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Abstract. Learning robust and compact shape representation learning
plays an important role in many 3D vision tasks. Existing supervised
learning-based methods have achieved remarkable performance, mean-
while requiring large-scale human-annotated datasets for model train-
ing. Self-supervised/unsupervised methods provide an attractive solution
to this issue that can learn shape representations without the need for
ground truth labels. In this paper, we introduce a novel self-supervised
method for shape representation learning using normalizing flows. Specif-
ically, we build a model upon a variational normalizing flow framework
where a sequence of normalizing flow layers are adopted to model ex-
act posterior latent distribution and enhance the representation power
of the learned latent code. To further encourage inter-shape separa-
bility and intra-shape compactness among a batch of shapes, we de-
sign a contrastive-center loss that performs metric learning on features
on a hypersphere. We validate the representation learning ability of
our model on downstream classification tasks. Experiments on Model-
Net40/10, ScanobjectNN, and ScanNet datasets demonstrate the supe-
rior performance of our method compared with current state-of-the-art
methods.

Keywords: Shape representation Learning · Normalizing Flow · Contrastive
Learning.

1 Introduction

With recent advancements in range sensors (i.e. LiDAR and RGBD cameras) and
imaging technologies (i.e. 3D MRI), the amount of available 3D geometric data
has increased dramatically. It is therefore of great importance to develop meth-
ods that can take advantage of the ubiquity of 3D point cloud data for 3D scene
understanding. One fundamental problem with 3D geometric data is learning
representative and robust feature representations. To handle this problem, ex-
isting supervised-learning-based methods have achieved remarkable performance
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with the help of large-scale human-annotated datasets. However, human annota-
tions are usually labor-intensive and time-consuming and an inadequate dataset
may lead to poor generalization ability of the learned models. Therefore, un-
supervised representation learning stands out as an attractive alternative and
drew huge research attention in the 3D vision community.

Several studies have been devoted to addressing this challenging problem
[1–3]. To train the neural network models without ground truth labels, these
methods formulate self-supervision signals from careful-designed generation or
reconstruction tasks, including self-reconstruction [4, 1, 2], transformation equiv-
ariant [5–7], local-to-global reconstruction [3, 8, 9] and distribution approxima-
tion [10, 11]. Although these methods obtain ever-increasing downstream classi-
fication performance on several benchmark datasets, two challenging issues still
exist and impede these methods to get better performance than state-of-the-art
supervised methods. First, existing methods mostly focus on formulating self-
supervision signals from latent representation while failing to regularize latent
distribution, and thus the learned latent representation cannot well characterize
the structural distribution of input data. Second, these methods usually overem-
phasize global representations while neglecting semantic local structures and the
relationship between local and global representations.

For the first issue, a direct remedy is to use a simple Gaussian prior over
shape representations, like the ones used in VAE models [12]. But it has been
shown that a restricted prior tends to limit the performance of VAEs [13]. In-
spired by the great success of normalizing flow-based models for unsupervised
density modeling [14, 15]. In this paper, we introduce a variational normalizing
flow-based module to encourage more flexible latent distribution which can po-
tentially better characterize the global structures of irregular 3D shapes by exact
log-likelihood modeling. To the best of our knowledge, we are the first to use
normalizing flows for unsupervised shape representation learning.

For the second issue, we generate our solution based on the observation that
local patterns of 3D shapes are highly related to global patterns. The human
can recognize an object category from only part of the object and also identify
whether a local patch can be a constructive part of a given object. A desir-
able shape representation model should take into account both local and global
structures when designing the feature learning module. To this end, we aim to en-
hance global shape representations by incorporating a self-supervised local-global
semantic supervision. Specifically, we formulate a contrastive-center loss on lo-
cal and global embeddings to encourage inter-shape separability and intra-shape
compactness of learned embeddings.

