advantages of ex-
plicitly embedding symmetry into the scene representation for single-view view
synthesis.

3 SymmNeRF

3.1 Overview

Here we present an overview of our proposed method. We propose to firstly
estimate holistic representations as well as symmetry planes, followed by fulfilling
details, and to explicitly inject symmetry priors into single-view view synthesis
of object categories. In particular, we design SymmNeRF to implement the ideas
above. Fig. 2 shows the technical pipeline of SymmNeRF.
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Fig. 2: An overview of our SymmNeRF. Given a reference view, we first encode
holistic representations by estimating the latent code z through the image en-
coder network f . We then obtain the pixel-aligned feature F(π(X)) and the
symmetric feature F(π(X′)), by projecting the query point X and the symmet-
ric point X′ to the 2D location on the image plane using camera parameters,
followed by bilinear interpolation between the pixelwise features on the feature
volume F. The hypernetwork transforms the latent code z to the weights θ of
the corresponding NeRF Φ. For a query point X along a target camera ray with
viewing direction d, NeRF takes the spatial coordinate X, ray direction d, pixel-
aligned feature F(π(X)) and symmetric feature F(π(X′)) as input, and outputs
the color and density.

Given a set of M instances training datasets D = {Cj}Mj=1, where Cj =

{(Iji ,E
j
i ,K

j
i )}Ni=1 is a dataset of an instance object, Iji ∈ RH×W×3 refers to an

input image, Eji = [R|t] ∈ R3×4 and Kj
i ∈ R3×3 are the corresponding extrinsic

and intrinsic camera matrix respectively, and N denotes the number of the input
images, SymmNeRF first encodes a holistic representation and regresses the
symmetry plane for the input view. We then extract symmetric features along
with pixel-aligned features for the sake of preserving fine-grained details observed
in the input view. Subsequently, we transform the holistic representation to the
weights of the corresponding NeRF, and inject symmetry priors (i.e., symmetric
features as well as pixel-aligned features) to predict colors and densities. Finally,
we adopt the classic volume rendering technique [15,26] to synthesize novel views.

3.2 Encoding Holistic Representations

Humans usually understand the 3D shapes and appearances by first generating
a profile, then restoring details from observations. Emulating the human visual
system, we implement coarse depictions of objects by an image encoder network.

The image encoder network f is responsible for mapping the input image Ii
into the latent code zi which characterizes holistic information of the object’s
shape and appearance:

f : RH×W×3 → Rk, Ii 7→ f(Ii) = zi, (1)
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where k is the dimension of zi, and the parameters of f are denoted by Ω. Here,
we denote the feature volume extracted by f during the encoding of holistic rep-
resentations as F (i.e., the concatenation of upsampled feature maps outputted
by ResNet blocks). The image encoder network contains four ResNet blocks of
ResNet-34 [12], followed by an average pooling layer and a fully connected layer.

3.3 Extracting Symmetric Features

The holistic representations introduced in the previous section coarsely describe
objects. To synthesize detailed novel views, we follow PixelNeRF [44] and adopt
pixel-aligned image features to compensate for the details. However, simply using
pixel-aligned image features ignores the underlying 3D structure. In contrast,
humans can infer the 3D shape and appearance from a single image, despite the
information loss and self-occlusion that occurs during the imagery capture. This
can boil down to the fact that humans usually resort to prior knowledge, e.g.,
symmetry. Motivated by the above observation, we propose to inpaint invisible
regions and alleviate the ill-posedness of novel view synthesis from a single image
via symmetry priors. In the following, we briefly introduce the properties of 3D
reflection symmetry [47], followed by how symmetry priors are applied.

3D reflection symmetry. When two points on an object’s surface are sym-
metric, they share identical surface properties of the object. Formally, we define
the symmetry regrading a rigid transformation M ∈ R4×4 as

∀X ∈ S :

{
MX ∈ S,
F(X) = F(MX),

(2)

whereX is the homogeneous coordinate of a point on the object’s surface, S ⊂ R4

is the set of points that are on the surface of an object, MX is the symmetric
point of X, and F(·) stands for the surface properties at a given point.

