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Abstract. Handwritten Mathematical Expressions differ considerably
from ordinary linear handwritten texts, due to their two-dimentional
structures plus many special symbols and characters. Hence, HMER(Handwritten
Mathematical Expression Recognition) is a lot more challenging com-
pared with normal handwriting recognition. At present, the mainstream
offline recognition systems are generally built on deep learning meth-
ods, but these methods can hardly cope with HEMR due to the lack of
training data. In this paper, we propose an encoder-decoder method com-
bining contrastive learning and supervised learning(CCLSL), whose en-
coder is trained to learn semantic-invariant features between printed and
handwritten characters effectively. CCLSL improves the robustness of the
model in handwritten styles. Extensive experiments on CROHME bench-
mark show that without data enhancement, our model achieves an ex-
pression accuracy of 58.07% on CROHME2014, 55.88% on CROHME2016
and 59.63% on CROHME2019, which is much better than all previ-
ous state-of-the-art methods. Furthermore, our ensemble model added
a boost of 2.5% to 3.4% to the accuracy, achieving the state-of-the-art
performance on public CROHME datasets for the first time.

Keywords: Handwritten · Semantic invariant · Contrastive learning.

1 Introduction

Handwritten mathematical expression recognition (HMER) is more challenging
than other handwritten forms such as handwritten digits and words [1–4] be-
cause handwritten mathematical expressions (HMEs) do not only have different
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writing styles but also include a large number of mathematical symbols, complex
two-dimensional structures and the limitation of small trainable datasets.

The traditional grammar-based HMER model is divided into three steps [5–
7] : symbol segmentation, symbol recognition, and structural analysis. However,
it does not bring satisfication in the recognition of handwritten mathematical
formulas with complex two-dimensional structures.

With continuous improvement of computing capability, deep learning has at-
tracted more and more attention and reaped fruitful results in search technology,
machine learning, machine translation, natural language processing, multime-
dia learning, recommendation and personalization technology, and other related
fields. Ha et al. [8] firstly applied neural networks to recognize individual char-
acters and symbols, and then Ramadhan et al. [9] established the convolutional
neural network model to recognize mathematical formula symbols. Hai et al. [10]
proposed a combination of convolutional neural networks and Long Short-Term
Memory (LSTM) to effectively identify online and offline handwritten charac-
ters. However, these methods can only recognize single characters. Bahdanau et
al. [11] proposed an Encoder-Decoder architecture framework based on attention
mechanism, which made a significant breakthrough in machine translation. And
then the Encoder-Decoder framework has gradually been applied to the field of
mathematical expression recognition(MER).

Zhang et al. [4] firstly applied the Encoder-Decoder framework in the field
of mathematical expression recognition with a proposal of an end-to-end offline
recognition model, referred to as ”watch, attend and parse (WAP)”. Different
from the previous models, WAP uses the attention mechanism to automatically
segment symbols, so that the input HMEs images are modeled with the output of
one-dimensional character sequences in LATEX format. The original WAP model
employs a fully convolutional networks(FCN) encoder and a recurrent neural
network decoder using gated recurrent units(GRU) equipped with an attention
mechanism as the parser to generate LATEX sequences. Subsequently, Zhang et
al. [12] further improved the WAP model, using DenseNet [14] network as the
encoder, and proposed multi-scale attention model which solve the problem of
mathematical symbol recognition well.

Truong et al. [15] proposed a weakly supervised learning method based on
WAPmodel, which assisted the encoder to extract more useful high-level features
by adding a symbol classifier near the encoder. In terms of the improvement of
decoder, ”Bidirectionally Trained TRansformer (BTTR)” [16] replaces the GRU
network decoder by a bi-directional Transformer decoder, and alleviates lack of
coverage by employing positional encodings. An Attention aggregation based bi-
directional Mutual Learning Network (ABM) is proposed by Biao et al. [17] to
better learn complementary context information. Truong et al. [18] put forward
a relation-based sequence representation, which reduced the ambiguity caused
by the use of ” ” and ”{ }” and enhanced the recognition of offline handwritten
mathematical expressions (HMEs) by reconstructing structural relations. Zhang
et al. [19] proposed a tree-structured decoder to improve the decoding ability of
dealing with complicated mathematical expressions.
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Moreover, to improve the robustness of the recognizer with respect to writ-
ing styles, Wu et al. [20] proposed a novel paired adversarial learning method
to extract semantic-invariant features. Le et al. [21] proposed the model of dual
loss attention, which has two losses including decoder loss and context matching
loss, in order to detect the semantic invariant features of the encoder from hand-
written and printed mathematical expressions and improve the performance of
LATEX grammar for the encoder. However, there is a big difference in distribution
between printed and handwritten MEs, so these methods cannot learn semantic-
invariant features effectively. Therefore, we propose to explore how to effectively
make full use of easily generated printed mathematical expressions (PMEs) to
improve the recognition accuracy of HEMR model. Inspired by contrastive learn-
ing [32, 22–25], this paper proposes a new method based on BTTR model: a
combination of self-supervised contrastive learning and supervised learning to
enable the encoder to learn the semantic-invariant features between printed and
handwritten. The contributions of this paper are listed below:

