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Abstract. In this paper, we rethink the multi-scale feature fusion from
two perspectives (scale-level and spatial-level) and propose a full-scale
selective fusion strategy for semantic segmentation. Based on such strat-
egy, we design a novel segmentation network, named Full-scale Selective
Transformer (FSFormer). Specifically, our FSFormer adaptively selects
partial tokens from all tokens at all scales to construct a token subset
of interest for each scale. Therefore, each token only interacts with the
tokens within its corresponding token subset of interest. The proposed
full-scale selective fusion strategy can not only filter out the noisy in-
formation propagation but also reduce the computational costs to some
extent. We evaluate our FSFormer on four challenging semantic seg-
mentation benchmarks, including PASCAL Context, ADE20K, COCO-
Stuff 10K, and Cityscapes, outperforming the state-of-the-art methods.
We evaluate our FSFormer on four challenging semantic segmentation
benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K,
and Cityscapes, outperforming the state-of-the-art methods.

Keywords: Semantic segmentation · Transformer · Full-scale feature
fusion

1 Introduction

Semantic segmentation aims to predict a semantic label for each pixel in the
image, which plays an important role for various applications such as autonomous
driving [10] and medical analysis [28]. However, precisely recognize every pixel
is still challenging as the objects vary across a wide range of scales. Since FPN
[22], a typical and natural solution for this problem is to leverage both high-
resolution feature maps with more detail information in shallow layers and high-
level feature maps with richer semantics in deep layers via multi-scale feature
fusion.

Many works [37, 20, 22, 17, 5, 42, 21, 43, 34, 46, 40, 32] have explored how to
fuse multi-scale features. We rethink multi-scale feature fusion from two per-
spectives, scale-level and spatial-level. The former refers to the fusion strategy
⋆ Equal contributions
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Fig. 1: Comparisons with different scale-level and spatial level feature fusion
strategies. The gray shadow area in (c)(d)(e) represents the allowed interaction
region of the query (denoted by red point).

across different scales, for example, for one scale, which scales can it interact
with. And the latter refers to the interaction range of each token in the spatial
dimension. On the one hand, previous scale-level fusion involves two main strate-
gies, that is, progressive fusion and full-scale fusion. As shown in Figure 1(a),
progressive fusion has two typical pathway (top-down and bottom-up), where
the token at one scale can only interact with the tokens at its adjacent scale. By
contrast, in full-scale fusion (Figure 1(b)), each token at one scale can interact
with all the tokens at any scale. It has been proved that full-scale fusion has more
advantages [19]. On the other hand, spatial-level fusion is a more popular topic.
Benefited from the development of convolution, local fusion has been dominant
for a long time. As shown in Figure 1(c), each token can only aggregate informa-
tion from its neighbourhoods. Since the attention mechanism and Transformer
architecture become show promising prospects, global fusion achieves more and
more attention. As shown in Figure 1(d), each token can exchange information
with all the tokens.

In order to accommodate both scale-level fusion and spatial-level fusion, we
explore the full-scale global fusion using attention mechanism. Specifically, each
token can interact with all the tokens at any scale. Although full-scale and global
fusion strategies provide larger interaction range, they introduce more computa-
tion burden. Therefore, how to balance the trade-off between performance and
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Fig. 2: Visualization of the attention map for full-scale global fusion. (a) is the
input image. (b e) show the attention map of the query token at 1st ∼ 4th scale
located at the same position as the red point in (a). The attention map with
red, green, orange and blue border corresponds to 1/32, 1/16, 1/8 and 1/4 key
tokens respectively.

computational costs is a valuable problem. Through visualization, we found that
the attention map of full-scale global fusion presents a sparse property. As shown
in Figure 2, we sample a position in the image (denoted by a red point), and
visualize the attention map corresponding to the query token located at such
position in each scale. It can be found that the high attention weights only lie
in partial region, while other area has the relatively small attention weights.
This demonstrates that although each token has the opportunity to aggregate
information with all the tokens, it has its own interaction range of interest. Note
that the effective interaction range is not just simply local or global. In addi-
tion, compared with the last four columns of Figure 2, the token at the same
spatial location of the feature map at different scales present a different inter-
action region of interest pattern. Based on this observation, we believe that the
range of feature fusion is the more accurate the better, rather than the larger
the better. Making each token only interact with other tokens within its region
of interest may be a breakthrough to filter out the noisy information and reduce
the computational costs.