We validate the representation learning ability of our model on downstream
classification tasks. Extensive experiments are conducted on three benchmark
datasets and results show that the proposed unsupervised method obtains better
performance than its supervised counterpart and exhibits robustness to sparse
point sampling and input noise. The proposed method also reports new state-of-
the-art performance on ModelNet40, ModelNet10, and ScanNet datasets, with
a single view classification accuracy of 93.3%, 95.6%, and 90.8% respectively.
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Unsupervised 3D Shape Representation Learning using Normalizing Flow 3

2 Related Work

2.1 3D Point Cloud Representation Learning

Supervised-learning based methods. As a pioneering work, PointNet [16]
introduce the first deep learning-based method that directly learns point features
from unstructured raw point clouds. Although it provides a simple and efficient
architecture for point cloud signature learning, it lacks the ability to capture the
local structure information. PointNet++ [17] tries to address this issue using
hierarchy point sampling and grouping techniques. Subsequent works try to im-
prove the performance by designing new point convolution operations that can
better capture local structural information. DGCNN [18] and its following works
[19] regard point clouds as undirected graphs and formulate point feature learn-
ing a dynamic message passing process on graph data. PointCNN [20] learns an
X -transformation to reorder the input points into a canonical order. KPConv
[21] build point convolution based on rigid or deformable kernel points. In light
of the great success of vision transformers [22], recent works [23–25] develop
point convolutions with self-attention networks. In this paper, we build our un-
supervised shape representation learning framework using PointNet++ as the
backbone network for point feature learning. Other PointNet++-like variants
can be easily adapted into our pipeline.
Unsupervised-learning based methods. To learn feature representation for
3D point clouds without access to ground truth labels, previous methods have de-
veloped various types of self-supervision signals. The most intuitive self-supervised
signal can be formulated in a self-reconstruction process where the global feature
representations are first learned from the input point clouds and then a decoder
network is used to reconstruct the inputs from the feature representations [1,
4]. Similarly, contrastive learning-based methods [26, 7] have also been explored
for unsupervised pre-training for 3d representation learning. In the light of ad-
versarial networks for various data generation tasks, researchers proposed to
use generative adversarial networks (GANs) [27] to learn a probabilistic latent
space of 3D objects [28]. Instead of using an explicit encoder network to learn
3D shape representations, recent works also explored auto-decoder networks for
shape representation learning [29, 30]. Although these methods have obtained
ever-increasing performance for unsupervised 3D shape representation learning,
they usually fail to capture high-level semantic information thus the performance
fall behind state-of-the-art supervised methods. To address this issue, recent
works [3, 9] incorporated semantic knowledge by simultaneously exploiting local
and global self-supervision in order to learn discriminative representations. In
this paper, we aim to enhance the learned shape representation by exploiting
the semantic relation between local and global structures by a newly designed
contrastive-center loss.

2.2 Normalizing Flows

Normalizing Flows (NFs) are a family of generative models based on an invertible
mapping between the data distribution and latent distribution. Pioneering work
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[14] introduced the first flow-based deep learning framework for high-dimensional
density estimation using change of variable theory. To enable the tractability of
the Jacobian determinant, a coupling layer was proposed with efficient bijective
transformation. Recent works have demonstrated the superior performance in
many generation tasks, including image generation [13, 15], audio synthesis [31,
32], video generation [33], and machine translation [34]. Thanks to the attrac-
tive merits of exact log-likelihood modeling, normalizing flows have become a
powerful technique for unsupervised density modeling.

Recent efforts have full-filled theoretical developments and applications of
flow-based methods. In [13], the authors introduced a variational normalizing
flow model that combines the merits of VAE and normalizing models in a unified
framework where flow layers are used to transform latent variable from a simple
diagonal Gaussian distribution to a highly flexible distribution that character-
izes the true posterior. Glow [15] introduced a simple but effective generative
flow using an invertible 1x1 convolution and demonstrated its effectiveness and
efficiency for synthesizing realistic high-resolution natural images. A comprehen-
sive review of normalizing flow can be found [35]. Recent works [11, 36–38] have
developed numerous flow-based methods for for a wide range of 3D tasks, such
as point cloud generation, single-view 3D reconstruction. In this paper, a varia-
tional normalizing flow module is designed to enhance latent representations by
using normalizing flows to characterize the exact latent distribution.