The 2D projections x = [x, y, 1, 1/d]T and x′ = [x′, y′, 1, 1/d′]T of two 3D
points X,X′ ∈ S satisfy {

x = KRtX/d,

x′ = KRtX
′/d′,

(3)

where K ∈ R4×4 and Rt ∈ R4×4 are respectively the camera intrinsic matrix and
extrinsic matrix. The latter transforms the coordinate from the world coordinate
system to the camera coordinate system. d, d′ are the depth in the camera space.
When these two points are symmetric w.r.t. a rigid transformation, i.e., X′ =
MX, the following constraint can be derived:

x′ =
d

d′
KRtMRt

−1K−1x, (4)

where x and x′ are 2D projections of these two 3D points. This suggests that
given a 2D projection x, we can obtain its symmetric counterpart x′ if M and
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camera parameters are known. In this paper, we focus on exploring the benefits of
explicitly embedding symmetry into our representation. To this end, we add the
assumptions on the data distribution that objects are in a canonical coordinate
frame, and that their symmetry axis is known.

Applying Symmetry Prior. To inpaint invisible regions, we apply the sym-
metry property introduced above and extract symmetric features F(π(X′)). This
can be achieved by projecting the symmetric point X′ to the 2D location x′ on
the image plane using camera parameters, followed by bilinearly interpolating
between the pixelwise features on the feature volume F extracted by the image
encoder network f . In addition, we follow PixelNeRF [44] and adopt pixel-aligned
features F(π(X)), which share the same acquisition approach with symmetric
features. They are subsequently concatenated together to form the local image
features corresponding to X.

3.4 Injecting Symmetry Prior into NeRF

In this section, we inject symmetry priors into the neural radiance field for single-
view view synthesis. Technically, the weights of the neural radiance field are
conditioned on the latent code zi introduced in Sec. 3.2, which represents a coarse
but holistic depiction of the object. To preserve fine-grained details, during the
color and density prediction, we also take the pixel-aligned image features and
the corresponding symmetric features as extra inputs to fulfill details observed
in the input view.

Generating Neural Radiance Fields. We generate a specific neural radiance
field by mapping a latent code zi to the weights θi of the neural radiance field
using the hypernetwork Ψ, which can be defined as follows:

Ψ : Rk → Rl, zi 7→ Ψ(zi) = θi, (5)

where, l stands for the dimension of the parameter space of neural radiance fields.
We parameterize Ψ as an MLP with parameters ψ. This can be interpreted as
a simulation of the human visual system. Specifically, humans first estimate
the holistic shape and appearance of the unseen object when given a single
image, then formulate a sketch in their mind to represent the object. Similarly,
SymmNeRF encodes overall information of the object as a latent code from a
single image, followed by generating a corresponding neural radiance field to
describe the object.

Color and Density Prediction. Given a reference image with known camera
parameters, for a single query point location X ∈ R3 on a ray r ∈ R3 with unit-
length viewing direction d ∈ R3, SymmNeRF predicts the color and density at
that point in 3D space, which is defined as:

Φ : RmX × Rmd × R2n → R3 × R,
(γX(X), γd(d),F(π(X)),F(π(X′))) 7→

Φ(γX(X), γd(d),F(π(X)),F(π(X′))) = (c, σ),

(6)
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where Φ represents a neural radiance field, an MLP network whose weights are
given by the hypernetwork Ψ, X′ ∈ R3 is the corresponding symmetric 3D point
of X, γX(·) and γd(·) are positional encoding functions for spatial locations
and viewing directions, n, mX and md are respectively the dimensions of pixel-
aligned features (symmetric features), γX(X) and γd(d), π denotes the process
of projecting the 3D point onto the image plane using known intrinsics, and F
is the feature volume extracted by the image encoder network f .

3.5 Volume Rendering

To render the color of a ray r passing through the scene, we first compute its
camera ray r using the camera parameters and sample K points {Xk}Kk=1 along
the camera ray r between near and far bounds, and then perform classical volume
rendering [15,26]:

C̃(r) =

K∑
k=1

Tk(1− exp(−σkδk))ck, (7)

where Tk = exp(−
k−1∑
j=1

σjδj), (8)

where ck and σk denote the color and density of the k-th sample on the ray,
respectively, and δk = ∥Xk+1 −Xk∥2 is the interval between adjacent samples.