– With reference to self-supervised contrastive learning, we apply contrastive
learning to feature extraction in printed and handwritten, so that the encoder
can learn semantic-invariant features between the two different forms, and
the extracted features are learned as similar as possible.

– Considering the case of shared encoder, large batchsize and large-scale datasets
are required for contrastive learning, otherwise it is difficult to gain ideal
results. In this paper, hybrid contrastive learning and supervised learning
methods are employed to ensure the correct updating of parameters in the
training process, and also guarantee the encoder learns semantic-invariant
relationship between PMEs and HMEs.

– Extensive experiments on various CROHME benchmarks show that our
method on both a single model and an ensemble model outperform state-of-
the-art results.

2 Related Work

Contrastive learning. In recent years, contrastive learning has set off a wave
of interest in the field of computer vision (CV). Models based on the idea of con-
trastive learning, such as MoCo [23], SimCLR [22], MoCov2 [24], SimSiam [25],
emerge one after another. As a self-supervised representation learning method,
contrastive learning has outperformed supervised learning in some tasks of CV.
The main idea of contrastive learning is to narrow the distance between positive
samples and expand the distance between negative samples. A pair of positive
samples is usually obtained by two different random transformations of the same
image. A typical model among them is SimCLR as shown in Fig. 1. SimCLR
employs ResNet as the base encoder f(.) and add nonlinear projection head
g(.), mapping representation to the space where the contrastive loss is applied.
Inspired by these papers, we apply a contrastive learning architecture to hand-
written mathematical expression recognition(HMER).
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Fig. 1. The structure of SimCLR

BTTR. BTTR [16] uses DenseNet [12] as the encoder and transformer de-
coder as the decoder, which can perform both left-to-right (L2R) and right-to-
left (R2L) decoding. The training phase is achieved by generating two target
sequences (L2R and R2L) from the target LATEX sequence, and computing the
training loss for the same batch. Approximate joint search [27] is used during
inference to improve recognition performance. This article improves on BTTR
and uses it as the baseline.

3 Method

In this paper, we propose a method combining self-supervised contrast learning
and supervised learning(CCLSL). HMEs come from CROHME training set, and
we use Python and LATEX provided by CROHME training set to generate images
of printed mathematical expressions (PMEs). On a batchsize, we assume that
there are N pairs of paired samples, each of which contains HMEs image and
PMEs image of the same size and the same label, denoted as xpair = (xh, xp),and
the corresponding label is marked Y pair.

Our handwritten expression recognition system is shown in Fig. 3. CCLSL
contains two parts, one is the encoder-decoder model based on supervised learn-
ing; the other part is the self-supervised contrastive learning model, which adds a
projection head g(.) to the encoder for maximizing the similarity between corre-
sponding printed and handwritten pixel features in the space where contrastive
loss is applied. We define parameters of encoder block and decoder block as θe
and θd respectively. Encoder-decoder parameters and projection head param-
eters are defined as θ and θg. In the given training set D = (xpair, Y pair), θ
is updated by maximizing probability of prediction while (θe, θg) is updated by
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Fig. 2. The architecture of BTTR model. L2R and R2L sequences [
→
y ;
←
y ] are concate-

nated through the batch dimension as the input to the decoder.

maximizing the similarity of the corresponding pixel features of each printed and
handwritten MEs in the contrastive space.

3.1 Encoder

In the encoder block, CNN network is used as the feature extractor of HMEs im-
age, which is composed of DenseNet[14] and a 1×1 convolutional layer. The role
of the last convolution layer is to adjust the size of image features to the embed-
ded dimensions d model for subsequent processing. Image pair xpair = [xh;xp]
is processed through CNN networks to obtain feature map hpair = [hh;hp],
which is added to 2-D image positional encodings Epair = [EP ;Ep] to ob-
tain feature map with positional information, and then is flattened to 1-D fea-
ture map fpair = [fh; fp], where xpair ∈ R2×H×W×1, hpair ∈ R2×H′×W ′×d,
Epair ∈ R2×H′×W ′×d, fpair ∈ R2×H′W ′×d.

