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Abstract. Text-based visual question answering (TextVQA) is to an-
swer a text-related question by reading texts in a given image, which
needs to jointly reason over three modalities — question, visual objects
and scene texts in images. Most existing works leverage graph or so-
phisticated attention mechanisms to enhance the interaction between
scene texts and visual objects. In this paper, observing that compared
with visual objects, the question and scene text modalities are more
important in TextVQA while both layouts and visual appearances of
scene texts are also useful, we propose a two-stage multimodality fusion
based method for high-performance TextVQA, which first semantically
combines the question and OCR tokens to understand texts better and
then integrates the combined results into visual features as additional
information. Furthermore, to alleviate the redundancy and noise in the
recognized scene texts, we develop a denoising module with contrastive
loss to make our model focus on the relevant texts and thus obtain more
robust features. Experiments on the TextVQA and ST-VQA datasets
show that our method achieves competitive performance without any
large-scale pre-training used in recent works, and outperforms the state-
of-the-art methods after being pre-trained.

Keywords: TextVQA · scene text recognition · multimodal information
fusion · contrastive learning.

1 Introduction

Nowadays, numerous methods [2, 30, 15, 24] have been proposed to solve the task
of visual question answering (VQA) [3], which is to answer questions about im-
ages. However, these methods fail in answering text-related questions as they
usually focus on objects and scenes while ignoring texts in the images. Actually,
text matters in real life as it appears ubiquitously in practical images like adver-
tisements, conveying valuable information that is essential for scene understand-
ing and reasoning. Thus, text-based visual question answering (TextVQA) [28,
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Q1: What is the number 
of the card on right?

Q2: What is written in 
green font?

Q3: What is written on the 
top blue sign?

(a) (b) (c)

Fig. 1. Some examples of TextVQA. The 1st, 2nd and 3rd rows show the original
images, all the scene text areas extracted by an OCR system in each image, and the
questions, respectively. All these questions can be correctly answered with only these
cropped scene texts in the images. To correctly answer these questions, the model
requires to first understand the semantics of the questions and scene texts, and then
use some additional scene text information: (a) layout information for Q1, (b) visual
appearance for Q2, (c) both layout and visual appearance for Q3.

5, 23] is gaining popularity in recent years as an extension of VQA to answer
text-related questions by reading and understanding scene texts in images.

Motivation. In general, the TextVQA task requires the model to read scene
texts in images by an OCR system and jointly reason over three modalities -
question, visual objects and scene texts. In our points of view, TextVQA research
faces two major technical challenges as follows:

1) How to effectively exploit multimodal information? Most existing works [19,
9, 14, 11] use an object detector to extract global visual objects and utilize graph
or complicated attention mechanisms to enhance the interaction between OCR
tokens and visual objects. However, Wang et al. [31] pointed out that the accu-
racy of M4C [12] is almost unaffected after discarding the visual object modality,
because the information of visual objects is not utilized well. Then, do global
visual objects matter in TextVQA? As we all know, there are three modali-
ties available for TextVQA: question, visual objects and scene texts in each
image. And each piece of scene texts contains textual content, layouts and vi-
sual appearances (font, color, background etc.). Our preliminary study shows
that compared to visual objects, scene texts are more important, and for high
performance TextVQA, both layouts and visual appearances are indispensable.
Concretely, we found that over 70% questions can be answered by using only the
scene text areas of the images, and 60% questions can still be correctly answered
even after discarding the visual appearances of scene texts while keeping only
the layout information. As layouts can provide contextual information, which
are not only critical to answer position-related questions, but also helpful for
text understanding. Fig. 1 shows some examples of TextVQA. We can see that
to answer Q1 (Fig. 1(a)), layouts of scene texts are required, and visual appear-
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ances of scene texts are critical to Q2 (Fig. 1(b)). While to correctly answer Q3
(Fig. 1(c)), besides layouts, the blue background of the text “Park ave” is also
indispensable, without which the answer may become “STOP” mistakenly.

2) How to select proper scene texts to answer the question? Existing meth-
ods try to use as many OCR tokens as possible in the image to provide enough
semantic information and make sure that the correct answer texts are included
in the input sequence. Although more OCR tokens bring more contextual in-
formation, which does help improve the performance, they also introduce noise
inevitably. Note that not all scene texts are relevant to the question. For ex-
ample, in Fig. 1(a), only texts containing numbers (e.g. “11870” or “15”) need
to be considered as the question is about number. Considering that too many
unrelated OCR tokens may confuse the model, especially in text-intensive sce-
narios. An ideal solution is to select the texts most relevant to the question when
semantic relationship is not enough to support question answering.

