
What Role Does Data Augmentation Play in Knowledge
Distillation?

Wei Li1 (B), Shitong Shao1 , Weiyan Liu1 , Ziming Qiu1 , Zhihao Zhu1 , and Wei
Huan1

School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096,
China

{li-wei, shaoshitong, liuweiyan, qiuziming, zhuzhihao,
huan-wei}@seu.edu.cn

Abstract. Knowledge distillation is an effective way to transfer knowledge from
a large model to a small model, which can significantly improve the performance
of the small model. In recent years, some contrastive learning-based knowledge
distillation methods (i.e., SSKD and HSAKD) have achieved excellent perfor-
mance by utilizing data augmentation. However, the worth of data augmentation
has always been overlooked by researchers in knowledge distillation, and no work
analyzes its role in particular detail. To fix this gap, we analyze the effect of data
augmentation on knowledge distillation from a multi-sided perspective. In par-
ticular, we demonstrate the following properties of data augmentation: (a) data
augmentation can effectively help knowledge distillation work even if the teacher
model does not have the information about augmented samples, and our pro-
posed diverse and rich Joint Data Augmentation (JDA) is more valid than single
rotating in knowledge distillation; (b) using diverse and rich augmented sam-
ples to assist the teacher model in training can improve its performance, but not
the performance of the student model; (c) the student model can achieve excel-
lent performance when the proportion of augmented samples is within a suitable
range; (d) data augmentation enables knowledge distillation to work better in
a few-shot scenario; (e) data augmentation is seamlessly compatible with some
knowledge distillation methods and can potentially further improve their perfor-
mance. Enlightened by the above analysis, we propose a method named Cosine
Confidence Distillation (CCD) to transfer the augmented samples’ knowledge
more reasonably. And CCD achieves better performance than the latest SOTA
HSAKD with fewer storage requirements on CIFAR-100 and ImageNet-1k. Our
code is released at https://github.com/shaoshitong/CCD.

1 Introduction

With the vigorous development of deep learning, numerous excellent models (e.g.,
ResNet [14], ShuffleNet [40], ViT [7]) have been proposed. In this trend, the evalu-
ation metrics of some image upstream and downstream tasks have been greatly im-
proved [26,34,20,21,11]. For instance, ResNet50 has achieved 77.15% on the ImageNet-
1k [27] classification task in 2015, and VIT-H/14 has achieved 88.55% accuracy on the
same task in 2020. However, ResNet50 has only 25.5 million parameters, compared
to 632 million parameters of VIT-H/14. The massive storage requirements of the large
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models render them to deploy in real-time applications challengingly. For the purpose
of developing efficient models, knowledge distillation [15], as an effective technique,
has been widely used in model compression [1]. To be specific, knowledge distillation
aims to transfer knowledge from a pre-trained teacher network with big-scale param-
eters to a lightweight student network. This significant training technique generally
enables the student model to outperform traditional training techniques by a large mar-
gin. Commonly, the cases where the teacher model is fixed and not fixed are referred to
as offline knowledge distillation [37,32,42] and online knowledge distillation [10,2,41],
respectively. And online knowledge distillation can improve the performance of student
models more effectively than offline knowledge distillation but requires more compu-
tational and storage costs [9]. To make the design choices that other researchers can
better apply, we choose offline knowledge distillation as the standard for the study in
this work.

Contrastive learning aims to encode the correlations between a sample pair (Xi,Xj).
Specifically, if Xi and Xj are similar, contrastive learning makes the distance between
them close; otherwise, makes the distance between them as far as possible. In recent
years, contrastive learning has been considered as an effective solution in the self-
supervised domain. The popular contrastive learning methods, such as MOCO [13]
and SimCLR [3], have been widely recognized and applied by related researchers. It is
worth noting that, contrastive learning has also been applied in knowledge distillation as
a novel way to transfer knowledge. The knowledge distillation methods, SSKD [35] and
HSAKD [4], based on contrastive learning and self-supervised representational learn-
ing, utilize the same data augmentation (i.e., rotations {0◦, 90◦, 180◦, 270◦}). And the
above methods are state-of-the-art (SOTA) in 2020 and 2021, respectively. However, the
phenomenon that data augmentation changes the information of the training samples is
not discussed in their works. In addition, because SSKD and HSAKD use rotating in
training to duplicate the samples, their steps nstep (defined in Equation 1, where niter,
nbs and nepoch refer to the number of batch sizes in an epoch, batch size, and the num-
ber of epochs, respectively) were four times higher than vanilla Knowledge Distillation
(vanilla KD) in their comparative experiments. Based on the above analysis, we know
that using data augmentation in SSKD and HSAKD changes the information of the
training samples and nstep. So it is unclear that whether the performance improvement
of SSKD and HSAKD is brought by data augmentation. Due to these reasons, we ur-
gently need to analyze the role that data augmentation plays in knowledge distillation.

nstep = niter × nbs × nepoch (1)

Some works such as [8], [33] and [6] have noted the role of data augmentation in knowl-
edge distillation. They find that the knowledge distillation approaches, including vanilla
KD and CRD [31], can also improve the performance of the student model to a certain
extent by means of only data augmentation. However, the above work only discusses
the role of data augmentation in knowledge distillation from a one-sided perspective. So
they do not consider the impact of multiple factors, including different nstep, the diver-
sity of data augmentation, the proportion of augmented samples in the all training sam-
ples, and the few-shot scenario, on the performance of student models. In order to fill
this gap, we further evaluate the effect of data augmentation on knowledge distillation
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What Role Does Data Augmentation Play in Knowledge Distillation? 3

under different factors, and the main conclusions we find in our extensive experiments
can be summarized as follows:

• Data Augmentation is effective in knowledge distillation, even though the teacher
model has no information about the augmented sample. The effectiveness of self-
supervised methods (i.e., SSKD and HSAKD) can be attributed to rotating, to a
certain extent.