In this paper, we propose a Full-scale Selective Transformer (FSFormer) for
semantic segmentation. The core idea is to perform interaction among tokens
via the proposed full-scale selective fusion strategy. Specifically, for each scale,
our FSFormer adaptively select partial tokens from all tokens at all the scales
to construct a token subset of interest. Each token only interact with the to-
kens within its corresponding token subset of interest, which is shared by the
tokens belonging to the same scale. Such full-scale selective fusion strategy can
not only filter out the noisy information propagation but also reduce the com-
putational costs to some extent. To verify the effectiveness, we evaluate our
FSFormer on four widely-used semantic segmentation benchmarks, including
PASCAL Context [25], ADE20K [45], COCO-Stuff 10K [3], and Cityscapes [10],
achieving 58.91%, 54.43%, 49.80%, and 84.46% mIoU respectively, outperform-
ing the state-of-the-art methods.
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2 Related Work

Multi-scale Features Fusion. There are various works exploring how to fuse
multi-scale features for semantic segmentation. Inspired by FPN [22] that em-
ployed a top-down pathway and lateral connections for progressively fusing
multi-scale features for object detection, Semantic-FPN [17] and SETR-MLA
[43] extended this architecture to fuse multi-scale features for semantic segmen-
tation. Based on this top-down fusion, ZigZagNet [21] proposed top-down and
bottom-up propagations to aggregate multi-scale features, while FTN [32] pro-
posed Feature Pyramid Transformer for multi-scale feature fusion. Differently,
PSPNet [42] and DeepLab series [5, 4, 6] fused multi-scale features via concatena-
tion at the channel dimension. Different from these methods that fused features
on the local region, ANN [46] proposed an Asymmetric Fusion Non-local Block
for fusing all features at one scale for each feature (position) on another scale,
while FPT [40] proposed Grounding Transformer to ground the “concept” of the
higher-level features to every pixel on the lower-level ones. Different from these
methods that fuse features from preset subset for queries, we explore how to
dynamically select informative subset from the whole multi-scale feature set and
fuse them for each query feature.
Transformer-based semantic segmentation. Since Alexey et al. [11] intro-
duced Visual Transformer (ViT) for image classification, it has attracted more
and more attentions to explore how to use Transformer for semantic segmen-
tation. These methods focused on exploring the various usages of Transformer,
including extracting features [43, 27, 35] from input image, learning class embed-
ding [36, 31], or learning mask embedding [9]. For example, SETR [43] treated
semantic segmentation as a sequence-to-sequence prediction task and deployed a
pure transformer (i.e., without convolution and resolution reduction) to encode
an image as a sequence of patches for feature extraction. DPT [27] reassem-
bled the bag-of-words representation provided by ViT into image-like features
at various resolutions, and progressively combined them into final predictions.
Differently, Trans2Seg [36] formulated semantic segmentation as a problem of
dictionary look-up, and designed a set of learnable prototypes as the query of
Transformer decoder, where each prototype learns the statistics of one cate-
gory. SegFormer [35] used Transformer-based encoder to extract features and
the lightweight MLP-decoder to predict pixel by pixel. Segmenter [31] employed
a Mask Transformer to learn a set of class embedding, which was used to gen-
erate class masks. Recent MaskFormer [9] proposed a simple mask classification
model to predict a set of binary masks, where a transformer decoder was used
to learn mask embedding. Different from these works, we explore how to use
Transformer to fuse multi-scale features.

3 Method

3.1 Overview

The overall framework of our FSFormer is shown in Figure 3. Given the input
image I ∈ R3×H×W , the backbone first maps it into multi-scale features {Xi}4i=1,
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Fig. 3: The overall framework of our FSFormer, whose core component is Full-
scale Selective Fusion Block (FS-Block).

where Xi ∈ R2i−1C× H

2i+1 × W

2i+1 . H and W denotes the height and width respec-
tively. i indicates the scale index and C is the basic channel number. Then, a
top-down pathway injects the high-level semantics into all scales to produce en-
hanced multi-scale representations {Fi}4i=1, where Fi ∈ RD× H

2i+1 × W

2i+1 , and D is
the channel number of decoder. Next, a full-scale selective block is employed on
each scale feature {Fi} for context modeling. Finally, we up-sample multi-scale
features to the same resolution, followed by an element-wise summation and a
simple convolution head (including a 3 × 3 and a 1 × 1 convolution) to predict
final segmentation result.