Solution and contributions. In this paper, we pay more attention to the
question and scene text modalities. On the one hand, to address the first chal-
lenge mentioned above, we propose a two-stage multimodality fusion module to
take full advantage of the textual content, layouts and visual appearances of
scene texts. In the first fusion stage, our model tries to understand the question
and scene texts by combining them and the layouts of scene texts as contextual
information with the help of LayoutLM [35]. After the textual and contextual
features interaction, visual features are then included in the second fusion stage
to handle questions that need the help of visual clues from scene texts. On the
other hand, in order to handle the second challenge above, i.e., reducing redun-
dancy and noise in the recognized scene texts, we develop a denoising module
that masks irrelevant OCR tokens and uses contrastive loss to integrate the fea-
tures of positive samples. In such a way, our model is able to focus on relevant
texts and obtain more robust features.

In summary, the contributions of this paper are:

– Observing that the question and scene text modalities are of first importance
in TextVQA, while both layouts and visual appearances of scene texts are
useful, we propose a two-stage multimodality fusion based method to take
full advantage of these information to boost TextVQA.

– We develop a denoising module with contrastive loss as an auxiliary task to
reduce the redundancy and noise of recognized scene texts and thus make the
model focus on the relevant texts and get more robust features.

– We validate the effectiveness and superiority of our method on the TextVQA
and ST-VQA benchmarks. Experimental results show that our method achieves
competitive results without any large-scale pre-training used in recent works,
and outperforms the state-of-the-art methods after being pre-trained.

2 Related Work

TextVQA aims to answer text-related questions by first reading scene texts
in images and then reasoning over three modalities — question, visual objects
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and scene texts. As a pioneer work, Singh et al. [28] proposed the first dataset
TextVQA with a framework LoRRA by extending the VQA model Pythia [13]
with an OCR attention branch. Later, several other datasets were built with texts
of different scenarios, e.g. ST-VQA [5] in daily natural scenes, OCR-VQA [23] of
book covers, STE-VQA [32] with bilingual texts and M4-ViteVQA [39] in video
text understanding.

Recent works [10, 12, 9, 19, 14, 11, 40, 36, 29, 21, 31, 37, 38, 4] have tried to im-
prove the performance of TextVQA by various network architectures, more pow-
erful OCR systems or large-scale datasets. Among them, M4C [12] utilizes mul-
timodal transformers to fuse all modalities with a dynamic pointer network sup-
porting multi-step answer decoding, which is the basis of most later works. With
M4C, SA-M4C [14] proposes a spatiality-aware self-attention layer and handles
different spatial relationships by different attention heads. Similarly, some other
works [10, 9, 19, 40, 38] leverage graph or complicated attention mechanisms to
emphasize the relationships between objects and OCR tokens, but the perfor-
mance improvement is mainly gained by stronger OCR systems. TAP [36] is
the first work to introduce pre-training to this task and pre-trains the model
with three auxiliary tasks. With the help of the Microsoft-OCR system and
the proposed large-scale dataset OCR-CC, it significantly boosts the TextVQA
performance. LOGOS [21] enhances the model’s understanding ability with two
grounding tasks to better localize the key information of the image. LaTr [4]
bases its architecture on T5 [25] and applies the pre-training strategy on large-
scale scanned documents.

Though some latest works emphasize the significance of question and scene
texts, yet none of them take full advantage of these two modalities with layouts
and visual appearances of scene texts simultaneously. In this paper, we propose
a two-stage multimodality fusion based method to comprehensively exploit such
information. In addition, we also develop a denoising module with contrastive
loss to reduce the redundancy and noise of recognized scene texts, which makes
the model focus on the relevant texts. Our experiments verify the effectiveness
and advantage of the proposed method.