• By increasing nstep, knowledge distillation both with and w/o (i.e., without) data
augmentation will improve the performance of the student model. In addition, the
knowledge distillation with diverse and rich data augmentation is more valid than
single rotational knowledge distillation.

• Transferring knowledge only from the augmented samples doesn’t necessarily work,
but transferring knowledge from both the original and augmented samples can ef-
fectively make the augmented samples work.

• Using diverse and rich augmented samples to assist the teacher model in training
can improve its performance, but not the performance of the student model.

• The student model can achieve excellent performance when the proportion of aug-
mented samples is within a suitable range. But too many augmented samples will
lead to a drop in performance.

• Data augmentation enables knowledge distillation to work better in few-shot sce-
narios.

• Data augmentation is seamlessly compatible with some knowledge distillation meth-
ods and can potentially further improve their performance.

Inspired by these conclusions, we propose a method named Cosine Confidence
Distillation (CCD) to transfer the probabilistic knowledge of augmented samples more
reasonably. And CCD achieves better performance compared to the latest SOTA HSAKD
with fewer storage requirements on CIFAR-100 and ImageNet-1k.

2 Related Work

Knowledge Distillation with Self-Supervision. Recently, knowledge distillation meth-
ods (i.e., SSKD and HSAKD) with self-supervision have achieved state-of-the-art on
both CIFAR-100 and ImageNet-1k. Among them, SSKD and HSAKD adopt the idea
of contrastive learning directly and indirectly, respectively. Specifically, SSKD tends to
compute the sample-based metric matrices for the teacher and student models separately
and align them to achieve self-supervision and knowledge distillation. And HSAKD
generates bivariate distribution labels based on augmented and semantic categories,
then minimizes the loss between logits of the teacher and student models. The core
idea of the above two methods is to transfer the information learned by the teacher
model through self-supervision to the student model, which needs to be implemented
through data augmentation. Therefore, it is clear that data augmentation has become an
essential part of self-supervised knowledge distillation [28,30,19].

Data Augmentation. In the field of computer vision, data augmentation is a simple and
effective way to improve model performance [16,18,5,36,12]. For instance, data aug-
mentation rules such as rotating, shear, and contrast are widely applied in visual tasks
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(e.g., object classification and object detection) and avoid the overfitting problem of
the model to a certain extent [22,29]. If data augmentation really works, SSKD and
HSAKD only use rotating to augment data, which obviously lacks variety. So for our
study, We turn our attention to other more diverse data augmentation. AutoAugment [5],
an effective and popular data augmentation method, adopts 16 commonly used data aug-
mentation rules as its sub-policies. These sub-policies efficiently augment the dataset
by searching for their optimal hyperparameters through reinforcement learning (RL).
However, for knowledge distillation, we do not know what individualized samples are
adapted for a particular pair of teacher and student models. And finding the optimal
conversion probability again requires a lot of training costs. Therefore, we will apply
14 data augmentation (i.e., the sub-policies in AutoAugment) to convert the original
samples in random order and with the same probability in our study.

In a word, inspired by SSKD and HSAKD applying data augmentation for their
self-supervised methods, we employ a wide and abundant variety of data augmentation
rules to conduct our research.

3 Contributions

For all experimental results shown in this Sec. 3.1 to this Sec. 3.5, we conduct evalu-
ations on the standard CIFAR-10 [17] benchmark across the ResNet56-ResNet20 [14]
pair and the standard CIFAR-100 [17] benchmark across the WRN-40-2-WRN-16-
2 [38] pair. Note that the top-1 test accuracy of teachers ResNet-56 and WRN-40-2
are 93.56% and 76.44%, respectively. And all black horizontal lines in figures of this
paper represent the test accuracy of the teacher model. All “×number” in this paper
represents a multiple of the increase about nstep compared to the benchmark, and more
detailed benchmark settings can be found in Appendix ??. Besides, we utilize the stan-
dard training settings following [35,4] on CIFAR-100 and following [23] on CIFAR-10.
All teacher models do not utilize the augmented samples for representation learning,
unless otherwise specified in this paper. To get plausible results, we report the mean
test accuracy with 3 runs. Note that to introduce our research more logically, we will
present our contributions following the form of progressive exploration.