3.2 Full-scale Selective Fusion Block

Previous works [22, 20, 42, 19, 40, 33] have shown that fusing multi-scale features
from multiple scales are critical for improving semantic segmentation, since the
objects in the scene often present a variety of scales. High-resolution features
in shallow layers contain more spatial details than low-resolution ones in deeper
layers, while the latter contains richer semantics. Besides, small-scale objects
have no precise locations in the higher-level since the multiple down-sample
operations, while large-scale objects have weak semantics at the lower-level since
the insufficient receptive fields.

With regard to the scale-level fusion, fully-scale fusion [19], where each token
at one scale has the ability to aggregate information from all the tokens at any
scale, shows more advantages than the progressive fusion [22] (each scale can
only fuse information from its adjacent scale). According to the spatial-level
fusion, convolution-based local fusion takes the dominant position, before the
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superior global fusion implemented by recent popular attention mechanisms [12]
and Transformer architectures [11, 33]. Based on our attention map visualization
under full-scale fusion (Figure 2), we found that although the global attention
allows each token to fuse information from all the tokens, each token has its
own interaction token subset of interest. Thus, the selective spatial-level fusion
strategy may provide a better trade-off between performance and computational
costs.

As the core component of our FSFormer, full-scale selective fusion block
(FS-Block) aims to combine the full-scale fusion and selective spatial fusion.
Specifically, as shown in Figure 3, for each token, it first predicts a token subset
of interest from all the tokens at all scales through a token selection module.
Note that the tokens at each scale share the same subset. Then, each token only
aggregates information from the tokens within its corresponding token subset of
interest via a transformer-based module.

Token Selection module. The token selection module is designed to adap-
tively select a token subset of interest for each scale according to the image
content. Figure 3 shows the pipeline of the token selection module in i-th FS-
Block. Given the multi-scale features {Fi}4i=1, it first concatenate them along
token dimension, after a flatten operation,

F = Concat
(
ϕ(F1), ϕ(F2), ϕ(F3), ϕ(F4)

)
∈ RL×D, (1)

where L =
∑4

i=1
HW
22i+2 , and ϕ denotes the flatten operation upon the spatial

dimension. Then, we employ a MLP module to dynamically predict the interest
scores Pi ∈ [0, 1]L of all tokens for scale i,

Pi = Softmax
(
MLP(F )

)
, (2)

where P j
i , j ∈ [0, 1, ..., L − 1] represents the interest score of the j-th token

Fj ∈ RD to the tokens Fi at scale i. Next, given a pre-defined selection ratio
ρ ∈ (0, 1], we select the ρL tokens with top-ρ interest scores Pi from the whole
token set F , resulting the token subset of interest F̃i ∈ RρL×D for scale i. The
process can be formulated as follows:

θi = Θ(Pi), (3)

Q
θj
i

i =

{
1, 0 ≤ j < ρL

0, ρL ≤ j < L
(4)

F̃i = F [Qi = 1], (5)

where the Argsort operation Θ (in descending order) is first employed on Pi to
obtain the sorted indexes θi ∈ [0, L− 1]. θi is further used to generate a binary
mask Qi, which indicate which tokens are selected. Qj

i = 1 means the j-th token
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is selected into the token subset of interest for scale i, otherwise not selected. [δ]
in Eq. (5) means fetching operation by the given condition δ.

However, such hard selection process is non-differentiable. To overcome this
problem, we apply the gumbel-softmax technique [15] to generate the binary
mask Qi from the soft probability distribution Pi,

Qi = Gumbel-softmax(Pi) ∈ {0, 1}L. (6)

The gumbel-softmax is differentiable, thus enables the end-to-end optimization
during training.

Full-scale Selective Fusion. Inspired by the success of Transformer archi-
tecture [11], we utilize a transformer layer (including an attention module and
feed-forword network (FFN)) for the context modeling. Specifically, we extend
the multi-head self attention into multi-head cross attention (MCA) to enable
the different sources of query, key and value, which is required for our full-scale
selective fusion. MCA is responsible for token-wise interaction, whose forward
pass can be formulated as follows:

XMCA = MCA(Xq, Xk, Xv) =
XqX

T
k√

D
·Xv, (7)

where Xq, Xk and Xv denote query, key and value embedding respectively. D
is the channel number of Xq, Xk and Xv. FFN is in charge of channel-wise
projection. We use the same structure of FFN as [11], which contains a layer
normalization [2] and a multi-layer perceptron (MLP) module.