3 Methodology

3.1 Overview

Fig. 2 shows the architecture of our method, which mainly consists of three
components: multimodal feature extraction, two-stage multimodality fusion and
denoising. Besides, an optional pre-training component is considered. Given a
sample X with an image I and a text-related question Q, we first extract fea-
tures of the question, scene text and visual object modalities. These features are
then progressively fused and reasoned with our two-stage multimodality fusion
module, where the first stage focuses on textual and layout information from Q
and scene texts in I, and the second stage includes visual appearances of scene
texts and utilizes global visual objects as auxiliary information. The denoising
module first masks the input OCR tokens, and then utilizes the masked result
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First Fusion Module

what is written on the top blue sign?

Second Fusion Module

Object Detector

Word Embedding

0000000

OCR System

Answer Generation Module park ave
Two-stage Multimodality 
Fusion Module

[CLS]

Word embedding Layout embedding Visual appearance features

Denosing Module

Two-Stage Multimodality
Fusion Module

Aug !: [MASK], here, …, park,  ave,  …, [MASK]

Projection Head

…

question OCR object

Two-Stage Multimodality
Fusion Module

Aug 1: stop, [MASK], …, park,  ave,  …, square

Projection Head

question OCR object

Two-Stage Multimodality
Fusion Module

Origin: stop, here, …, park,  ave,  …, square

Projection Head

question OCR object

…

Contrastive Learning

Fig. 2. The architecture of our method. After features of different modalities are ex-
tracted, they are fused and reasoned progressively with the two-stage fusion module.
The output features of scene texts will be used for further answer decoding with the
help of the denoising module, which masks the input and uses contrastive loss as an
auxiliary task.

and a contrastive loss as an auxiliary task to make the model focus on the rel-
evant texts. Optionally, our model can be further pre-trained on the question
and scene text modalities to boost the performance. Note that in our method,
the denoising module is used only in the fine-tuning stage.

3.2 Multimodal Features

OCR features. After extracting OCR tokens in image I with an OCR sys-
tem [7], previous works [12, 19, 36] obtain multiple features of OCR tokens with
various pre-trained models and add them together before fusion. Unlike them,
here we categorize the features into three types: layout embeddings, visual ap-
pearance features and word embeddings. Let O = {Oi}Ni=1 be the OCR tokens
after tokenization, where N is the length of the sequence. The layout embedding
xocr,li of the i-th OCR token Oi indicates its size and 2-D spatial position, which
is defined as follows:

xocr,li = Ex(x0i ) + Ey(y0i ) + Ex(x1i ) + Ey(y1i ) + Ew(wi) + Eh(hi) (1)

where Ex, Ey, Ew and Eh are learnable embedding layers, (x0i , y0i ) denotes the
coordinates of the upper left corner, (x1i , y1i ) denotes the coordinates of the
bottom right corner, and wi and hi correspond to the width and height of the
detected bounding box. All the coordinates have been scaled to 0-1000. For each
OCR bounding box, we use Faster R-CNN [26] to extract the visual appearance
feature xocr,vi . As for texts, the word embedding is represented as xocr,ti = Et(Oi),
where Et is a learnable embedding layer. The final representations of the detected
OCR tokens are then defined as Xocr,l = {xocr,li }Ni=1, Xocr,v = {xocr,vi }Ni=1 and
Xocr,t = {xocr,ti }Ni=1.
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Question features. Let Q = {Qi}Li=1 be the sequence of question tokens after
tokenization, where L is the sequence length. For the i-th token Qi, the word
embedding is represented as xq,ti = Et(Qi), which shares the same embedding
layer as the OCR word embedding. And the final representation is defined as
Xq,t = {xq,ti }Li=1.
Object features. As we have mentioned above, the visual object modality is not
the key factor in the TextVQA task, so we just use it as a supplementary. To unify
the inputs, we use the same Faster R-CNN to detect visual objects V = {Vi}Mi=1

in image I, where M is the number of objects, and then extract features of
each object Vi as xobj,vi . Similar to the OCR embedding, we obtain the layout

embedding xobj,li = E
′

x(x0
′

i )+E
′

y(y0
′

i )+E
′

x(x1
′

i )+E
′

y(y1
′

i )+E
′

w(w
′

i)+E
′

h(h
′

i). As
the features of visual objects are applied only in the second fusion stage, here we
just sum them up as xobji = W1x

obj,v
i +xobj,li , where W1 is a linear layer to control

the dimension. The final object representation is defined as Xobj = {xobji }Mi=1.

3.3 Two-stage Multimodality Fusion

After the features of different modalities are extracted, a common routine is to
add the unimodal features together and fuse them with a multimodal trans-
former, which is not effective enough in our work. To take full advantage of
the text, layout and visual appearance information, we propose two-stage mul-
timodality fusion.