3.1 Inspired by SSKD and HSAKD

By regarding the similarity between self-supervised samples as the transferring knowl-
edge, SSKD has achieved excellent performance. But when investigating previous work,
we find that SSKD is sensitive in certain scenes. For example, the validation accuracy
of ResNet-18 (student) trained on ImageNet-1k with ResNet-34 (teacher), obtained by
the original work, is 71.62% [35]. Still, the validation accuracy got by work [23] is
70.09%. There is a 1.53 percentage point difference between the above two results,
which is relatively large under the same hyperparameter configuration. Meanwhile, the
validation accuracy for vanilla KD got by work [23] is 71.23% and got by us is 71.16%.
Intuitively, SSKD is inferior to vanilla KD under certain circumstances, which drives
us to rethink the effectiveness of SSKD.
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Table 1: These two tables show the experimental results of decoupling of SSKD and HSAKD on
CIFAR-10 and CIFAR-100, respectively. Where “Baseline” stands for training using only vanilla
KD. In addition, “(number)” refer to the increased validation accuracy compared to the baseline.

CIFAR-10
nstep Methods Options Acc.(%)
×2 Baseline Lce + Lkd 93.24
×2 SSKD LSSKD 92.56(−0.68)

×2 SSKD LSSKD − Lss 92.72(−0.52)

×2 HSAKD LHSAKD 93.22(−0.02)

×2 HSAKD LHSAKD − Lkl_q 92.68(−0.56)

×4 Baseline Lce + Lkd 93.47
×4 SSKD LSSKD 92.73(−0.74)

×4 SSKD LSSKD − Lss 92.73(−0.74)

×4 HSAKD LHSAKD 93.46(−0.01)

×4 HSAKD LHSAKD − Lkl_q 92.88(−0.59)

CIFAR-100
nstep Methods Options Acc.(%)
×2 Baseline Lce + Lkd 74.72
×2 SSKD LSSKD 75.51(+0.79)

×2 SSKD LSSKD − Lss 75.31(+0.59)

×2 HSAKD LHSAKD 76.73(+2.01)

×2 HSAKD LHSAKD − Lkl_q 75.55(+0.83)

×4 Baseline Lce + Lkd 74.87
×4 SSKD LSSKD 76.16(+1.29)

×4 SSKD LSSKD − Lss 76.31(+1.44)

×4 HSAKD LHSAKD 77.20(+2.33)

×4 HSAKD LHSAKD − Lkl_q 76.05(+1.18)

A natural direction to tackle this problem is to decouple SSKD and HSAKD. To this
end, we first give the standard cross-entropy (CE) loss of original samples in Equation 2:

pS (x; τ) = softmax
(
fS (x) /τ

)
,

Lce = Ex∈X CE
(
pS (x; 1) ,y

)
,

(2)

where τ , fS (·), CE (·, ·), X and y refer to the temperature hyperparameter, the student
backbone network, the cross entropy loss function, the original sample set and the hard
label about x, respectively. Then we denote the vanilla KD loss of original samples as
Equation 3.

pT (x; τ) = softmax
(
fT (x) /τ

)
,

Lkd = τ2Ex∈X KL
(
pT (x; τ) ∥pS (x; τ)

)
,

(3)

where fT (·) denotes the teacher backbone network and KL (·∥·) denotes the Kullback-
Leibler divergence. Thereby, the vanilla KD loss of augmented samples can be defined
as follows:

LT = τ2Ex̃∈X̃ KL
(
pT (x̃; τ) ∥pS (x̃; τ)

)
, (4)

where X̃ stands for the augmented sample set. Hence, we give the corresponding Equa-
tions 5 for SSKD and HSAKD:

LSSKD = λ1 ∗ Lce + λ2 ∗ Lkd + λ3 ∗ Lss + λ4 ∗ LT ,

LHSAKD = Lce + Lkl_q + Lkl_p.
(5)

In LSSKD, λ1, λ2, λ3 and λ4 are the balancing weights. And the sub-task loss function
Lss concurs with Lss in [35]. In LHSAKD, Lkl_q (feature-based) and Lkl_p (response-
based) are the loss functions as mentioned in the work of [4]1. Although LSSKD and

1 For the sake of simplicity, Lkl_q and Lkl_p here have an additional process of calculating
mathematical expectations compared to the original paper.
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LHSAKD are not similar in form, by Equation 6 we can rewrite the form of Lkl_p.

Lkl_p = τ2Ex∈X
1

M

M∑
j=1

KL
(
pT (tj (x) ; τ) ∥pS (tj (x) ; τ)

)
,

= τ2Ex∈X
1

M
KL

(
pT (x; τ) ∥pS (x) ; τ

)
+ τ2Ex̃∈X̃

M − 1

M
KL

(
pT (x̃; τ) ∥pS (x̃; τ)

)
,

=
1

M
Lkd +

M − 1

M
LT ,

(6)
where M and {tj (·)}Mj=1 refer to the number of rotation operators (i.e., rotations {0◦, 90◦
, 180◦, 270◦}) and a set of data augmentation operators, respectively. According to the
code and original paper provided by the author, we can default M to 4. Furthermore,
we find that λ2/λ4 is 1/3 in SSKD-related codes. Then an obvious conclusion is that
Lkl_p ∝ λ2 ∗ Lkd + λ4 ∗ LT .
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Fig. 1: This line graph is used to clearly demonstrate the
roles Lkl_q and Lss play in knowledge distillation, and the
shaded area in this figure indicates the standard deviation.
Of note is that, Lss does not play a positive role. In con-
trast, Lkl_q can significantly improve the performance of
the student model.