3 Method

In this section, we introduce the normalizing Flow-based method for unsuper-
vised 3D Shape representation learning, named SFlow. Our proposed method
is built upon a self-reconstruction framework with normalizing flow modules
to ensure the learned latent code can characterize the exact probability dis-
tribution of input data. A newly designed contrastive loss is further applied
to the semantic embeddings and global representations to encourage the dis-
crimination abilities of the learned features. Fig. 1 gives an overview of the
proposed method. Our method includes three main components. The first com-
ponent is Self-Supervised Reconstructionmodule. In this module, our model
first leverages an encoder network Qϕ to learn global representation z from an
input shape X, i.e., z = Qϕ(X), and then employs a decoder network D to

decode the global representation into a reconstructed shape X̂, i.e., X̂ = D(z).
The network architecture will be illustrated in section 3.1. The second compo-
nent is Variational Normalizing Flow module, in which a reparametrization
trick is leveraged to generate initial latent code z0 from a Gaussian distribu-
tion N (µ, σ). Then, we leverage a sequence of normalizing flow layers to learn
the exact probability distribution zK . The initial probability distribution after
the encoder network ‘flows’ through the sequence of invertible mappings and is
finally constrained by standard Gaussian prior, see section 3.2. For the third
component, Feature Contrastive module, we formulate a contrastive-center
loss to encourage intra-shape compactness and inter-shape separability of the
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Fig. 1. Overview of the proposed method. Our SFlow model starts with a PointNet++
[16] backbone network to extract global feature z of the input shape. ‘PN’ denotes a
unit PointNet [16], and ‘SSG’ denotes Single-Scale Grouping (SSG) proposed in Point-
Net++ [17]. A decoder network is leveraged to recover the input shape with Chamfer
loss as a supervision signal. Then, a variational normalizing flow module is developed
to transform the latent distribution into a standard Gaussian prior through a sequence
of invertible mappings. A feature contrastive module with both contrastive loss and
center loss is designed in the embedding space to encourage intra-shape compactness
and inter-shape separability of the local and global embeddings.

local and global embeddings. Both a softmax-based contrastive loss and a center
loss are defined to perform metric learning on features on a hypersphere, see sec-
tion 3.3. A shared multi-layer perceptron (MLP) network is leveraged after each
downsampling block to transform the local features into the same dimension as
the global feature before calculating contrastive-center loss.

3.1 Self-Supervised Reconstruction

Self-supervised reconstruction, or point auto-encoding, is one of the first family of
methods for unsupervised 3D shape representation learning [1, 2, 4]. This type of
method starts by using an encoder network to learn global shape representation
and then a decoder network to reconstruct input shapes. A self-reconstruction
loss, e.g., Chamfer distance [39], can then be used to provide self-supervision
signals for model training. In our method, we leverage a hierarchy point fea-
ture learning network proposed in PointNet++ [17] as the encoder. Given a 3D
point set X = {x1, x2, ..., xN}, where each point xi is represented by a 3D co-
ordinate and possibly attributes (e.g., surface normal), and N is the number of
points. To directly learn feature representations from raw point sets, pioneering
work PointNet [16] proposed to use a shared MLP network to learn per-point
feature embeddings followed by a symmetry function, e.g. max-pooling, to get
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global shape representation. PointNet++ [17] enhances the method by introduc-
ing a set abstraction and feature interpolation layer to enable a hierarchy feature
learning. Specifically, at each set abstraction layer, a smaller number of points
are selected from the previous layer using farthest point sampling, and a unit
PointNet is applied to the local neighborhood around each selected point. The
global shape representation can be obtained by applying a smaller PointNet on
the final abstraction layer.