Figure 3 illustrates the detailed structure of the i-th FS-Block for inference
and training, respectively. During inference, MCA takes the i-th scale tokens Fi

as query, and the selected token subset of interest F̃i generated by the token
selection module as key and value, i.e., FMCA

i = MCA(Fi, F̃i, F̃i) ∈ RHiWi×L.
Thus, each token at scale i has the ability to interact with all the tokens within
its corresponding interested token subset F̃i, ranging from all the scales.

However, during training, the token subset of interest is sampled by gumbel-
softmax, resulting in a non-uniform number of tokens for samples within a
batch, which prevents the parallel computing. To overcome this issue, we intro-
duce a masked attention mechanism, named masked multi-head cross attention
(MMCA), to not only parallelize the computation but also cut down the interac-
tions between each query token and its uninterested tokens. The MMCA takes
the i-th scale tokens Fi, full-scale tokens F and selection mask Qi as inputs, and
output FMMCA

i with the same size as Fi.

FMMCA
i = MMCA(Fi, F,Qi) ∈ RHiWi×D. (8)

Specifically, it first compute the non-selective full-scale fusion via the multi-head
cross attention between Fi and F ,

A =
FiF

T

√
D

∈ RHiWi×L. (9)
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Then, we generate the binary selection mask Mi ∈ {0, 1}HiWi×L for all tokens
at scale i by repeating Qi ∈ {0, 1}L HiWi times, since all the tokens belonging
to i-th scale share the same token subset of interest. Note that the mask Mi

is shared by all heads. Next, the effects of uninterested tokens in the attention
map are filtered out by the following masking mechanism,

Ãij =
exp(Aij)Mij∑L

k=1 Mik

. (10)

Note that the mask Mi is shared by all heads. Eq. (10) does not change the
size of attention map, thus Ã has the same size with A. Finally, such masked
attention map Ã is multiplied with the whole token set F to generate the final
tokens,

FMMCA
i = ÃF ∈ RHiWi×D. (11)

Token Reduction for efficiency. According to Eq. (9), the computational
complexity of our MMCA is O(HiWiL), which causes heavy computation bur-
den when token number is large (i.e., high-resolution feature maps). In order
to improve its efficiency, we further design a meta-learning based projection
mechanism to squeeze the query token sequence to a shorter one. Specifically,
we perform a projection matrix Ri ∈ RNi×N

′
i on query tokens Fi ∈ RNi×D to

compress the sequence length of query embedding,

F̂i = RT
i Fi ∈ RN

′
i×D, (12)

where Ni = HiWi is the original sequence length of Fi. N
′

i = Ni

r , where r is
the reduction ratio. Considering the projection matrix requires the ability to
perceive the image content, we dynamically generate Ri through a MLP layer Φ
conditioned on the query tokens Fi,

Ri = Φ(Fi). (13)

Then, the squeezed query F̂i and full-scale tokens F are passed through MMCA
as Eq. (8).

F̂MMCA
i = MMCA(F̂i, F,Qi) ∈ RN

′
i×D. (14)

Finally, we re-project the F̂MMCA
i back to the original sequence length Ni,

FMMCA
i = RiF̂

MMCA
i ∈ RNi×D. (15)

3.3 Loss Function

We now describe the training objectives of our FSFormer. We adopt the widely-
used cross-entropy loss for the final predicted probability of each pixel,

Lce =

N∑
n=1

CrossEntropy(yn, ŷn), (16)
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where yn and ŷn denote the ground-truth one-hot label and predicted probability
distribution of n-th pixel.

Similar to previous works [23, 34], we also apply a lightweight segmentation
head (1×1 convolution) on the stage 3 output of backbone to project the channel
dimension to class number. An auxiliary loss Laux is employed on the output of
such segmentation head. Laux is also implemented by cross-entropy loss.