The above analysis shows
that the essential difference be-
tween SSKD and HSAKD is
that SSKD transfers the correla-
tion information between sam-
ples after the global average
pooling (GAP) layer (Lss). In
contrast, HSAKD transfers the
self-supervised augmented dis-
tribution information of the out-
puts of middle layers (Lkl_q).

For the purpose of verifying
the role of Lss, Lkl_q and rotat-
ing, we conduct the decoupling
experiment on the two bench-
marks mentioned above. For a

fair comparison, we quadruple the baseline’s nepoch to ensure its nstep being the same
as the other methods. Then, we get the results shown in Tab. 1 and Fig. 1. The re-
sults displayed in Fig. 1 show that it is effective to transfer the self-supervised
augmented distribution information of middle layers’ outputs . On the contrary,
transferring the correlation information of GAP’s output is ineffective. Meanwhile,
the analysis in Tab. 1 shows that SSKD without Lss and HSAKD without Lkl_q (i.e.,
λ1 ∗ Lce + λ2 ∗ Lkd + λ4 ∗ LT and Lce +Lkl_p) have a slight decrease in performance
compared to the baseline on CIFAR-10. Still, there is a manifest improvement in the
performance on CIFAR-100 compared with the baseline. Intuitively, the common part
of SSKD and HSAKD is the traditional CE loss on the original training samples and the
vanilla KD loss on both original and rotated samples. Just relying on this common part,
the student model has a significant performance gain on CIFAR-100 compared with
baseline. Thus we can illustrate that rotating is effective in knowledge distillation .

From the results presented in Tab. 1, we find that adding the rotated samples into
CIFAR-10 will cause performance damage during the training process. We argue that
this phenomenon is due to the rotation operator itself. In follow-up experiments, we
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What Role Does Data Augmentation Play in Knowledge Distillation? 7

demonstrate that utilizing more diverse data augmentation operators is equally effective
on CIFAR-10.

3.2 The Role of Data Augmentation

Although in Sec. 3.1 we have bespoken that rotating is beneficial to knowledge distil-
lation. However, only utilizing rotating as data augmentation in training lacks diversity,
so it cannot demonstrate that other data augmentation is also effective. Similarly, in the
work [33], only CutMix [36] and Mixup [39] are discussed. To ensure the diversity of
data augmentation, we propose the Joint Data Augmentation (JDA), which is composed
of cascaded sub-policies. Assuming that we define N various sub-policies {spi (·)}

N
i=1.

And we also define a Bernoulli operator g (f ; q) as shown in Equation 7.

g (f ; q) =

{
f (·) ,w.p. q ,

identity (·) ,w.p. 1− q ,
(7)

identity (·) refers to the identity transformation, i.e. identity (x) = x. Then for an
original sample x ∈ X , we can denote its augmented sample x̃ in Equation 8.

x̃ = g(spN ; q) ◦ g(spN−1; q) · · · g(sp2; q) ◦ g(sp1; q) (x) , (8)

where ◦ denotes composition, and note that all sub-policies in Equation 8 have the same
probability of occurrence. This approach can ensure that all sub-policies have similar
effects on the original sample and provide the convenience for related experiments in
this paper. Moreover, JDA not only is easy to be set up but also guarantees a huge dif-
ference compared to the optimal hyperparameters searched by AutoAugment. JDA also
eliminates the possibility that the data augmentation work is a result of AutoAugment’s
hyperparameter search. In particulat, as demonstrated in Appendix ??, JDA is more
effective than AutoAugment because it can perform richer and more varied transfor-
mation on one single image. In more detail, q is set to 0.5 by default unless otherwise
specified in our experiments. We consider choosing 14 sub-policies in AutoAugment
for JDA, and the detailed hyperparameter settings for 14 sub-policies can be appar-
ent from Appendix ??. Furthermore, we introduce the mini-batch component of model
training to explain how our data augmentation works. For the original sample set X
(i.e., the original mini-batch), our proposed JDA transforms all elements in it in turn
and composes a new augmented sample set X̃ . Then the new mini-batch composed of
X and X̃ serves as the real input of the model.

Table 2: Left: CIFAR-10. Right: CIFAR-100. KD+JDA: vanilla KD+joint data augmentation.
The numbers and numerical subscripts in the table represent the test accuracy and standard devi-
ation, respectively.

SSKD HSAKD KD+JDA SSKD HSAKD KD+JDA
92.73(±0.16) 93.46(±0.19) 93.51(±0.14) 76.17(±0.17) 77.20(±0.17) 76.86(±0.16)

In SSKD and HSAKD, hard labels for classification, which are provided by aug-
mented samples, are not applied to supervise the student model in training. SSKD
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Fig. 2: This two figures show the comparative experimental results on CIFAR-10 and CIFAR-100.
Among them, blue •, orange •, green • and red • represent four different loss combinations of
{Lce}, {Lce,Lkd}, {Lce,LA} and {Lce,LA,Lkd,LT }, respectively. And error bars in figures
indicate standard deviation.

considers it is unnecessary for the student model to correctly identify these labels in
knowledge distillation, and HSAKD inherits this behavior from SSKD. Although the
knowledge distillation methods mentioned above do not attach importance to the hard
labels provided by augmented samples, we will utilize them and manifest them can
work (Sec. 3.3). We give the CE loss with respect to the augmented samples in the
following Equation 9.