3.6 Training

To summarize, given a set of M instances training datasets D = {Cj}Mj=1, where

Cj = {(Iji ,E
j
i ,K

j
i )}Ni=1 is a dataset of an instance object, we optimize SymmN-

eRF to minimize the rendering error of observed images:

min
Ω,ψ

M∑
j=1

N∑
i=1

L(Iji ,E
j
i ,K

j
i ; Ω, ψ), (9)

L =
∑
r∈R

∥∥∥C̃(r)− C(r)
∥∥∥2
2
, (10)

where Ω and ψ are respectively the parameters of the image encoder network
f and the hypernetwork Ψ, R is the set of camera rays passing through image
pixels, and C(r) denotes the ground truth pixel color.

4 Experiments

4.1 Datasets

Synthetic Renderings. We evaluate our approach on the synthetic ShapeNet
benchmark [2] for single-shot reconstruction. 1) We mainly focus on the ShapeNet-
SRN dataset, following the same protocol adopted in [33]. This dataset includes
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Table 1: Quantitative comparisons against state-of-the-art methods on “Cars”
and “Chairs” classes of the ShapeNet-SRN dataset. The best performance is in
bold, and the second best is underlined.

Chairs Cars Average

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
GRF [37] (ICCV’21) 21.25 0.86 20.33 0.82 20.79 0.84
TCO [35] (ECCV’16) 21.27 0.88 - - - -
dGQN [6] (Science’18) 21.59 0.87 - - - -
ENR [5] (ICML’20) 22.83 - 22.26 - 22.55 -

SRN [33] (NeurIPS’19) 22.89 0.89 22.25 0.89 22.57 0.89
PixelNeRF [44] (CVPR’21) 23.72 0.91 23.17 0.90 23.45 0.91

ShaRF [30] (ICML’21) 23.37 0.92 22.53 0.90 22.90 0.91
CodeNeRF [13] (ICCV’21) 23.66 0.90 23.80 0.91 23.74 0.91

Ours 24.32 0.92 23.44 0.91 23.88 0.92

two object categories: 3, 514 “Cars” and 6, 591 “Chairs”. The train/test split
is predefined across object instances. There are 50 views per object instance
in the training set. For testing, 251 novel views in an Archimedean spiral are
used for each object instance in the test set. All images are at 128× 128 pixels;
2) Similar to PixelNeRF [44], we also test our method on the ShapeNet-NMR
dataset [17] under two settings: category-agnostic single-view reconstruction and
generalization to unseen categories, following [17,23,27]. This dataset contains
the 13 largest categories of ShapeNet and provides 24 fixed elevation views for
each object instance. All images are of 64× 64 resolution.

Real-World Renderings. We also generalize our model, trained only on the
ShapeNet-SRN dataset, directly to two complex real-world datasets. One is the
Pix3D [34] dataset containing various image-shape pairs with 2D-3D alignment.
The other is the Stanford Cars [19] dataset which contains various real images
of 196 classes of cars. All images of the two datasets are cropped and resized to
128× 128 pixels during testing.

4.2 Implementation Details

SymmNeRF is trained using the AdamW optimizer [18,24]. The learning rate
follows the warmup [12] strategy: linearly growing from 0 to 1×10−4 during the
first 2k iterations and then decaying exponentially close to 0 over the optimiza-
tion. The network parameters are updated with around 400-500k iterations. We
use a batch size of 4 objects and a ray batch size of 256, each queried at 64
samples. Experiments are conducted on 2 NVIDIA GeForce RTX 3090 GPUs.

4.3 Comparisions

Here we compare SymmNeRF against the existing state-of-the-art methods,
among which CodeNeRF, SRN and ShaRF require test-time optimization at
inference, and ShaRF entails 3D ground truth voxel grids besides 2D supervi-
sion. To evaluate the quality of renderings, we adopt two standard image quality
metrics: the Peak Signal-to-Noise Ratio (PSNR) and the Structure Similarity
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Fig. 3: Qualitative comparisons on
“Cars” and “Chairs” classes. SymmN-
eRF can produce high-quality render-
ings with fine-grained details, proper
geometry and reasonable appearance.

