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Abstract. Fine-grained visual classification (FGVC) is an essential and
challenging classification task in computer visual classification, aiming
to identify different cars and birds. Recently, most studies use a convo-
lutional neural network combined with an attention mechanism to find
discriminant regions to improve algorithm accuracy automatically. How-
ever, the discriminant regions selected by the convolutional neural net-
work are extensive. Vision Transformer divides the image into patches
and relies on self-attention to select more accurate discriminant regions.
However, the Vision Transformer model ignores the response between
local patches before patch embedding. In addition, patches usually have
high similarity, and they are considered redundant. Therefore, we pro-
pose a PEDTrans model based on Vision Transformer. The model has
a patch enhancement module based on attention mechanism and a ran-
dom similar group patch discarding module based on similarity. These
two modules can establish patch local feature relationships and select
patches that are easier to distinguish between images. Combining these
two modules with the Vision Transformer backbone network can improve
the fine-grained visual classification accuracy. We employ commonly used
fine-grained visual classification datasets CUB-200-2011, Stanford Cars,
Stanford Dogs and NABirds to get advanced results.

Keywords: Fine-grained visual classification · Vision Transformer · Self-
attention.

1 Introduction

In deep learning, convolutional neural networks have been rapidly developed and
used in various computer vision tasks. Fine-grained visual classification has long
been a challenging task because it categorizes sub-classes within categories with
little difference (for example, similar birds, dogs, and car types). In the early
stages of the fine-grained visual classification model, researchers used expensive
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location-calibrated data to classify, relying on additional bounding boxes to lo-
cate detailed parts of the image [1, 15]. However, with the development of the
fine-grained visual classification network, researchers found that this calibration
method was not the best because the annotator’s notes might be incorrect and
time and effort consumed. Thanks to the development of primary convolutional
networks, new progress has been made in fine-grained visual classification net-
works and classification methods. Methods [18, 38] represent weakly supervised

Patch Enhancement Module (Ours) Self-Attention (ViT)Input image

Fig. 1. Repeated and redundant patches are marked with a hollow circle, and local
and global enhanced patches are marked with a hollow five pointed star.

learning, which avoids the use of expensive annotation data. Most of the cur-
rent methods use weak supervision to solve this problem, effectively saving the
labelling cost and producing good results. Transformer achieves good results in
text tasks [4, 26, 3] and achieves the same results in visual classification tasks
as deep convolutional networks [7]. Recently, it has been widely used in this
field. Because the input of the visual converter is patch data, it can better find
important parts in fine-grained visual classification.

Although the Vision Transformer model adds the position vector in the patch
embedding stage, it only increases the relative position between patches and
cannot establish the relationship between local patches. In addition, the model
divides the input image into small patches, so there are many duplicate parts be-
tween patches. Effectively removing these duplicate patches can make the model
better distinguish images. These problems are shown in Fig. 1, where the dotted
box is the newly added Patch Enhancement Module. It more clearly presents en-
hanced local patches and redundant patches. Global and local enhanced patches
can be more clearly distinguished.

This study proposes a fine-grained visual classification model for self-attention
enhancement and random dropout patches to address these issues. We add two
separate modules for the transformer to achieve better classification results, one
is Patch Enhancement Module, and the other is Dropout Patch Module. The re-
lationships between local patches can be established by the Patch Enhancement
Module and make important patch information more prominent. The Dropout
Patch Module uses the similarity between patches to select necessary patches
and then classifies them using the most effective patches to avoid redundant in-
formation. The marked patches will be put into the transformer as new input and
classified using the position token. Finally, we conduct extensive experiments on
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standard fine-grained Vision classification data sets and get better results than
the convolutional neural network.

Our method is more effective than the existing methods and does not need
additional annotation information. The main contributions we create in this
paper are summarized as follows:

1. We use a method similar to channel attention to establishing the local rela-
tionship between patches. The patch information of effectively distinguishing
images can be more significant through the self-attention mechanism, equiv-
alent to the first selection of important feature regions.