LA = Ex̃∈X̃ CE
(
pS (x̃; 1) , ỹ

)
, (9)

where ỹ stands for the hard label about x̃. So in our proposed data-augmented knowl-
edge distillation, the overall loss can be expressed as Loa (in Equation 10, where |X |
and |X̃ | refer to the number of elements in the original sample set and the augmented
sample set, respectively). At the same time, this method can be denoted as KD+JDA.

Loa =
|X |

|X |+ |X̃ |
Lce +

|X̃ |
|X |+ |X̃ |

LA +
|X |

|X |+ |X̃ |
Lkd +

|X̃ |
|X |+ |X̃ |

LT . (10)
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Fig. 3: In this figure, the purple arrows rep-
resent the changes in test accuracy from sin-
gle rotating to JDA. So this scattergraph
shows that our proposed JDA outperforms
single rotating.

We should verify the validity of Loa

through rigorous experiments that nstep is the
same for all comparative methods. Therefore,
we set up three various nstep (i.e., ×1, ×2,
×4) in our experiments. Then we compare
four different methods, and finally show the
results in Fig. 2.

From Fig. 2, we can find that Loa

achieves the best performance on both
CIFAR-10 and CIFAR-100. Especially on
CIFAR-100, when nstep required for all
methods is ×4, we can see that its test accu-
racy has exceeded SSKD and is only slightly
lower than HSAKD by observing Tab. 2. So

we can infer that data augmentation is useful in knowledge distillation, and the
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Table 3: The data are obtained under the premise that the teacher model uses only the origi-
nal samples in training. And ✓and × represent whether they use the corresponding loss or not,
respectively.

CIFAR-10 • Acc. of teacher model:93.56% CIFAR-100 • Acc. of teacher model:76.44%
Lce Lkd LA LT Acc.(%) Std.(%) Lce Lkd LA LT Acc.(%) Std.(%)
✓ × ✓ × 91.79 0.13 ✓ × ✓ × 73.27 0.22
✓ ✓ ✓ ✓ 93.28 0.24 ✓ ✓ ✓ ✓ 76.18 0.22
✓ ✓ × × 92.70 0.21 ✓ ✓ × × 74.66 0.12
✓ × × ✓ 91.88 0.17 ✓ × × ✓ 74.57 0.16
✓ × × × 92.14 0.08 ✓ × × × 71.17 0.12
✓ ✓ × ✓ 93.15 0.11 ✓ ✓ × ✓ 75.32 0.16

magnitude of its improvement depends on the nature of the dataset itself. Intu-
itively, the green rectangle is lower than blue rectangle on CIFAR-10, while the conclu-
sion is converse on CIFAR-100. This illustrates that adding data augmentation to the
single vanilla CE loss during the training phase may harm the performance of the
student model.

Our proposed JDA composed of cascade sub-policies can indeed better transfer the
“dark knowledge” from the teacher model to the student model. Unfortunately, both
LSSKD − Lss and LHSAKD − Lkl_q lack LA compared to Loa, so we cannot conclude
that diverse and abundant data sub-policies are more effective than single rotating by
directly comparing the relevant experimental results. In order to thoroughly verify the
conclusion mentioned above under the premise of a fair comparison, we first add LA

for utilizing single rotating in training, and then conduct additional experiments on the
CIFAR-100 benchmark and draw the results in Fig. 3. We can find that diverse and
rich sub-policies have improved the test accuracy to some extent compared with single
rotating at different nstep. In this way, we can conclude that diverse and rich data
augmentation is more valid than single rotating.

3.3 Decoupling the Overall Loss

Sec. 3.2 has demonstrated that Loa in knowledge distillation is excellent. And this also
effectively shows that data augmentation is quite helpful for the performance improve-
ment of the student model. Therefore, another question that needs to be answered ur-
gently is thrown: Which part of Loa plays a positive role? Is it Lce, Lkd, LA, or LT ?

Following the above analysis, we argue that decoupling the overall loss is the nec-
essary work. For the experiments in this subsection, the setting of nstep we uniformly
adopted is ×2, and the real input of the student model and the teacher model is the
same as that of Sec. 3.2. Finally the decoupling experimental results can be found in
Tab. 3. By analyzing the results in Tab. 3, we can find that some conclusions drawn
on CIFAR-10 and CIFAR-100 are not consistent. In instance, simply adding LT to Lce

hurts performance on the CIFAR-10 benchmark, but improves it on the CIFAR-100
benchmark. Of course, this similar conclusion also appears in the previous Section. So
we only discuss the common conclusions on these two benchmarks. Intuitively, we con-
clude that LT plays a weaker role than Lkd in knowledge distillation by comparing the
results of two different loss combinations (i.e., {Lce,Lkd} and {Lce,LT }). On the other
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hand, when we add the combination of LA and LT to the combination of Lce and Lkd.
The results are always some improvement on both CIFAR-10 and CIFAR-100. To sum
up, transferring knowledge only from the augmented samples does not necessarily
work, but when the real input contains original samples in training, the augmented
samples can effectively play an auxiliary advantage in improving the performance
of the student model. So we infer that the augmented samples play an auxiliary
advantage and the original samples play a key advantage in knowledge transfer.
In addition, by comparing combinations {Lce,Lkd,LA,LT } and {Lce,Lkd,LT } in
Tab. 3, and even Fig. 3 and Tab. 1, we can find that the traditional CE loss of the
augmented samples (i.e., LA) has an apparent positive effect. Therefore, our opinion
is different from that in the SSKD paper [35]. We argue that the traditional CE loss
of the augmented samples is also an essential part of knowledge distillation based on
data augmentation. However, the teacher model does not use both original and aug-