3.2 Transformer Decoder

In the decoder part of this article, we use the standard transformer decoder[26],
it consists of N Transformer Decoder Layers, each layer contains three parts:
Multi-Head Attention, Masked Multi-Head Attention, Feed-Forward Network.

Multi-Head Attention. Multi-head attention is concatenated from single-
head attention. For a given Q, K, V, we compute the head in the projected
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Fig. 3. A hybrid system of self supervised contrastive learning and supervised learning

subspace by utilizing the scaled dot-product attention module.

Hi =
(QWQ

i )(KWK
i )

T

√
dmodel

(VWV
i ) . (1)

where WQ
i ∈ Rdmodel×dq , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , represent the

projection matrix.
After that, the h heads are concatenated and projected through the projec-

tion matrix WO ∈ Rhdv×dmodel to get the new feature vector:

multihead = [H1;H2; ...;Hh]W
O . (2)

Masked Multi-Head Attention. In the process of decoding, the infor-
mation of future moment cannot be obtained at the current moment, so it is
necessary to use the mask technique to cover the information of the future mo-
ment during training process.

Feed-Forward Network. FFN is a fully connected network including two
linear transformations and a nonlinear function, where the nonlinear function
generally adopts the relu activation function.

3.3 Supervised Training

Referring to BTTR[16], we apply a bidirectional training strategy for supervised
learning. First, two specific symbols ”SOS” and ”EOS” were introduced into the
dictionary to indicate the beginning and end of a sequence. For a given paired la-

bel Y pair = {y1, y2, ..., yT } it is represented as
−−−→
Y pair = {”SOS”, y1, y2, ..., yT , ”EOS”}

from left to right (L2R) and
←−−−
Y pair = {”EOS”, yT , yT−1, ..., y1, ”SOS”} from
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right to left, where yi represents mathematical symbols and T is the length of
the LATEX sequence symbols. Considering that the transformer does not actually
care about the order of the input symbols, we can use a single transformer de-
coder for bidirectional language modeling. We use cross-entropy as the objective
function, conditioned on the image xpair and the encoder-decoder parameter θ,
to maximize the probability of the predicted symbols of the bidirectional target
LATEX sequence.

LCE

(
Y pair|xpair

)
=

1

2

(
L
(
Y pair|xp

)
+ L

(
Y pair|xh

))
, (3)

L
(
Y pair|x

)
=

1

2T

( T∑
j=1

log p
(
→
yj |

→
y<j , x

)
+

T∑
j=1

log p
(
←
yj |

←
y<j , x

))
. (4)

3.4 Contrastive Training

In order to enable the encoder to effectively learn the same semantic-invariance
features between printed and handwritten MEs and improve the robustness of
this model in writing style, self-supervised contrastive learning is introduced to
supervised learning. Inspired by the idea of SimCLR[22], we add a projection
head after the encoder to map the representation to the space where the con-
trastive loss is applied. The projection head g(.) will consist of an MLP with one
hidden layer:

zp = g(fp) = σ (W gσ (fp)) . (5)

zh = g(fh) = σ
(
W gσ

(
fh

))
. (6)

where σ stands for ReLU nonlinearity, θg = W g ∈ Rd×d.

As for zp = [zp1 , z
p
2 , ..., z

p
H′W ′ ] and zh = [zh1 , z

h
2 , ..., z

h
H′W ′ ] , A contrastive loss

function[31] enables the corresponding positional features of zp and zh as close
as possible:

LCL

(
xpair

)
= LCL

(
xp, xh

)
, (7)

LCL

(
xp, xh

)
=

H′W ′∑
i=1

(
LNCE

(
zpi , z

h
i ; z

p
⋃

zh
)
+ LNCE

(
zhi , z

p
i ; z

p
⋃

zh
))

.

(8)
where LNCE(.) is a contrastive loss function, called InfoNCE[32]:

LNCE (u, v+;U) = −log exp(uT · v+/τ)∑
v∈U\u exp(u

T · v/τ)
. (9)

where u, v, v+ are l2 normalized.
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3.5 Combination of Contrastive Learning and Supervised Learning

According to SimCLR, under the condition of not introducing memory bank, the
pre-training effect can only be acceptable if the batch size is large enough. How-
ever, the available HMEs training data are insufficient to support mass training.
Therefore, a new method is proposed in this paper: Skip the pre-training stage
of contrastive learning, and directly carry out the combination of self-supervised
contrastive learning and supervised learning. The specific operation is to mini-
mize the hybrid loss function:

Lhybrid = LCE

(
Y pair|xpair

)
+ λLCL

(
xpair

)
. (10)

where λ is a hyperparameter that controls the tradeoff between decoder loss
LCE and contrastive loss LCL.