In the first fusion stage, the model focuses on understanding the texts,
including the question and scene texts. We believe that there is a semantic
connection between the scene texts and the question. Most questions are seman-
tically closely related to the texts in the image, so texts can provide valuable
clue for answering the question, which constitutes the basis of the TextVQA
task. So we put these two modalities at the highest priority and jointly under-
stand them. Besides, previous works [35, 34] on document understanding have
shown the value of layout information, which provides contextual information.
Similarly in natural scenes, a specific OCR token’s 2-D position and positional
relationship with its contextual tokens help us to understand the OCR token.

Here, we base the first stage fusion on LayoutLM [35]. LayoutLM is a BERT-
like model that incorporates the visually rich layout information and align it
with the input texts. With both word embeddings and layout embeddings as
input, it is pre-trained with the masked visual language model (MVLM) on the
document dataset IIT-CDIP Test Collection 1.0 [18], which can also bring more
knowledge to our model. As there is a second fusion stage, we use only the first
6 layers of LayoutLM with the weights from HuggingFace [33] as initialization.
To jointly reason over the question and OCR tokens, as shown in Fig. 3, we
concatenate the features of the question and OCR tokens. The input of OCR
tokens is defined as Xocr,t + Xocr,l and we add a special [CLS] token as the
beginning of OCR tokens to represent the whole texts, which will be used in the
denoising module. As to the question, because there is no layout embedding, we
set all the coordinates as zero. Finally, we input the unified features into the
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Fig. 3. The input of the first multimodality fusion stage. We concatenate the features
of the question and OCR tokens together, including both word embeddings and layout
embeddings. All the coordinates for the question are set to zero.

fusion module and obtain

[Xq′ ;Xocr′ ] = Φ([Xq,t;Xocr,t +Xocr,l]) (2)

where Xq′ and Xocr′ are the semantically enhanced features for the question
and OCR tokens respectively, Φ(·) is the first fusion module LayoutLM and [; ]
is a concatenation operation.

In the second fusion stage, the visual appearance features of scene texts
are introduced as additional information to help handle questions that require
visual clues from scene texts. Here, we combine them with the semantic features
obtained in the first fusion stage. In addition, we also use the visual objects as
an aid and then fuse the three modalities with a multimodal transformer. The
output features are represented as

[Xq′′ ;Xocr′′ ;Xobj′ ] = Ψ([Xq′ ;Xocr′ +W2X
ocr,v;Xobj ]) (3)

where Xq′′ , Xocr′′ and Xobj′ are the outputs for the question, scene texts and
visual objects, respectively, Ψ(·) is the second fusion module and W2 is a linear
layer that projects Xocr,v to the same dimension as Xocr′ . Finally, Xocr′′ will be
used in the denoising module and for further answer decoding.

3.4 Denoising Module

More scene texts bring more noise, considering only the semantic relationship
between the question and OCR tokens is not enough to search for the relevant
texts for answering the question. To relieve this issue, we design a denoising mod-
ule, which augments the samples by randomly masking the input OCR tokens
to reduce modality interaction and understanding difficulty, and utilizes con-
trastive learning to make the model focus on the relevant texts. In the following,
we introduce this module in detail.
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Masking strategy. The text of correct answer provides important infor-
mation, without which the text-related question about the image cannot be
answered, so we avoid masking the tokens appearing in the answer. For the re-
maining OCR tokens, we randomly mask them with a certain probability. It is
worth mentioning that masking the OCR tokens by totally deleting them may
lead to confusion. For example, for some questions like “What is the second word
on the page?”. If the first word is masked and we simply mask the final feature
of it, the original second word will no longer be the correct answer as it has be-
come the first one. Therefore, we replace the masked OCR tokens with a special
[MASK] token while keeping the corresponding layout and visual appearance
features. In this way, our model gets the information that there exists a word
but does not know what the word is, which effectively reduces the interaction
and understanding difficulty. Besides, in order to enlarge the differences between
the original sample and the augmented ones, we use whole word masking. For
example, in our model the input OCR word “vegeburger” is tokenized into three
subtokens “ve”, “##ge” and “##burger” and the other features will be dupli-
cated for each token. Once the word is chosen, we mask these subtokens of the
word separately.