In addition, in order to constrain the ratio of the selected tokens of interest to
a predefined value ρ ∈ (0, 1], we utilize an MSE loss to regularize the predicted
interest scores P̂i in Eq. (2),

Lreg =
1

S

S∑
i=1

∥ρ− 1

L

L∑
j=1

(P j
i )∥

2, (17)

where i is the scale index, and S equals to 4 in our experiments.
Overall, the total loss function consists of three terms:

L = Lce + αLreg + βLaux, (18)

where α and β are hyper-parameters. Following previous work [42, 41, 38], we set
the weight β of auxiliary loss to 0.4. We ablate the α in the experiment section.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on four widely-used public benchmarks:
ADE20K [45] is a very challenging benchmark including 150 categories, which
is split into 20000 and 2000 images for training and validation. Cityscapes [10]
carefully annotates 19 object categories of urban scene images. It contains 5K
finely annotated images, split into 2975 and 500 for training and validation.
COCO-Stuff 10K [3] is a large scene parsing benchmark, which has 9000 training
images and 1000 testing images with 182 categories (80 objects and 91 stuffs).
PASCAL Context [25] is an extension of the PASCAL VOC 2010 detection chal-
lenge. It contains 4998 and 5105 images for training and validation, respectively.
Following previous works, we evaluate the most frequent 60 classes (59 categories
with background).
Backbone. For fair comparisons with other methods, we employ the well-
known ResNet-101 [13] and Swin Transformer [23] as backbone. All the back-
bones are pre-trained on ImageNet-1K [29].
Hyper-parameters. The channel D of features Fi is set to 256, the weight α
of is set to 0.4, and the target ratio ρ is set to 0.6. The head number of MCA is
8.
Training. We follow the previous works [38, 43, 31, 33] to set up the training
strategies for fair comparisons. The data augmentation consists of three steps:
(i) random horizontal flip, (ii) random scale with the ratio between 0.5 and
2, (iii) random crop (480 × 480 for PASCAL Context, 512 × 512 for ADE20K
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Table 1: Comparison with the state-of-the-art methods on ADE20K-val,
Cityscapes val COCO-Stuff 10K-test and PASCAL Context-val. m.s.: multi-
scale inference. “†” means that larger input resolution is used (640 × 640 for
ADE20K and 1024× 1024 for Cityscapes). “R101” is short for ResNet-101.

Method Encoder
mIoU (m.s.)

ADE20K Cityscapes COCO-Stuff 10K PASCAL

PSPNet [42] R101 45.35 80.04 38.86 47.15
DeepLabV3+ [7] R101 46.35 82.03 - 48.26
EncNet [41] R101 44.65 76.97 - -
ANN [46] R101 45.24 81.30 - 52.80
OCRNet [39] R101 - 81.87 39.50 54.80
DANet [12] R101 45.02 82.02 39.70 52.60
CCNet [14] R101 45.04 80.66 - -
GFFNet [19] R101 45.33 81.80 39.20 54.20
FPT [40] R101 45.90 82.20 - -
RecoNet [8] R101 45.54 - 41.50 54.80
MaskFormer [9] R101 47.20 81.40 39.80 -
FSFormer (ours) R101 46.56 82.13 41.73 55.23

SETR [44] ViT-L 50.28 82.15 45.80 55.83
MCIBI [16] ViT-L 50.80 - 44.89 -
Segmenter [31]† ViT-L 53.60 81.30 - 59.00
SegFormer [35]† MiT-B5 51.80 84.00 46.70 -
UperNet [34] Swin-L 51.17 - 47.71 57.29
UperNet [34]† Swin-L 53.50 - - -
FSFormer (ours) Swin-L 53.33 83.64 49.80 58.91
FSFormer (ours)† Swin-L 54.43 84.46 - -

and COCO-Stuff 10K, and 768 × 768 for Cityscapes). We use AdamW [24] as
the optimizer with 0.01 weight decay. The initial learning rate is 0.00006 for
ADE20K and Cityscapes, and 0.00002 on PASCAL Context and COCO-Stuff
10K. The training process contains 160k iterations for ADE20K, 60k iterations
for COCO-Stuff 10k, and 80k iterations for Cityscapes and PASCAL Context.
The batch size is set to 8 for Cityscapes, and 16 for other datasets. We initialize
the encoder by the ImageNet-1K [29] pre-trained parameters, and other parts
randomly. Synchronized BN [26] is used to synchronize the mean and standard-
deviation of BN [30] across multiple GPUs. All the experiments are implemented
with PyTorch [1] and conducted on 8 NVIDIA V100 GPUs.