To perform self-reconstruction, a folding-based [1] decoder network is adopted
to transform the global shape representation into a set of 3D coordinates. Specif-
ically, the global shape representation is concatenated with the coordinate of a
canonical 2D grid and a multi-level MLP network is used to deform the 2D grid
onto an underlying 3D object surface, i.e., X̂ = D(z,G), where G is the coordi-
nates of regular 2D grid. A self-supervised Chamfer loss is adopted to train the
self-reconstruction network, defined as:

Lrec =
∑
x∈X

min
y∈X̂

||x− y||2 +
∑
x∈X̂

min
y∈X

||x− y||2. (1)

Optionally, a normal estimation network Ψ can be built upon the learned global
representation to further encourage high-level semantic feature learning. Unlike
previous methods [17] that use normal as additional inputs, our method uses
normal information as auxiliary output supervision, thus relieving the need for
normal information at the inference stage. Specifically, we concatenate the 3D
coordinate of each input point xi with the global feature vector z and feed it into
a shared MLP network to predict the normal estimations. The cosine similarity
loss is used to train the network:

Lnor = − 1

N

∑
i

cos(Ψ(z, xi),nxi
) (2)

, where nxi
denotes the ground truth normal for point xi.

3.2 Variational Normalizing Flow

The above self-supervised point auto-encoding (AE) [40] model can be easily
extended to a probabilistic form of variational auto-encoder (VAE) [12] by con-
straining the latent variable by some underlying probability distributions. Given
input data X, a typical VAE model characterize the data distribution via latent
variable z with a prior distribution Pψ(z), and captures the distribution of X
given z using a decoder network Pθ(X|z). An encoder/inference network is typ-
ically used to generate the mean and variance of latent distribution Qϕ(z|X).
During training, the parameters of the encoder and decoder networks are jointly
optimized to maximize a lower bound on the log-likelihood of the input data,

logPθ(X) ≥ logPθ(X)−DKL(Qϕ(z|X)||pθ(z|X))

= EQϕ(z|X)[log pθ(X|z)]−DKL(Qϕ(z|X)||pψ(z))
= −L(X)

(3)
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, which is also called the evidence lower bound (ELBO). From the above equa-
tion, the ELBO jointly optimizes the negative reconstruction error (the first
term) and a latent distribution regularizer (the second term), which is KL diver-
gence between the approximate posterior and the prior distribution. In practice,
Qϕ(z|x) is modeled by a diagonal Gaussian distribution N (µϕ(X), σϕ(X)) where
the mean µϕ(X) and the standard-deviation σϕ(X) are predicted by a deep neu-
ral network Qϕ(z|X).

One limitation of the VAE model lies in the available choices of posterior
approximating families where the true posterior is unknown and is generally
more complex than the assumption allows for. Choosing a highly flexible and
computationally-feasible approximate posterior distribution stands as one of the
bottlenecks of VAE models. To handle this issue, one feasible solution is to use
normalizing flows to transform a simple distribution into a highly complex one
as the posterior in VAE, which makes the model become variational normalizing
flows [13].

A normalizing flow defines the transformation from an initial known distri-
bution to a more complicated one using a sequence of invertible mappings. Let
f1, ..., fK denotes a sequence of invertible functions, where each f : Rd → Rd
with inverse f−1 = g, s.t., g ◦ f(x) = x. Given a latent variable z0 (z0 = z)
with distribution q(z0), a variable zK with more complex distribution can be
generated by recursively apply the transformation, i.e., zK = fK ◦fK−1 ◦f1(z0).
The probability distribution of the resulting variable zK can be generated by
the change of variables formula:

log q(zK) = log q(z0)−
K∑
k=1

log |det ∂fk
∂zk−1

|. (4)

Thanks to the invertible characteristic of each transformation function, z0 can
be computed from zK using inverse flow: z0 = f−1