Table 4: The data are obtained under the premise that the teacher model uses both the original
samples and the augmented samples in training. And ✓and × represent whether they use the
corresponding loss or not, respectively. “(number)” in this table refers to the increased validation
accuracy compared to that in Table 3.

CIFAR-10 • Acc. of teacher model:94.16(+0.60)% CIFAR-100 • Acc. of teacher model:77.81(+1.37)%
Lce Lkd LA LT Acc.(%) Std.(%) Lce Lkd LA LT Acc.(%) Std.(%)
✓ × ✓ × 91.79(+0.00) 0.13(+0.00) ✓ × ✓ × 73.27(+0.00) 0.22(+0.00)

✓ ✓ ✓ ✓ 92.94(−0.33) 0.15(−0.10) ✓ ✓ ✓ ✓ 75.81(−0.37) 0.27(+0.06)

✓ ✓ × × 93.25(+0.54) 0.23(+0.01) ✓ ✓ × × 75.69(+1.03) 0.09(−0.04)

✓ × × ✓ 91.77(−0.11) 0.15(−0.02) ✓ × × ✓ 74.23(−0.34) 0.27(+0.10)

✓ × × × 92.14(+0.00) 0.08(+0.00) ✓ × × × 71.17(+0.00) 0.12(+0.00)

✓ ✓ × ✓ 92.99(−0.16) 0.15(+0.03) ✓ ✓ × ✓ 75.59(+0.27) 0.12(−0.04)

mented samples for the above experiments in training. As a result, it’s natural to trust
that transferring knowledge using only augmented samples is less effective than using
only original samples, which might be because the teacher model lacks relevant knowl-
edge. Considering this problem, we let the teacher model learn the information of the
augmented samples and conduct the decoupling experiment again, and finally present
the results in Tab. 4.

Comparing Tab. 3 and Tab. 4, it is surprising that when we utilize the teacher model
to transfer knowledge with the augmented sample information, the performance of the
student model has not been improved except that a loss combination {Lce,Lkd} is
applied. It can be clearly inferred that in the training stage of the teacher model,
combing the original with augmented samples can effectively improve the perfor-
mance of the teacher model compared with only using the original samples. But
this is not available for the student model. Meanwhile, when we observe Figure ??
in Appendix ??, we can easily find that the augmented sample information is rather
incorrect when the teacher model only uses the original samples in training. In contrast,
the augmented sample information produced by the teacher model trained with both
the original and augmented samples is relatively correct. So this means that for aug-
mented samples, “dark knowledge”, which leads to misclassification, also plays a
significant role in knowledge distillation.
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In particular, the teacher model transfers relatively correct information hurting the
performance of the student model, and transfers relatively incorrect information im-
proving the performance of the student model. This fact is contrary to our experience.
By carefully observing Figure ?? (CIFAR-10) in Appendix ??, we can find that the vi-
sualization of the original samples is changed after the teacher model has been trained
with the additional augmented samples. So we argue that the reason causes the above
conclusion is that the teacher model trains both the original and augmented sam-
ples, which will damage the original samples’ reasonable information.

3.4 The Probability of Data Augmentation

This subsection will analyze the data augmentation based on the value of p. We know
that p refers to the probability of each sub-policy being executed. Specifically, the larger
p is, the greater the number of executed sub-policies in the augmented samples is. Gen-
erally, executing data augmentation with a high probability is not the best choice. We
believe that this conclusion typically applies to JDA. To fully explore the effects of dif-
ferent p values, we set p to be 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 for experiments, respectively.
Finally, we show the results in Fig. 4 (a) and (b).

As displayed in Fig. 4 (a) and (b), we can clearly determine that the curve has a
peak in each subfigure and illustrate the regularity of both curves. On a deeper level, this
phenomenon implies that JDA’s benefits are only available when p is inside a specified
range. So we can draw a conclusion that p is sensitive in training, and p with a rea-
sonable setting can effectively achieve knowledge transfer. Furthermore, although
these experimental results guarantee that each mini-batch has at least half of the origi-
nal samples, the student model performs poorly on both benchmarks when p is greater
than 0.5. Therefore, we can infer that the ratio of the augmented samples should not
be set too large when using the augmented samples to assist knowledge distillation.
Otherwise, the student model cannot obtain excellent performance.