Contrastive learning. With this masking strategy, for a batch of l samples,
we augment each sample t times with a probability p. Given a pair of question
and answer (a training sample), these augmented samples can be seen as positive
samples of the original one while the rest are negative samples. As mentioned
above, for the i-th sample Xi in the batch we can get the output features Xocr′′

i

of scene texts with the two-stage fusion module. We take the feature of the
first [CLS] token as the representation of the whole sequence and project it to
zi ∈ Rd with a contrastive projection head, which is composed of two linear
layers. Similarly, we can get the contrastive output of all the augmented samples
using the same module. Then, we utilize a contrastive loss to constrain the
distance between positive samples in the latent space as follows:

Lcont =
∑
i∈B

Lcont
i = −

∑
i∈B

log
exp(zi · zj(i)/τ)∑

a∈A(i)

exp(zi · za/τ)
(4)

where B = {1, ..., l ∗ (t + 1)} is the index of samples in the batch after aug-
mentation, ‘·’ represents the dot production, j(i) denotes the indexes of positive
samples of the i-th sample, A(i) = B\i, and τ ∈ R+ is a scalar temperature
parameter. As only the correct answer will never be masked, it plays a key role
in the loss, and the model is then forced to pay more attention on it.

Training. For the main task, we use teacher-forcing technique [17] and multi-
label binary cross-entropy loss Lbce to train the model, which is defined as follows:

Lbce = −ygtlog(ypred)− (1− ygt)log(1− ypred)

ypred =
1

1 + exp(−f(Xocr′′))

(5)

where ygt is the ground-truth target, ypred is the final prediction of our model and
f(·) is the answer generation module following previous works of the TextVQA
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task. Finally, the total loss L is defined as a linear combination of the two losses
above as follows:

L = λ1 ∗ Lbce + λ2 ∗ Lcont (6)

where λ1 and λ2 are hyper-parameters to trade-off the two losses.

3.5 Pre-training

So far, we have introduced the main components of our method. Recent works [36,
4] tend to take advantage of pre-training to improve the performance. As an op-
tion, our model also can be pretrained to achieve higher performance. Here,
we conduct the masked language modeling (MLM) task on our model. Unlike
TAP [36], we directly per-train our model on the question and scene text modal-
ities with both layout and visual appearance features, but do not introduce
additional texts to enhance the question modality.

LayoutLM has been pre-trained with both texts and layout information of
documents. Considering the domain gap between documents and daily natural
scenes, and the fact that natural scenes contain more visual information, we
further pre-train our model to align all these features. In the pre-training stage,
we randomly mask each text token of both question and scene texts with a
probability 15%. The masked tokens are replaced by a special [MASK] with
80% probability, a random token with 10% probability, and remain unchanged
with 10% probability. Note that we only mask the input tokens while keeping
the corresponding 2-D position embeddings and visual appearance features as we
believe that they provide additional contextual information. Tokens with close
spatial relationship or sharing similar visual appearance tend to be more related
in semantics. Then, the model is required to recover the masked word Wmask

with two fully-connected layers. In our experiments, we find that the image-text
matching (ITM) task used in TAP brings no performance improvement, so we
do not use it. Finally, we pre-train our model with cross-entropy loss and use
our denoising module in the fine-tuning stage.

4 Experiments

4.1 Datasets and Evaluation Metrics

TextVQA is the first proposed large-scale dataset for the TextVQA task, which
contains a total of 45,336 questions about 28,408 images sampled from the Open
Image dataset [16]. All the questions are related to the texts in the images, and
each of them has 10 answers provided by 10 different annotators.

ST-VQA is similar to TextVQA, it consists of 23,038 images collected from
more diverse sources. There are in total 31,791 questions while each question has
up to two answers. All the questions can only be answered based on the texts
that appear in the images. We report our results on the open dictionary task
(task 3), which contains 18,921 training images and 2,971 test images. Following
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previous works [12], we split the training images into a training set with 17,028
images and a validation set with 1,893 images.

TextCaps and OCR-CC are introduced additionally during the pre-training
stage. TextCaps [27] reuses images from the TextVQA dataset and attaches
145,329 captions to them, while OCR-CC was proposed along with TAP [36],
which contains 1.367 million text-related image-caption pairs. These captions
play the same role as the questions to increase data in the pre-training stage.