Fig. 4: Qualitative comparisons with
PixelNeRF [44] on real-world Pix3D [34]
and Stanford Cars [19] datasets. Com-
pared with PixelNeRF, SymmNeRF
yields better generalization.

Index Measure (SSIM) [40]. We also include LPIPS [45] in all experiments ex-
cept the ShapeNet-SRN dataset. The better approach favors the higher PSNR
and SSIM, and the lower LPIPS. Please refer to the supplementary material for
more visualization.

Evaluations on the ShapeNet-SRN Dataset. In general, as shown in Ta-
ble 1, our method outperforms or at least is on par with state-of-the-art methods.
For the “Cars” category, SymmNeRF outperforms its competitors including Pix-
elNeRF, SRN and ShaRF, and achieves comparable performance with CodeN-
eRF. Note that our SymmNeRF solves a much harder problem than SRN and
CodeNeRF. In particular, SymmNeRF directly infers the unseen object represen-
tation in a single forward pass, while SRN and CodeNeRF need to be retrained
on all new objects to optimize the latent codes. In addition, we observe that most
cars from the “Cars” category share similar 3D shapes and simple textures. As
a result, the experiment on the “Cars” category is in favor of CodeNeRF. In
contrast, for the “Chairs” category, SymmNeRF significantly outperforms all
baselines across all metrics by a large margin. This result implies that our model
can generalize well on new objects, as the shapes and textures of chairs in the
“Chairs” category vary considerably. This implies that SymmNeRF indeed cap-
tures the underlying 3D structure of objects with the help of symmetry priors
and the hypernetwork, rather than simply exploiting data biases.

Here we compare SymmNeRF qualitatively with SRN and PixelNeRF in
Fig. 3. One can observe that: i) SRN is prone to generate overly smooth render-
ings and is unable to capture the accurate geometry, leading to some distortions;
ii) PixelNeRF performs well when the query view is close to the reference one,
but fails to recover the details invisible in the reference, especially when the ren-
dered view is far from the reference; iii) SymmNeRF, by contrast, can synthesize
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Fig. 5: Novel view synthesis on “Cars” and “Chairs” of ShapeNet-SRN dataset.

photo-realistic, reasonable novel views with fine-grained details close to ground
truths.

We further demonstrate the high-quality results of SymmNeRF by providing
more novel view synthesis visualization in Fig. 5. As can be seen, SymmNeRF can
always synthesize photo-realistic and reasonable novel renderings from totally
different viewpoints.

Generalization on Real-World Datasets. To further investigate the gener-
alization of SymmNeRF, we evaluate SymmNeRF on two real-world datasets,
i.e., the Pix3D [34] and the Stanford Cars [19]. Note that for the lack of ground
truth, we only show the qualitative results on the two datasets. Here we apply
SymmNeRF trained on the synthetic chairs and cars directly on the real-world
images without any finetuning. As shown in Fig. 4, PixelNeRF [44] fails to syn-
thesize reasonable novel views, because it only notices the use of pixel-aligned
image features, ignoring the underlying 3D structure the reference view provides.
Compared with PixelNeRF [44], SymmNeRF can effectively infer the geometry
and appearance of real-world chairs and cars. Please also note that there are no
camera poses for real-world objects from Pix3D and Stanford Cars. Our model
assumes that objects are at the center of the canonical space and once trained,
can estimate camera poses for each reference view similar to CodeNeRF [13].

Evaluations on the ShapeNet-NMR Dataset. Although the experimental
results of two common categories have demonstrated that including symmetry
is simple yet effective, we further explore our approach on the ShapeNet-NMR
dataset under two settings: category-agnostic single-view reconstruction and gen-
eralization to unseen categories. 1) Category-agnostic single-view reconstruction:
only a single model is trained across the 13 largest categories of ShapeNet. We
show in Table 2 and Fig. 6 that SymmNeRF outperforms other state-of-the-
art methods [23,27,33,44]. This also implies that symmetry priors benefit the
reconstruction of almost all symmetric objects; 2) Generalization to unseen cat-
egories: we reconstruct ShapeNet categories which are not involved in training.
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Table 2: Quantitative comparisons against state-of-the-art methods on the 13
largest categories of the ShapeNet-NMR dataset.