3.5 Few-Shot Analysis

In the real world, many datasets usually do not have a large amount of labeled data.
Therefore, the study of few-shot learning becomes extremely important for solving this
problem. For SSKD and HSAKD, they verified that their methods are robust by simu-
lating a few-shot scenario that has only a small amount of labeled training samples. But
since we have proved that data augmentation can strongly improve the student model’s
performance, it is reasonable for us to deduce that data augmentation may have con-
tributed to the performance improvement of both SSKD and HSAKD in a few-shot
scenario. In order that we can evaluate the role of data augmentation in a few-shot sce-
nario, we follow the training setting in SSKD and HSAKD and randomly retain 25%,
50%, 75%, and 100% training samples in CIFAR-100. Particularly, we compare the
performance of vanilla KD with and w/o JDA by training ×2, and the experimental
results can be found in Fig. 4 (c) and (d).

Fig. 4 (c) and (d) illustrate that vanilla KD with data augmentation further strength-
ens the generalization ability of models when the labeled data are insufficient. Specifi-
cally, we can discover that when fewer training samples are retained, the student model
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(a) (b) (c) (d)

Fig. 4: (a) and (b): These two figures show the performance of the student model for different
p values on CIFAR-10 and CIFAR-100, and the shaded area indicates the standard deviation.
In addition, all experiments are performed with nstep set to ×2. (c) and (d): These two figures
demonstrate that our proposed joint data augmentation can work greatly in few-shot scenarios.
Moreover, the error bars in figures refer to standard deviation.

with JDA can outperform the student model w/o JDA better. It means that the po-
tential of knowledge distillation with data augmentation in few-shot learning is
enormous.

3.6 Wide Comparison

In theory, JDA, as a data-focused method, can be perfectly combined with other meth-
ods that focus on "what to distill". To make sure data augmentation is robust in various
teacher-student pairs and can be seamlessly compatible with some knowledge distilla-
tion methods, we conduct more extensive experiments on CIFAR-100. The hyperparam-
eter settings of the experiments are the same as the CIFAR-100 benchmark mentioned
in Sec. 3. And the results are shown in Tab. 5. By comparing whether to add JDA to
vanilla KD, SPKD [32], and CRD [31]2, we can intuitively find that JDA effectively
improves the performance of all methods. In addition, as can be seen in Appendix ??,
comparing the latest SOTA HSAKD and JDA, HSAKD requires additional computa-
tional modules, and more complex feature-based distillation, and spending two times
nstep to get the same results. The above analysis fully demonstrates that data aug-
mentation is broadly effective and can be easily combined with other knowledge
distillation methods.

3.7 Cosine Confidence Knowledge Distillation

Inspired by Sec. 3.4, the strength of the augmented sample must be in a suitable range
to exert a positive effect. If the model can adaptively assign appropriate weight to each
augmented sample, the knowledge imparted by the teacher model can be more rea-
sonable. As a result, here we propose a method called Cosine Confidence Distillation
(CCD) to help transfer the knowledge of the augmented samples. First, as denoted in

2 The reason JDA is not added to SSKD and HSAKD is that these methods themselves use
rotating as their data augmentation. If we are to force the inclusion of JDA, it will destroy the
original character of these approaches.
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Table 5: Top-1 test accuracy (%) comparison of different methods across various teacher-student
pairs on CIFAR-100. The results of SSKD and HSAKD are copied from [4], and the remaining
results are obtained by our run. “(±number)” in this table refers to the standard deviation, and
the red number in the upper left corner of the accuracy symbolizes the ranking of closely-related
methods. In particular, the rightmost column represents each method’s nstep in our experiments.

Teacher WRN-40-2 WRN-40-2 ResNet56 ResNet32×4 VGG13 nstep

Student WRN-16-2 WRN-40-1 ResNet20 ResNet8×4 MobileNetV2

Teacher 76.44 76.44 73.44 79.63 74.64
Student 1173.57(±0.23)

1171.95(±0.59)
1169.62(±0.26)

1172.95(±0.24)
1173.51(±0.26) ×2

SSKD 776.16(±0.17)
775.84(±0.04)

1070.80(±0.02)
775.83(±0.29)

776.21(±0.16) ×4
HSAKD 277.20(±0.17)

177.00(±0.21)
472.58(±0.33)

277.26(±0.14)
577.45(±0.21) ×4

KD 1074.36(±0.11)
1073.21(±0.10)

971.68(±0.30)
1072.34(±0.12)

1075.94(±0.21) ×2
KD+JDA 576.80(±0.13)

476.18(±0.18)
672.37(±0.28)

676.50(±0.22)
377.64(±0.23) ×2

SPKD 974.84(±0.38)
973.51(±0.17)

772.11(±0.10)
972.77(±0.25)

976.13(±0.25) ×2
SPKD+JDA 676.58(±0.31)

476.18(±0.26)
372.73(±0.11)

576.64(±0.36)
677.33(±0.14) ×2

CRD 874.88(±0.16)
874.43(±0.16)

871.94(±0.20)
873.58(±0.20)

876.14(±0.17) ×2
CRD+JDA 476.84(±0.23)

376.27(±0.16)
572.38(±0.08)

477.12(±0.11)
477.61(±0.06) ×2

CCD(ours)+JDA 377.16(±0.14)
676.07(±0.10)

272.82(±0.16)
377.16(±0.18)

277.71(±0.12) ×2
CCD(ours)+JDA 177.34(±0.12)

276.78(±0.11)
173.24(±0.08)

177.59(±0.18)
178.11(±0.10) ×4

Table 6: Top-1 accuracy (%) and Top-5 accuracy (%) comparison on ImageNet-1k. We follow the
experimental setting in [31,35,4] and mark the highest Top-1 validation accuracy by bold black.