Evaluation. The performance is measured by the widely-used mean intersec-
tion of union (mIoU) for all experiments. For the multi-scale inference, we follow
previous works [23, 43] to average the the predictions of our model at multiple
scales [0.5, 0.75, 1.0, 1.25, 1.5, 1.75].
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4.2 Comparisons with the state-of-the-arts

ADE20K val. Table 1 reports the comparison with the state-of-the-art meth-
ods on the ADE20K validation set. Equipped with Swin-L as backbone, our
FSFormer is +2.16% mIoU higher (53.33% vs. 51.17%) than UperNet. Recent
methods [31, 23] show that using a larger resolution (640× 640) can bring more
improvements. When a larger resolution (640 × 640) is adopted, our FSFormer
outperforms UperNet by +0.93% (54.43% vs. 53.50%) under the same Swin-
L backbone. In addition, our FSFormer(Swin-L) is +2.63% mIoU higher than
SegFormer(MiT-B5) (54.43% vs. 51.80%). Although Segmenter [31] uses the
stronger ViT-L[11] backbone than Swin-L, our FSFormer also show a +0.73%
mIoU advantage than Segmenter. These results demonstrate that the effective-
ness of our method.
Cityscapes val. Table 1 shows the comparative results on Cityscapes val-
idation set. Our FSFormer is +1.49% superior than SETR [43] (83.64% vs.
82.15%). According to [35], a higher input resolution of 1024 × 1024 can bring
further performance gain. Thus, we also train our model under such resolution.
It can be seen that our FSFormer(Swin-L) outperforms SegFormer(MiT-B5)
and Segmenter(ViT-L) by 0.46% and 3.16% mIoU. When using the widely-used
ResNet-101 as backbone, our FSFormer achieves 82.13% mIoU, which is +0.26%
and +0.73% higher than the well-known OCRNet [38] and the promising Mask-
Former [9], respectively.
COCO-Stuff 10K test. As shown in Table 1, our FSFormer achieves 49.80%
mIoU, outperforming UperNet by 2.09% under Swin-L backbone. Compared
with MCIBI with a stronger ViT-L backbone, our FSFormer presents a +4.91%
mIoU superiority. Besides, equipped with ResNet-101 as backbone, our FS-
Former achieves 41.73% mIoU, which is +0.23% higher than the previous best
RecoNet.
PASCAL Context val. Table 1 compares our method with the state-of-the-
arts on PASCAL Context validation set. our FSFormer is +0.43% mIoU higher
than RecoNet with ResNet-101 as backbone (55.23% vs. 54.80%). With Swin-
L as backbone, our FSFormer achieves 58.91% mIoU, outperforming UperNet
by +1.62%. Compared with the methods with using stronger ViT-L as back-
bone, our FSFormer(Swin-L) is +3.08% mIoU higher than SETR and achieves
comparable performance with Segmenter (58.91% vs. 59.00%).

4.3 Ablation study

In this sub-section, we study the effect of key designs and hyper-parameters of
our approach. All the ablation studies are conducted under Swin-T [23] backbone
on PASCAL Context dataset.

Effect of key designs. We ablate the effect of two key designs (full-scale
fusion and token selection) in Table 2. The baseline model denotes the single-
scale fusion without token selection, i.e., each token at one scale can only interact
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Table 2: Ablation on the effect of full-scale fusion and token selection. s.s.:
single-scale inference.

Baseline Full-scale Fusion Token Selection FLOPs Params mIoU (s.s.)

! 54.0G 33M 46.75
! ! 75.5G 38M 48.70
! ! ! 73.8G 39M 49.33

with tokens within the same scale, which achieves only 46.75% mIoU. The full-
scale fusion brings an obvious improvement (+1.95%), reaching 48.70% mIoU.
Benefited from the token selection operation, the FLOPs is reduced by 1.7G and
the performance further increase by +0.63%, achieving 49.33% mIoU.

Compare with different token selection manners. To verify the effective-
ness of our adaptive token selection strategy, we compare it with two simple
and intuitive manners: (i) random selection, (ii) uniform selection. As shown in
Table 4 (a), these two fixed selection manners lead to about 1.5% performance
decrease, and approximately 2% lower than our adaptive token selection man-
ner. This shows that the token subset of interest need to be adaptively selected
according to the image content.