Methods plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat mean

PSNR↑
DVR 25.29 22.64 24.47 23.95 19.91 20.86 23.27 20.78 23.44 22.35 21.53 24.18 25.09 22.70
SRN 26.62 22.20 23.42 24.40 21.85 19.07 22.17 21.04 24.95 23.65 22.45 20.87 25.86 23.28

PixelNeRF 29.76 26.35 27.72 27.58 23.84 24.22 28.58 24.44 30.60 26.94 25.59 27.13 29.18 26.80
Ours 30.57 27.44 29.34 27.87 24.29 24.90 28.98 25.14 30.64 27.70 27.16 28.27 29.71 27.57

SSIM↑
DVR 0.905 0.866 0.877 0.909 0.787 0.814 0.849 0.798 0.916 0.868 0.840 0.892 0.902 0.860
SRN 0.901 0.837 0.831 0.897 0.814 0.744 0.801 0.779 0.913 0.851 0.828 0.811 0.898 0.849

PixelNeRF 0.947 0.911 0.910 0.942 0.858 0.867 0.913 0.855 0.968 0.908 0.898 0.922 0.939 0.910
Ours 0.955 0.925 0.922 0.945 0.865 0.875 0.917 0.862 0.970 0.915 0.917 0.929 0.943 0.919

LPIPS↓
DVR 0.095 0.129 0.125 0.098 0.173 0.150 0.172 0.170 0.094 0.119 0.139 0.110 0.116 0.130
SRN 0.111 0.150 0.147 0.115 0.152 0.197 0.210 0.178 0.111 0.129 0.135 0.165 0.134 0.139

PixelNeRF 0.084 0.116 0.105 0.095 0.146 0.129 0.114 0.141 0.066 0.116 0.098 0.097 0.111 0.108
Ours 0.062 0.085 0.068 0.082 0.120 0.104 0.096 0.108 0.054 0.086 0.067 0.068 0.089 0.084

Fig. 6: Qualitative comparisons on the ShapeNet-NMR dataset under the
category-agnostic single-view reconstruction setting.

The results in Table 3 and Fig. 7 suggest that our method performs comparably
to PixelNeRF. This means that our method can also handle out-of-distribution
categories with the help of symmetry priors.

Asymmetric Objects. As shown in Fig. 6 (Row 2), our method can also deal
with objects that are not perfectly symmetric. This is because a few asymmet-
ric objects are also included in the training dataset. Our model can perceive
and recognize asymmetry thanks to the global latent code and hypernetwork.
SymmNeRF therefore adaptively chooses to utilize local features to reconstruct
asymmetric objects.

4.4 Ablation Study

To validate the design choice of SymmNeRF, we conduct ablation studies on the
synthetic “Chairs” and “Cars” from the ShapeNet-SRN dataset. Table 4 shows
the results corresponding to the effectiveness of the pixel-aligned, symmetric fea-
tures and the hypernetwork. One can observe: i) The symmetry priors injection
benefits novel view synthesis. Compared with (b) in average performance, our
full model (c) with the symmetric priors injection yields a relative improvement
of 6.0% PSNR and 2.3% SSIM. This finding highlights the importance of the
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Table 3: Quantitative comparisons against state-of-the-art methods on 10 unseen
categories of ShapeNet-NMR dataset. The models are trained on only planes,
cars and chairs.