Evaluation metrics. For the TextVQA dataset, we report the VQA accu-
racy [3] measured via the soft voting of the 10 answers. For the ST-VQA dataset,
besides VQA accuracy we also report the Average Normalized Levenshtein Sim-
ilarity (ANLS), which is defined as 1 − dL(apred, agt)/max(|apred|, |agt|), where
apred and agt are the predicted and ground-truth answers, while dL refers to the
edit distance. The final result is the average of all scores with those below the
threshold 0.5 being truncated to 0.

4.2 Implementation Details

We implement our method based on the code of TAP [36]. The maximum input
sequence lengths of question tokens, OCR tokens and object numbers are set to
L=20, N=300, and M=100 respectively. For our two-stage fusion module, the
base model contains a LayoutLM with 6 layers and a multimodal transformer
with 4 layers and 12 attention heads, while ‘†’ refers to a larger model with
8 and 12 layers adopted in LayoutLM and the multimodal transformer respec-
tively. The LayoutLM is initialized with weights from HuggingFace [33] and the
multimodal transformer is initialized from scratch. The dimension in the joint
embedding space is set to 768. In our denoising module, we use d=128 for the
output features of the contrastive projection head. Besides, we set t = 3 and
p = 0.15 to augment each sample. For other hyper-parameters, we use τ=0.07,
λ1=1 and λ2=1 by experience.

During the training stage, we adopt AdamW [20] as our optimizer and set
the batch size l to 32. The learning rate is 1e-4 for the multimodal transformer
and 1e-5 for the pre-trained LayoutLM. The warm-up learning ratio and warm-
up iteration are set as 0.2 and 1,000. In the pre-training stage, we pre-train the
model for 24,000 iterations when only TextVQA or ST-VQA datasets are used,
and 240,000 iterations when TextCaps and OCR-CC datasets are included. In
the fine-tuning stage, the model is further trained for another 30,000 iterations.

4.3 Experimental Results

Results on TextVQA. Following previous works [36], we evaluate our method
under two different settings: the first is the constrained setting that uses only
TextVQA for training and Rosetta [7] for OCR detection, the second is the
unconstrained setting. All results are presented in Tab. 1.

As shown in Tab. 1, the top part of the table reports the results under the
constrained setting. Because TAP [36] uses 100 OCR tokens, Latr [4] uses 512
OCR tokens and previous works tend to use 50 OCR tokens, to make a fair
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Table 1. Performance comparison on the TextVQA dataset. The top part reports the
results in the constrained setting that only uses TextVQA for training and Rosetta for
OCR detection, while the bottom part displays the results in the unconstrained setting.
We compare our method with several state-of-the-art methods, and our method clearly
outperforms them.

Method OCR system Extra data Val acc. Test acc.

M4C [12] Rosetta-en 7 39.40 39.01
SMA [9] Rosetta-en 7 40.05 40.66
CRN [19] Rosetta-en 7 40.39 40.96
LaAP-Net [11] Rosetta-en 7 40.68 40.54
BOV [37] Rosetta-en 7 40.90 41.23
TAP [36] Rosetta-en 7 44.06 -
LaTr [4] Rosetta-en 7 44.06 -
Ours (100 tokens) Rosetta-en 7 44.20 -
Ours Rosetta-en 7 44.75 -

M4C [12] Rosetta-en ST-VQA 40.55 40.46
LaAP-Net [11] Rosetta-en ST-VQA 41.02 40.54
SA-M4C [14] Google-OCR ST-VQA 45.40 44.6
SMA [9] SBD-Trans OCR ST-VQA - 45.51
BOV [37] SBD-Trans OCR ST-VQA 46.24 46.96
TAP [36] Microsoft-OCR 7 49.91 49.71
TAP [36] Microsoft-OCR ST-VQA 50.57 50.71
LOGOS [21] Microsoft-OCR ST-VQA 51.53 51.08
TAP [36] Microsoft-OCR ST-VQA, TextCaps, OCR-CC 54.71 53.97
Ours Microsoft-OCR 7 53.33 52.35
Ours Microsoft-OCR ST-VQA 54.33 54.47

Ours† Microsoft-OCR ST-VQA, TextCaps, OCR-CC 55.96 55.33

comparison, we conduct experiments on different numbers of OCR tokens. As
can be seen, when using only 100 OCR tokens, our method has already lifted
the accuracy achieved by TAP and LaTr from 44.06% to 44.20%. When using
300 OCR tokens, our method achieves the state-of-the-art accuracy of 44.75%.