In the inference phase, after discarding the projection head g(.), our model
is capable of recognizing both HMEs and PMEs. Similar to BTTR, the decoder
employs approximate joint search [27] to improve decoding performance.

4 Experiments

4.1 Experimental Setup And Results

Table 1. Performance of the BTTR as baseline system on CROHME 2014, CROHME
2016 and CROHME 2019.

Model 2014 2016 2019
ExpRate ExpRate ExpRate

BTTR [16] 53.96 52.31 52.96
baseline 55.68 53.44 55.46

Experimental Setup. We evaluated our method on the CROHME Com-
petition dataset[28–30].The training set selected in this paper is CROHME2014
training set, which contains 8836 HMEs pictures in total. We use Matplotlib
library to generate corresponding PMEs. CROHME2014 test set containing 986
images, CROHME2016 test set containing 1147 images, and CROHME2019 test
set containing 1199 images are employed to test the performance of the model.
And we employ Expression Rate (ExpRate) metrics to evaluate HMEs recogni-
tion systems. Adadelta algorithm with gradient shear is chosen to learn parame-
ters with batch size set to 15, batch image size set to 440000 and max epochs set
to 200. When the expression rate on the validation set does not increase after
30 epochs, the learning rate is set up to decrease. During training τ = 2 is used
to soften the output distribution. The model is trained on two NVIDIA 2080Ti
GPUs with 11 × 2 GB memory.
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Experimental Results. First of all, we rerun related work BTTR[16] as the
baseline system. Table 1 shows the results of test on CRHOMR2014, CRHOMR2016
and CRHOMR2019. It is worth mentioning that the open source code reproduc-
tion results provided by BTTR are a bit better than their paper results, so we
adopt the rerun model as the baseline model.

Table 2. Performance comparison of offline HMER systems on CROHME test sets. *
Refers to the ensemble of recognition models utilizing multiple different initializations.
In particular, all models listed in the table trained without any augmentation.

Model 2014 2016 2019
ExpRate ExpRate ExpRate

Single Model

WAP [13] 48.38 46.82 –
WS-WAP [15] 53.65 51.96 –
PAL-v2 [20] 48.88 49.61 –
Dual loss attention [21] 51.88 51.53 –
DenseWAP-TD [19] 49.1 48.5 51.4
ABM [17] 56.85 52.92 53.96
SAN [34] 56.2 53.6 53.5
BTTR [16] 53.96 52.31 52.96
baseline 55.68 53.44 55.46
CCLSL(our) 58.07 55.88 59.63

Ensemble Model

WS-WAP* [15] 55.68 52.57 –
PAL-v2* [20] 54.87 57.89 –
DenseWAP-TD* [19] 54.00 52.10 54.60
BTTR* [16] 57.91 54.49 56.88
CCLSL* (our) 60.61 58.32 62.97

In Table 2, we compare our model with other offline HMER systems on the
CROHME 2014/2016/2019 test sets respectively. To ensure fairness of compar-
ison, none of the systems employ integration of multiple models. Results show
that our model achieves an expression accuracy of 58.07% on CROHME2014,
55.88% on CROHME2016 and 59.63% on CROHME2019, with an improvement
of 2.39%/2.44%/4.17% on CROHME2014/2016/2019 compared to the baseline
model, and the recognition performance of our model on the three test sets are
obviously better than the most advanced method. In addition, under the condi-
tion of λ = 0.02, two single models are retrained with different initializations,
and the six single models trained by λ=0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 are
simply integrated together. It can be seen from Table 2 that the recognition ef-
fect of the integrated model in CROHME test sets also achieves state-of-the-art
at present.
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Table 3. Performance of CCLSL under different hyperparameters λ.

Dataset 2014 2016 2019
ExpRate ExpRate ExpRate

baseline 55.68 53.44 55.46

λ

0.01 57.76 55.18 58.21
0.02 58.07 55.88 59.63
0.03 57.76 54.84 58.38
0.04 57.76 55.01 57.88
0.05 57.05 55.01 59.13
0.06 58.17 55.10 58.79
0.07 55.23 54.92 57.46

4.2 Ablation experiments

Ablation: superparameter λ. We evaluate the performance of CCLSL un-
der different superparameter λ shown in Table 3. We set 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07 to λ for the experiment. By comparison, we find that the model
achieves the best results in all of the three test sets when λ = 0.02. ExpRates in
CROHME 2014/2016/2019 test sets are 58.07%, 55.88%, 59.63%, significantly
improved compared with the baseline model, indicating that Combination of con-
trastive learning and supervised learning(CCLSL) can effectively improve model
recognition performance.