1 ◦ f−1
2 ◦ f−1

K (zK). In practice,
f1, ..., fn are implemented using neural networks with an architecture that en-
sures the determinant of the Jacobian det ∂fk

∂zk−1
can be easily computed. In this

paper, we use Glow-like 1x1 invertible convolutions for density transformation,
interested readers can refer to [15] for details. After applying the above flow
transformations, the marginal log-likelihood in eq. (3) can be reformulated as:

−L(X) = logPθ(X)−DKL(Qϕ(z|X)||Pθ(z|X)) %The first row of Eq. (4)

= logPθ(X)− EQϕ(z|X)(logQϕ(z|X)− logPθ(z|X))

= logPθ(X)− EQϕ(z|X)(logQϕ(z|X)− logPθ(z,X) + logPθ(X))

= EQϕ(z|X)[logQϕ(z|X)− logPθ(X, z)]

= Eq(z0)[log q(zK)− logPθ(X, zK)] %Replace Qϕ(z|X) with zK

= H(q(z0))− Eq(z0)[

K∑
k=1

log |det ∂fk
∂zk−1

|] %Replace zK using Eq. (5)

− Eq(z0)[log p(X, zK)]

(5)
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, where H represents the entropy. The first term is the entropy of the approxi-
mated posterior, the second term is prior regularization. We denote the first two
terms as Lflow in the following sections. The third term is the reconstruction
log-likelihood of the input point set, calculated as eq. (1).

3.3 Contrastive-Center Loss

The above self-reconstruction process only characterizes input shapes from a
global perspective. In this section, we aim to enhance shape representation by
exploiting the relation between local structures and global shapes. Specifically,
we first design a contrastive loss to encourage inter-shape separability by encour-
aging semantic embeddings of each point to be closer to the global representation
of the same object than other objects. In the light of instance discrimination [41],
our method treats the global representation of one object as the positive class
and uses the global representation of other objects as the negative class, and
formulates a classification loss to encourage separability. Given a bunch of input
shapes {Xb}Bb=1, f

b
i as the embedding of point xbi on shape Xb and the global

representation zb,

Lcont = − 1

B ∗N

B∑
b=1

N∑
i=1

log
exp(sω(f bi )

T zb)∑B
j=1 exp(sω(f

b
i )
T zj)

. (6)

The above loss function will maximize the similarity of each point embeddings
f bi with the global representation of the same shape zb meanwhile minimizing
the similarity of each point embeddings with the global representation of other
shapes zj(j ̸= b). ω is an MLP network that maps f to the same dimension as
z. Similar to the metric losses used for face recognition [42, 43], we normalize all
feature embeddings onto a hypersphere before computing similarities and use a
constant value s = 64 to re-scale the features. Note that eq. (6) is calculated on
local embeddings at all downsampling levels.

Fig. 2. Illustration of contrastive-center loss on the hypersphere of feature embeddings.
The red circle indicates global shape representation, which is treated as the pseudo
center point for center loss calculation.

One may note that the above contrastive loss only encourages inter-class
separability. Inspired by the studies on contrastive-center loss for face recognition

1131
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[44], we further introduce a center loss to enforce intra-shape compactness. Unlike
[44] that dynamically updates class centers using gradient decent, we directly
treat the global feature of each input shape as the “class center” and develop
the center loss as,

Lcenter =
1

B ∗N

B∑
b=1

N∑
i=1

||f bi − zb||. (7)

Fig. 2 gives an illustration of the proposed contrastive-center loss. The final
metric loss used in our method is defined as:

Lmet = Lcont + Lcenter. (8)

Combining self-reconstruction, normalizing flow loss, and contrastive-center loss,
the overall training objective is defined as:

L = Lrec + Lflow + Lmet + Lnor. (9)

Note that all loss terms in eq. (9) can be calculated in a purely unsupervised
way, without using the ground truth labels.