The bottom part displays results in the unconstrained setting and we
also list the OCR system and extra data used by different methods. Follow-
ing TAP [36], we use Microsoft-OCR to detect scene texts in the images and
gradually expand the training data. As we can see, (1) when switching to the
Microsoft-OCR, without any extra data our method achieves 53.33% and 52.35%
on the validation and test set, improving TAP by +3.42% and +2.64% re-
spectively in the same setting. (2) When adding ST-VQA as another training
dataset like previous works, our method improves the test accuracy from 51.08%
of LOGOS [21] to 54.47% (+3.39%), which has already surpassed the final re-
sult of TAP after pre-trained on larger datasets (53.97%). Besides, unlike these
methods, our accuracy on the test set is better than that on the validation
set (54.33%), demonstrating that our method has better generalization ability.
(3) After introducing image caption datasets when pre-training, our method
achieves a final result of 55.33%, increasing the accuracy of TAP by +1.36%.
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Table 2. Performance comparison on
the ST-VQA dataset.

Method Val acc. Val ANLS Test ANLS

M4C [12] 38.05 0.472 0.462
SA-M4C [14] 42.23 0.512 0.504
SMA [9] - - 0.466
CRN [19] - - 0.483
LaAP-Net [11] 39.74 0.497 0.485
BOV [37] 40.18 0.500 0.472
LOGOS [21] 48.63 0.581 0.579
TAP [36] 50.83 0.598 0.597
Ours 50.49 0.598 0.587

Ours† 55.51 0.646 0.634

Table 3. Ablation study results on
the TextVQA dataset. “TMFM” and
“DM” refer to the two-stage multi-
modality fusion module and denoising
module.

Configuration TMFM DM Pre-train Val acc.

(1) TextVQA 3 7 7 50.71
(2) TextVQA 3 3 7 51.32
(3) w/ ST-VQA 3 7 7 51.49
(4) w/ ST-VQA 3 3 7 52.56
(5) w/ MLM 3 7 3 52.82
(6) w/ MLM, ITM 3 7 3 52.47
(7) w/ MLM 3 3 3 53.33

Results on ST-VQA. Tab. 2 presents the results on the ST-VQA dataset
in the unconstrained setting. The base model is pre-trained and fine-tuned on
the training set of ST-VQA and † refers to the large model that uses TextVQA,
ST-VQA, TextCaps and OCR-CC in pre-training. Unlike the TextVQA dataset,
in ST-VQA all the answers are texts in the images. Our method works better
on ST-VQA as we focus more on scene texts. As can be seen, without any extra
data, our method achieves the accuracy of 50.49% and the ANLS score of 0.598,
which is nearly at the same level with the large-scale pre-trained TAP. When
pre-trained on larger datasets, the final accuracy and ANLS score of our method
reach 55.51% and 0.646, i.e., +4.68% and 0.048 higher than that of TAP.

4.4 Ablation Study

Here, we conduct ablation study to demonstrate the effectiveness of each com-
ponent in our method. All the experiments are done on the TextVQA dataset.

Overall results. As shown in Tab. 3, we first report the overall ablation
results of different components in our method. Only by our two-stage multi-
modality fusion module but without any pre-training, the accuracy reaches
50.71%, which outperforms TAP after being pre-trained (49.91%), while our de-
noising module increases the performance to 51.32% (+0.61%). Especially, when
introducing ST-VQA as an additional training dataset, the improvement gained
by our denoising module increases to +1.07% (Row 3 and Row 4), showing that
our denoising module works better with more data. One possible reason is that
all the answers of the ST-VQA dataset are texts in the images without any
external vocabulary, which is beneficial to the denoising module. Finally, our
method achieves a competitive result 52.56% without pre-training. On the other
hand, Row 5 and Row 6 show the results of our model with pre-training on
TextVQA dataset. As can be seen, the MLM task makes a positive impact while
introducing the ITM task causes a decrease from 52.82% to 52.47% (-0.35%).
This is possibly because that the semantic relationship between scene texts and
the image is not so strong (different from the fact that image caption is usually
closely related to the image). At last, Row 7 shows the final result of our model
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Table 4. Ablation study on the two-
stage multimodality fusion module.