Methods bench cbnt. disp. lamp spkr. rifle sofa table phone boat mean

PSNR↑
DVR 18.37 17.19 14.33 18.48 16.09 20.28 18.62 16.20 16.84 22.43 17.72
SRN 18.71 17.04 15.06 19.26 17.06 23.12 18.76 17.35 15.66 24.97 18.71

PixelNeRF 23.79 22.85 18.09 22.76 21.22 23.68 24.62 21.65 21.05 26.55 22.71
Ours 23.87 21.36 16.83 22.68 19.98 23.77 25.10 21.10 20.48 26.80 22.36

SSIM↑
DVR 0.754 0.686 0.601 0.749 0.657 0.858 0.755 0.644 0.731 0.857 0.716
SRN 0.702 0.626 0.577 0.685 0.633 0.875 0.702 0.617 0.635 0.875 0.684

PixelNeRF 0.863 0.814 0.687 0.818 0.778 0.899 0.866 0.798 0.801 0.896 0.825
Ours 0.873 0.780 0.663 0.824 0.751 0.902 0.881 0.792 0.802 0.909 0.823

LPIPS↓
DVR 0.219 0.257 0.306 0.259 0.266 0.158 0.196 0.280 0.245 0.152 0.240
SRN 0.282 0.314 0.333 0.321 0.289 0.175 0.248 0.315 0.324 0.163 0.280

PixelNeRF 0.164 0.186 0.271 0.208 0.203 0.141 0.157 0.188 0.207 0.148 0.182
Ours 0.126 0.174 0.251 0.184 0.185 0.121 0.115 0.163 0.178 0.111 0.155

Fig. 7: Qualitative visualization on the ShapeNet-NMR dataset under the gen-
eralization to unseen categories setting.

symmetry priors on novel view synthesis when only a single image is provided;
ii) The hypernetwork matters. Compared with our full model (c), the rendering
quality of (d) deteriorates if we do not adopt the hypernetwork. This may lie
in the fact that simply conditioning on local features ignores the underlying 3D
structure of objects. In contrast, combining local and global conditioning via
the hypernetwork module not only enables recovery of rendering details, but
also improves generalization to unseen objects in a coarse-to-fine manner. We
also visualize the comparative results in Fig. 8. The baseline model (a) tends
to render smoothly. Simply using pixel-aligned image features (b) still fails to
fully understand 3D structure. In contrast, our full model (c) reproduces photo-
realistic details from most viewpoints. The rendering quality of (d) deteriorates
as the hypernetwork is not adopted. We have to emphasize that, only includ-
ing both the symmetry priors and the hypernetwork can accurately recovers the
geometry information and texture details despite the occlusions.
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Table 4: Ablation study on each component of SymmNeRF.
Image encoder

network
Hypernetwork

Local
features

Symm
features

PSNR(∆)↑ SSIM(∆)↑

Chairs

(a) ✓ ✓ 21.26 (-) 0.87 (-)
(b) ✓ ✓ ✓ 23.09 (8.6%) 0.91 (4.6%)
(c) ✓ ✓ ✓ ✓ 24.32 (14.4%) 0.92 (5.7%)
(d) ✓ ✓ ✓ 19.76 (-7.1%) 0.85 (-2.3%)

Cars

(a) ✓ ✓ 20.65 (-) 0.87 (-)
(b) ✓ ✓ ✓ 22.15 (7.3%) 0.89 (2.3%)
(c) ✓ ✓ ✓ ✓ 23.44 (13.5%) 0.91 (4.6%)
(d) ✓ ✓ ✓ 21.15 (2.4%) 0.86 (-1.2%)

Average

(a) ✓ ✓ 20.96 (-) 0.87 (-)
(b) ✓ ✓ ✓ 22.62 (7.9%) 0.90 (3.4%)
(c) ✓ ✓ ✓ ✓ 23.88 (13.9%) 0.92 (5.7%)
(d) ✓ ✓ ✓ 20.46 (-2.4%) 0.86 (-1.1%)

Fig. 8: Qualitative evaluation of different configurations on ShapeNet-SRN.

5 Conclusion

Existing methods [13,44] fail to synthesize fine appearance details of objects,
especially when the target view is far away from the reference view. They focus
on learning scene priors, but ignore fully exploring the attributes of objects,
e.g., symmetry. In this paper, we investigate the potential performance gains of
explicitly injecting symmetry priors into the scene representation. In particular,
we combine hypernetworks [33] with local conditioning [31,37,44], embedded with
the symmetry prior. Experimental results demonstrate that such a symmetry
prior can boost our model to synthesize novel views with more details regardless
of the pose transformation, and show good generalization when applied to unseen
objects.
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