4 Experiments and Results

4.1 Experimental Datasets

We evaluated the 3D shape representation learning performance of our model
on ModelNet [45], ScanObjectNN [46] and ScanNet [47] datasets. The Model-
Net40/10 dataset consists of 9832/3991 training shapes and 2468/908 test shapes
from 40/10 object classes. All point sets are sampled from CAD models with sur-
face normal information provided. ScanObjectNN is a real-world dataset that
consists of 2902 3D objects from 15 categories. We used the “object-only” split in
our experiments. ScanNet [47] is another real-world scan dataset with 17 object
categories where we followed [20] to get points sets from instance segmenta-
tion labels. In all experiments, we randomly sampled 1024 points from each 3D
object for model training and evaluation. We reported the performance using
single view inputs without using the multi-view voting strategy for potential
enhancement.

4.2 Implementation Details

Network architecture. In our experiments, we used the encoder part of Point-
Net++ (PN++) as the backbone network for feature learning. Three set abstrac-
tion layers were sequentially applied to reduce the number of points to 512, 128,
and 64, with a radius of 0.23, 0.32, and 0.46 respectively, followed by a unit
PointNet to get the global representations. In each set abstraction layer, we
used Single-Scale Grouping (SSG) instead of Multi-Scale Grouping (MSG) [17]
for feature aggregation to reduce model capacity. In a self-supervised reconstruc-
tion decoder, we adopted a two-level folding process to reconstruct 3D shapes.
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Table 1. Classification accuracy (%) on ModelNet40 (MN40.) and ModelNet10
(MN10.) datasets. (L) denotes the model with a large PN++ backbone network. †
indicates the mode is trained on the ShapeNet dataset.

Method Input
Accuracy

MN40. MN10.

TL Network [50] voxel 74.40 -
VConv-DAE [51] voxel 75.50 80.50
3DGAN [28] voxel 83.30 91.00
VSL [52] voxel 84.50 91.00

VIPGAN [53] views 91.98 94.05

†LGAN [2] points 85.70 95.30
LGAN [2] points 87.27 92.18
†FoldingNet [1] points 88.40 94.40
FoldingNet [1] points 84.36 91.85
MAP-VAE [3] points 90.15 94.82
GraphTER [7] points 92.02 -
GLR [9] points 92.22 94.82
GLR(L) [9] points 93.02 95.53

SFlow points 92.78 94.82
SFlow (L) points 93.31 95.60

In the variational normalizing flow module, we used a Glow architecture with 16
flow layers, and each has 4 flow steps. The hidden dimension was set to 128 and
divided into 8 groups. To evaluate the downstream classification performance,
we trained a linear SVM [48] using the feature representations obtained from
the training set and evaluated the classification performance on the test split.
Network optimization. Our model was optimized using the Adam optimizer.
The initial learning rate was set to 1e-3 and decayed with a scale of 0.7 every
20 epochs. We used a momentum of 0.9 for Batch Normalization layers [49] and
decayed with a rate of 0.5 every 20 epochs. Our model was trained for 300 epochs
with a batch size of 32 and it took around 30 hours on a single Titan XP GPU.

4.3 Results on ModelNet

To demonstrate the effectiveness of our proposed method for unsupervised shape
representation learning, we compared our method with state-of-the-art unsuper-
vised methods in Table 1. We also included the results of our SFlow model with
a larger backbone (4x channel width), similar to recent work GLR [9] which re-
ports state-of-the-art performance on the ModelNet dataset. From Table 1, our
method achieves new state-of-the-art performance, with a classification accuracy
of 93.31% and 95.60% on ModelNet40 and ModelNet10 dataset respectively.

We further compared the performance of our SFlow model with its supervised
counterpart. Specifically, we trained supervised PointNet++ models with the
same backbone networks, followed by several fully connected layers and a softmax
layer to generate the prediction labels. From Table 2, one can see that our SFlow
model obtains better performance than its supervised counterpart using both
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small and large backbone networks. This demonstrates that our unsupervised
SFlow model can potentially learn more discriminative representation than its
supervised counterpart.