Fusion module Xocr,l Xocr,v Xobj Val acc.

One-stage fusion 3 3 3 49.41

Two-stage fusion

7 7 7 45.12
3 7 7 49.24
3 3 7 50.50
3 3 3 50.71

Table 5. Ablation study on augmenta-
tion times t and masking probability p
of the denoising module.

p=0.15 p=0.3 p=0.5

t=1 50.53 51.04 50.41
t=3 51.32 51.16 50.36

trained on the TextVQA dataset. Our denoising module still works well after
the model being pre-trained, increasing the accuracy from 52.82% to 53.33%.

Effect of two-stage multimodality fusion module. We conduct further
ablation study on our two-stage multimodality fusion module to verify its ef-
fectiveness and show the influence of each feature. First, we test the one-stage
fusion paradigm. In this setting, features of different modalities are extracted
respectively and unimodal features are added together before fusion. Here, we
use BERT [8] to extract the feature of the question following previous works
while keeping LayoutLM to extract the semantic features of OCR tokens. The
semantic and visual features of OCR tokens are then added together before
interacting with the other modalities. As shown in Tab. 4, the final result is
49.41% while our two-stage multimodality fusion module improves the accuracy
to 50.71 (+1.30%), which verifies our expectation that jointly considering the
question and scene texts are beneficial to the understanding of both modalities.

Then, we display the importance of various features. As we have mentioned
in the beginning that texts are the basis, by removing the object features and
layout/visual appearance features of scene texts in our two-stage fusion module,
the model can still obtain an accuracy of 45.12%. Adding layout features in
the first stage to help text understanding brings an increase of +4.12%, and
introducing visual appearance features of scene texts based on the former setting
achieves additional improvement of +1.26%, which shows the importance of both
layout and visual appearance of scene texts. Finally, we add object features
as auxiliary information. The gap of the accuracy between our model with or
without object features is only about 0.2%, which is consistent with our claim
that global visual objects are not the first important role in the TextVQA task.

Effect of denoising module. As shown in Tab. 5, we conduct ablation
study on the hyper-parameters in our denoising module by setting different val-
ues for augmentation times and masking probability. Augmenting only one time
makes no obvious improvement, which may because of the strong randomness.
Increasing augmentation times is helpful while increasing masking probability
leads to accuracy decrease. At last, we choose to augment each sample 3 times
with the masking probability being 15%.

In order to show the superiority of our masking strategy, we further test
some other methods. Masking without excluding the correct answers obtains an
accuracy of 50.74% (-0.58%) while deleting the whole features achieves 50.13% (-
0.19%), which shows that our masking strategy is the best choice.

4155



14 B. Li et al.

(a) w/o our denoising module (a) w/ our denoising module

Fig. 4. tSNE results of the output features of OCR tokens in a text-rich sample. (a)
Without our denoising module, there are more noise points around the answer tokens.
(b) With our denoising module, fewer unrelated tokens are around the correct answers.

As using only data augmentation can also boost performance, we conduct ex-
periment by removing our contrastive loss, and the accuracy decreases to 51.08%,
which shows the effectiveness of contrastive learning. Besides, we compare the
visualization results of models trained with and without our denoising module.
Fig. 4 shows the visualization results of the output features of OCR tokens by
tSNE [22]. As seen, when trained without our denoising module, there are more
noise points around the correct answer. While with our denoising module, as
tokens in the correct answer are not masked and fewer tokens are considered
each time, there are fewer noise points around the answer tokens.

Moreover, our proposed denoising module can also work well with previous
works. Here we conduct experiments with the common baseline model M4C [12]
on the TextVQA dataset. As the input features of M4C are different from ours,
here we randomly mask the semantic features of FastText [6] and PHOC [1].
Our experimental results show that the denoising module lifts the accuracy of
M4C from 45.55% to 46.24%, which verifies the effectiveness and flexibility of it.

5 Conclusion

In this paper, we observe that compared to visual objects, question and scene
text modalities are more important in the TextVQA task while both layout
and visual appearance are useful. Based on this observation, we propose a two-
stage multimodality fusion based method to boost TextVQA. Besides, in order
to alleviate the redundancy and noise of recognized scene texts, we develop a
denoising module that utilize contrastive loss to make the model focus on the
relevant texts. Extensive experiments on two benchmarks are conducted, which
verify the effectiveness and superiority of the proposed method.
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