Teacher Student Acc. Teacher Student KD
AT CC

SPKD
RKD

CRD SSKD HSAKD
DKD

KD+JDA CCD(ours)+JDA
[37] [25] [24] [42]

ResNet-34 ResNet-18
Top-1 73.31 69.75 70.66 70.70 69.96 70.62 71.34 71.38 71.62 72.16 71.70 72.16 72.22
Top-5 91.42 89.07 89.88 90.00 89.17 89.80 90.37 90.49 90.67 90.85 90.41 90.99 90.86
nstep - ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×4 ×4 ×1 ×4 ×4

Equation 11, we need to calculate the confidence of the teacher model with the aug-
mented samples, which is measured by the cosine distance.

d = cosine(x̃,x) =
〈
fT (x̃) , fT (x)

〉
∥fT (x̃) ∥2 · ∥fT (x) ∥2

. (11)

Of particular note is that d provides a way of quantitatively presenting the strength
of the augmented samples, the basis of which is clearly shown in Fig. 5. For the given
augmented samples, the strength of their data augmentation is negatively correlated
with their cosine confidence weight. Thus, the cosine distance is reasonable to measure
whether the augmented samples have a high confidence level to facilitate distillation.
Due to d ∈ [−1, 1], utilizing it directly as weight makes the expectation of KL loss
close to zero and model optimization difficult. We multiply d+1 as a weight ∈ [0, 2] by
KL

(
pT (x̃; τ) ∥pS (x̃; τ)

)
. This means that the stronger an augmented sample is, the

greater the distance between the original sample and the augmented sample is, and the
smaller d is. Thus, less knowledge is transferred from the teacher model to the student
model. So we denote new LT̂ in Equation 12 instead of LT . And the new overall loss
is shown in Equation 13.
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LT̂ = τ2E(x,x̃)∼(X ,X̃) (cosine (x̃,x)+1) ∗ KL
(
pT (x̃; τ) ∥pS (x̃; τ)

)
. (12)

Lôa =
|X |

|X |+ |X̃ |
Lce +

|X̃ |
|X |+ |X̃ |

LA +
|X |

|X |+ |X̃ |
Lkd +

|X̃ |
|X |+ |X̃ |

LT̂ . (13)

Fig. 5: The horizontal axis displays the
number of transformations the augmented
sample has undergone, and the vertical axis
shows the cosine distance between the orig-
inal sample and the associated augmented
sample on CIFAR-100.

The apparent here to note in Equa-
tion 12 is that x̃ in sample pair (x, x̃) is
transformed by x. The comparative exper-
imental results of CCD are also shown in
Tab. 5. In addition, comparative results on
the ImageNet-1k [27] benchmark can be
found in Tab. 6. In particular, CCD is mod-
ified from the vanilla KD and exceeds the
performance of KD+JDA. For nstep being
×2, we can observe that CCD outperforms
KD+JDA, SPKD+JDA, and CRD+JDA on
all teacher-student pairs except WRN-40-2-
WRN-40-1 in CIFAR-100, fully indicating
that CCD is an excellent method. For nstep is
×4, CCD surpasses HSAKD on all teacher-
student pairs except WRN-40-2-WRN-40-1

in CIFAR-100. In the ImageNet-1k benchmark, we also achieve a SOTA distillation
result. It should be emphasized that CCD achieves almost the same performance when
the training time of HSAKD is twice that of CCD. Hence, CCD is more outstanding
than HSAKD under all-around consideration.

4 Conclusion

In this paper, we conduct a multi-angle analysis of the role that data augmentation plays
in knowledge distillation. Then we conclude that data augmentation can effectively im-
prove the performance of knowledge distillation, and so forth (more detailed conclu-
sions are shown at the end of Sec. 1). Furthermore, inspired by Sec. 3.4, we propose an
excellent method named CCD to transfer knowledge of the augmented samples and the
performance of CCD is better than that of the latest SOTA HSAKD. In future, our work
will focus on “what kind of augmented samples should be used for distillation” or “how
to better utilize the information of augmented samples”, other than “what to distill”.
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34. Wieczorek, M., Rychalska, B., Dąbrowski, J.: On the unreasonable effectiveness of centroids
in image retrieval. In: International Conference on Neural Information Processing. pp. 212–
223. Springer (2021)

35. Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: Vedaldi,
A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV 2020. pp. 588–604.
Springer International Publishing, Cham (2020)

36. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization strategy to
train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision. pp. 6023–6032 (2019)

2219

https://proceedings.neurips.cc/paper/2018/file/166cee72e93a992007a89b39eb29628b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/166cee72e93a992007a89b39eb29628b-Paper.pdf


What Role Does Data Augmentation Play in Knowledge Distillation? 17

37. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. In: International Conference
on Learning Representations(ICLR) (2016)

38. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)
39. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk mini-

mization. In: International Conference on Learning Representations (2018)
40. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional neural

network for mobile devices. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 6848–6856 (2018)

41. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

42. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
11953–11962 (June 2022)

2220


	What Role Does Data Augmentation Play in Knowledge Distillation?