Token selection ratio. The token selection ratio ρ represents the proportion
of tokens of interest selected from tokens at all scales, that is an indicator of
the size of the token subset of interest. A larger token selection ratio means
each token can interact with more tokens, while also cause more computation
burden and may introduce noise information. Where, ρ = 1.0 means that no
selection is performed, that is, each token can interact with all the tokens at
any scale. Figure 4 (d) shows the performance when the token selection ratio ρ
varies within [0.1, 1.0]. It can be seen that the performance changes with token
selection ratio in a unimodal pattern within a range of about 1%. Specifically,
the mIoU increases from 48.40% over ρ = 0.1 ∼ 0.6, peaking at 49.33%, and
then falls back to 48.70% at ρ = 1.0. Note that the token selection ratio is not
the larger the better, which may attribute to the noisy information aggregation
caused by excessive interaction range. The best mIoU is achieved at a token
selection ratio of 0.6, thus we set ρ to 0.6 by default. The results demonstrates
the necessity of selecting a token subset of interest during feature fusion.

Weight of regularization loss for token selection ratio. As mentioned
in Section 3.3, we apply a regularization loss to constrain the ratio of selected
tokens of interest to a predefined value ρ. Figure 4 (c) shows the effect of different
weights (ranged between 0 and 1) for this regularization loss. It can be seen
that α = 0.4 outperforms its counterparts, achieving the best performance with
49.33% mIoU. Thus, we set α = 0.4 by default.
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Fig. 4: Effect of (a) different token selection strategies, (b) token reduction, (c)
different weights of regularization loss for token selection ratio, and (d) different
token selection ratio. “s.s.” denotes single-scale inference.

Effect of token reduction. Here, we study the effect of our token reduction
strategy on both performance and GPU memory. As shown in Figure 4(b), our
token reduction can effectively relieve the GPU memory burden. Note that the
larger the input resolution, the more obviously the memory burden will be re-
duced. Furthermore, such token reduction strategy can bring a slight +0.27%
mIoU gain (49.33% vs. 49.06%).

4.4 Further Analysis

Comparisons with other multi-scale fusion decoders. To further verify
the effectiveness of our full-scale selective fusion, we compare our FSFormer with
other decoders with different multi-scale fusion strategies in Table 3. The results
demonstrate the superiority of our method. Compared with other progressive
local fusion methods (SETR, Semantic FPN and UperNet), our FSFormer out-
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Table 3: Comparisons with other decoders with multi-scale feature fusion on
(a) performance under different backbones on PASCAL Context val set, and (b)
computational costs. We report the FLOPs and Params of decoders, relative to
the backbone. The input resolution is set to 480 ×480. “s.s.” denotes single-scale
inference.

(a)

Encoder SETR[43] Semantic FPN[18] UperNet[34] GFFNet[19] FTN[33] FSFormer

Swin-S 50.48 50.49 51.67 51.76 52.14 52.58
Swin-B 51.51 51.48 52.52 52.58 52.81 53.12
Swin-L 56.62 56.78 56.87 56.90 57.29 57.63

(b)

SETR[43] Semantic FPN[18] UperNet[34] GFFNet[19] FTN[33] FSFormer

FLOPs 13G 112G 187G 85G 39G 52G
Params 3M 54M 37M 17M 25M 12M

performs the best one (i.e., UperNet) among them by +0.91% and +0.76%
under Swin-T and Swin-L. Compared with the full-scale local fusion decoder,
GFFNet, our FSFormer has +0.82%, +0.54% and +0.73% gains in mIoU with
Swin-T, Swin-B and Swin-L as backbone respectively. Compared with FTN, a
transformer-based progressive global fusion decoder, our FSFormer is +0.44%,
+0.31% and +0.34% higher than FTN under different Swin Transformer back-
bones.

5 Conclusion

In this paper, we first rethink the multi-scale feature fusion from two perspec-
tives (scale-level and spatial-level), and then propose a full-scale selective fusion
strategy for semantic segmentation. Based on the proposed fusion mechanism,
we design a Full-scale Selective Transformer (FSFormer) for semantic segmenta-
tion. Specifically, our FSFormer adaptively select partial tokens from all tokens
at all the scales to construct a token subset of interest for each scale. Therefore,
each token only interact with the tokens within its corresponding token subset
of interest. The proposed full-scale selective fusion strategy can not only filter
out the noisy information propagation but also reduce the computational costs
to some extent. Extensive experiments on PASCAL Context, ADE20K, COCO-
Stuff 10K, and Cityscapes have shown that our FSFormer can outperform the
state-of-the-art methods in semantic image segmentation, demonstrating that
our FSFormer can achieve better results than previous multi-scale feature fusion
methods.
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