Table 2. Comparison with the supervised counterpart on ModelNet40 dataset.

Model PN++ PN++ (L)

PN++ (Supervised) 91.69 92.01
SFlow (Unsupervised) 92.78 93.31

4.4 Cross-Dataset Evaluation

We conducted downstream classification experiments on the real-world ScanOb-
jectNN and ScanNet datasets. Following the experimental settings of GLR [9],
we trained our shape representation learning network on the ModelNet40 dataset
and evaluated the downstream classification performance on the ScanObjectNN
and ScanNet datasets. Note that we did not fine-tune our model on the tar-
get datasets. Even though ScanObjectNN and ScanNet datasets have different
object categories with the ModelNet40 dataset, our SFlow model can still pro-
duce well-separable representations without training/finetuning on the target
datasets, as shown in Table 3. This demonstrates that our SFlow method can
successfully learn generic representations from object structures without labels.
Moreover, our model achieves significant better performance than current STOA
method GLR [9] on ScanNet dataset (90.8% vs. 89.2%), and a obtains a compa-
rable performance with GLR [9] on ScanObjectNN dataset (87.0% vs. 87.2%).
It should be noted that we only got a classification accuracy of 86.2% on the
ScanObjectNN dataset using the official code of GLR [9].

4.5 Robustness Analysis

In this section, we investigate the robustness of our model under different num-
bers of sampled points and noise levels. To achieve this, we evaluate the down-
stream classification performance on the ModelNet40 dataset with sparser points
of 1024, 512, 256, 128, and 64, while the backbone network is still trained on
1024 points. From Fig. 3(a), our SFlow model is a lot more robust than its super-
vised counterpart and maintains an accuracy higher than 86.1% with only 128
points. For the latter, we added Gaussian noise of N (0, σr) to input point sets
and generated feature representation using the backbone trained on the clean
dataset. We conducted experiments with σr choose from [0, 0.01, 0.02, 0.03, 0.05].
From Fig. 3(b), our SFlow shows a smaller performance drop than its supervised
counterpart and maintains an accuracy higher than 86.5% with a noise level of
0.05.
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Table 3. Transferring accuracy (%) on ScanObjectNN (SON.) and ScanNet (SN.)
datasets. (L) denotes a large PN++ backbone network. ‘Sup’ denotes supervised meth-
ods. * denotes our reproduced results.

Method Sup.
Accuracy

SON. SN.

PointNet++[17] ✓ 84.3 -
PointCNN [20] ✓ 85.5 -
DGCNN [18] ✓ 86.2 -
GLR(L) [9] ✗ 87.2 89.2
*GLR(L) [9] ✗ 86.2 89.2

SFlow (L) ✗ 87.0 90.8

Fig. 3. Robustness test. The classification of our model with different numbers of
sampled points and different noise levels.

4.6 Complexity Analysis

In Table 4, we report the model capacity and inference time of our SFlow model
and its supervised counterpart. We calculated the total inference time on the
whole test set of the ModelNet40 dataset with a batch size of 24 and a single
Titan XP GPU. From 4, compared to the supervised PN++ model, our SFlow
model only brings slightly more computation cost but can get significantly better
performance. Moreover, our SFlow model with a small backbone shows a better
trade-off in speed and accuracy compared to the one with a larger backbone.

Table 4. Model Complexity and inference time comparison.