Ablation: Different Training Methods. In order to further illustrate the
effectiveness of our method, some ablation experiments are performed in table 4.
It can be seen from Table 4 that Pre and Mixed have limited performance im-
provement of the model. It is likely that the two data distributions are quite
different, resulting in a far difference in the feature maps extracted by the en-
coder. The method proposed in this paper can enable the model, especially the
encoder, to learn the semantic invariant features of PMEs and HMEs images.

4.3 Encoder Migration

At present, the classic model WAP [12] in the offline handwritten mathemati-
cal formula also uses the DenseNet as the encoder and the double-layers GRU
network with the attention mechanism as the decoder. In this paper, the en-
coder trained by the CCLSL method will be migrated to the WAP model for
retraining, while using WAP [12], WAP variant WS-WAP [15], ABM [17] as the
baseline model.

Table 5 shows that, by transferring the encoder DenseNet trained by CCLSL
to the WAP model for fine-tuning, the recognition accuracy of the model is
greatly improved, and the performance is also significantly better than other
WAP model variants. This further verifies that the encoder trained with CCLSL
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Table 4. The performance of BTTR under different training methods. Pre refers to
pre-training the BTTR model using PMEs images, and then fine-tuning them in HMEs
images. Mixed refers to training models using both PMEs and HMEs images. CCLSL
is the method proposed in this paper.

Dataset Pre Mixed CCLSL ExpRate

CROHME 2014

× × × 55.68
✓ × × 56.14
× ✓ × 56.04
× × ✓ 58.07

CROHME 2016

× × × 53.44
✓ × × 53.87
× ✓ × 54.34
× × ✓ 55.88

CROHME 2019

× × × 55.46
✓ × × 55.96
× ✓ × 55.54
× × ✓ 59.63

Table 5. Performance of encoder migrated to WAP. The V1 model freezes the encoder
parameters of WAP and only trains the decoder. V2 uses the cross-entropy function as
the loss function on the basis of V1 to fine-tune the encoder and decoder to make them
more adaptable, and V3 uses label smoothing[33] as the loss function on the basis of
V1 to fine-tune the encoder and decoder to improve the generalization ability of the
model.

Model 2014 2016 2019
ExpRate ExpRate ExpRate

WAP [13] 48.38 46.82 –
WS-WAP [15] 53.65 51.96 –
ABM [17] 56.85 52.92 53.96
V1(our) 51.47 48.64 49.54
V2(our) 56.54 53.55 55.57
V3(our) 59.69 54.92 57.88
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can indeed learn semantically invariant features between print and handwriting,
significantly improving the robustness of the model in terms of writing style.

4.4 Visualization

Fig. 4. Visualize the context vectors extracted by the BTTR and CCLSL on the test
set and augmented test set.

To visualize the semantically invariant features learned by the proposed sys-
tem, we show the context vectors for each symbol class in BTTR and CCLSL
on the CROHME 2014 test set and the corresponding data augmentation set.
The augmented dataset is generated using A general geometric augmentation
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tool [35] for text images. For visualization, we utilize t-SNE to map the data
from high-dimensional to 2-dimensional. It can be observed from Fig. 4 that the
character shape changes in the enhanced image, which leads to a large deviation
of the context vector extracted by BTTR, and the system proposed in this paper
can capture similar context vector representations and learn semantic invariance.

Finally, Fig. 5 illustrates the attention-based decoding process, where mintcream
is the background, black is the font, and other color areas are the focus areas of
attention. The darker the color, the higher the attention weight. It can be seen
that the attention can not only capture the spatial position of each character,
but also use the spatial structure information to assist the decoder in parsing
symbols ’{’ and ’}’.

Fig. 5. Visualization of the attention process.

5 Conclusion

In this paper, we have proposed a new method (CCLSL) to effectively recognize
offline HMEs: a combination of self-supervised contrastive learning and super-
vised learning to enable the encoder to learn the semantic-invariant features
between PMEs and HMEs, improving the model’s robustness in writing style.
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Extensive experiments on various CROHME datasets show that our method on
both single and integrated models achieved state-of-the-art performance.

Based on the research results of this paper, the future research direction is
proposed: mining more latex expressions of mathematical formulas, generating
PMEs pictures to participate in the training of the model. Using the method
proposed in this paper to ensures that the encoder can learn the semantically
invariant features of PMEs and HMEs, the decoder can learn more latex syntax
and further improve the performance of the decoder.
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