Model #Param Time Acc. (%)

PN++ 1.29M 2.99s 91.69
PN++ (L) 12.11M 8.66s 92.01

SFlow 2.94M 3.29 92.78
SFlow (L) 14.99M 9.03 93.31
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4.7 Ablation Analysis

In this section, we conduct a detailed ablation study to verify the effectiveness of
our model design. We conduct our experiments on the ModelNet40 dataset using
a small PointNet++ backbone. In Table 5, the baseline model (model A) is an
variant of FoldingNet [1] and trained using reconstruction loss only. By introduc-
ing the proposed variational normalizing flow model, our model (model B) got
a significant performance boost, from 86.77% to 88.65%. By comparing model
A and model C, our newly proposed contrastive-center loss improves the perfor-
mance by a large margin (+5.43%). This demonstrates our shape representation
model benefits a lot by encouraging intra-shape compactness and inter-shape
separability. Combining our normalizing flow module and feature contrastive
module, our model (model D) gets a further performance boost, with a classi-
fication accuracy of 92.67%. We also witnessed a slight performance boost by
introducing a normal estimation network.

Table 5. Ablation analysis of our method. We report the classification accuracy (%)
on the ModelNet40 test set. (Lrec: self-reconstruction loss, Lflow: flow loss, Lmet:
contrastive-center loss, Lnor: normal estimation loss).

Model Lrec Lflow Lmet Lnor Acc.(%)

A ✓ ✗ ✗ ✗ 86.77

B ✓ ✓ ✗ ✗ 88.65
C ✓ ✗ ✓ ✗ 92.10
D ✓ ✓ ✓ ✗ 92.67
E ✓ ✓ ✓ ✓ 92.78

Self-reconstruction with normalizing flows. To better understand the effect
of our normalizing flow module, we build a VAE model that directly constrains
the latent representation by a Gaussian prior and trained the model by maxi-
mizing the lower bound defined in eq. 3. From Table 6, using a simple Gaussian
prior leads to similar reconstruction performance as the baseline AE model, as
indicated by Chamfer distance (0.062 vs. 0.063), but can slightly enhance the
downstream classification accuracy with a more powerful representation (87.60%
vs. 86.77%). In contrast, thanks to a more flexible latent distribution enabled by
normalizing flow transformations, our model enhances the latent representation
with a better reconstruction performance (0.059 vs. 0.063). The downstream
classification performance in Table 6 also supports that our variational normal-
izing flow module contributes to a more powerful latent representation (88.65%
vs. 86.77%). Moreover, we also investigated the effect of different numbers of
flow blocks. From Table 6, our SFlow model gets the best performance with 16
flow blocks.
Effect of different metric losses In the above section, we show the effective-
ness of our proposed contrastive-center loss. In this section, we check the effect of
each metric separately. Specifically, we conducted experiments using contrastive
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Table 6. Performance comparison with different models and different numbers of flow
layers. C.D. denotes Chamfer distance.

Model C.D. Acc.(%)

baseline (AE) 0.063 86.77
VAE 0.062 87.60

Ours (k=16) 0.059 88.65
Ours (k=12) 0.060 88.41
Ours (k=20) 0.058 88.43

loss, center loss, and both losses. From Table 7, both metrics can significantly
enhance the performance, while softmax-based contrastive loss led to a larger
performance boost than center loss (+5.04% vs. +1.40%). Our model got the
best performance by using both metrics.

Table 7. Classification accuracy (%) on ModelNet40 test set with different metric
losses.

Center loss Contrastive loss Acc.(%)

✗ ✗ 86.77
✓ ✗ 88.17
✗ ✓ 91.84
✓ ✓ 92.10

5 Conclusion

In this paper, we introduce an unsupervised method for 3D shape represen-
tation learning based on normalizing flow and a newly designed feature dis-
crimination loss. By introducing a variational normalizing flow module to the
self-reconstruction process, our model is able to model the exact log-likelihood
of latent distribution thus enhancing the representation power of learned latent
code. We further designed a feature discrimination loss that combines contrastive
loss and center loss to encourage inter-shape separability and intra-shape com-
pactness. We validate the representation learning ability of our model on down-
stream classification tasks. Experimental results demonstrated our unsupervised
method could achieve better performance than its supervised counterpart and
our SFlow model obtains new state-of-the-art performance on ModelNet40/10
and ScanNet datasets.
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