2. Although patch information is beneficial to the search of important discrim-
ination areas, there is a large amount of redundant information and high
similarity in patches. We propose a method to drop out the repeated patches
according to the information similarity, and the remaining patches will be
easier to distinguish the images.

3. We conduct extensive testing on fine-grained classification data sets. The
results show that the Vision Transformer accuracy is improved and advanced
performance is achieved by adding the Patch Enhancement Module and the
Dropout Patch Module.

2 Related Work

The second section introduces the related work and methods of fine-grained
visual classification, channel attention, dropout method, and Vision Transformer.

2.1 Fine grained visual classification method

Zhang et al. [35] proposed a local-based Part-based R-CNN (Part R-CNN) fine-
grained visual classification algorithm in 2014, which directly uses convolutional
features for classification. Wei et al. [32] proposed the Mask CNN model, an end-
to-end deep convolutional model, which is different from the Part R-CNN algo-
rithm, which evaluates and screens the characteristics of deep convolution. Lin
et al. [18] designed an effective Bilinear CNN model framework. Bilinear channel
features extract the paired correlation between channels and then distinguish the
subtle differences between images. This structure can obtain feature information
of different granularity and then improve classification accuracy. Fu et al. [9] pro-
posed a Recurrent Attention Convolutional Neural Network (RA-CNN) based
on an attention mechanism that learns and discriminates region attention and
region-based feature representation recursively and enhances each other. The
progressive Multi-Granularity (PMG) model [8] adopts a progressive learning
method and random patch puzzle to make different levels of networks can learn
different feature information. Methods [36, 34] rely on the attention mechanism
to obtain more effective discrimination areas. The latest TransFG model [11]
adds a Part Selection Module (PSM) to the Vision Transformer (ViT) [7] and
applies it to fine-grained visual classification. The main fine-grained visual classi-
fication method is weakly supervised training based on image-level labeled data.
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2.2 Channel attention

Vaswani et al. [28] proposed a self-attention mechanism in 2017. Then, Hu et
al. [13] Proposed a Sequence-and-Excitation Network (SENet), first embedded
into the Residual Networks (ResNet) [12] model. The channel attention method
improves the accuracy of the convolutional neural network and further extracts
the effective features. Since then, Park et al. [23] Combined channel attention
with spatial attention and proposed Bottleneck Attention Module (BAM) [23]
and Convolutional Block Attention Module (CBAM) [33] models. The former is
the parallel channel and spatial attention structure, and the latter is the serial
structure. Wang et al. [31] designed a more efficient channel attention module,
which uses a one-dimensional convolution to connect the features, avoiding using
the full connection to reduce the dimension and lose unnecessary features. At
the same time, the one-dimensional convolution is used to interact with local
channels, which effectively reduces the complexity of the model.

2.3 Dropout

Regularization methods for dropping neural units have been applied in deep con-
volutional networks. These methods are generally divided into randomly drop-
ping out information and self-attention methods. The initial Dropout method [24]
was to suppress neurons with a certain probability, and later methods were
to delete the entire feature map or patch. For example, the Spatial Dropout
method [25] deletes channels randomly, and the Cutout method [5] deletes patches
randomly from the input image. Similarly, the ADCM method [21] uses the
method of randomly dropping out channels and location information to im-
prove the performance of the attention method. ADL [2] is an attention-based
dropout method in which attention-based drop masks are applied to feature
maps to mask most discriminatory components and promote networks to learn
important features that are easy to distinguish. In addition, the Channel Drop
Block method is to remove a similar set of related channels to break similarities
between channels [6].

2.4 Transformer

Transformer was originally applied in natural language processing and text
translation fields and has greatly promoted its development [4, 26, 3]. Recently,
more and more models based on Vision Transformer have been widely used
in other computer vision tasks. Researchers have improved the model’s accu-
racy by improving self-attention mechanisms to detect discriminant regions au-
tomatically [36, 34] or to model parts [11, 30]. The representation of computer
vision direction is pure Vision Transformer [7], Swin Transformer [20], etc. Vi-
sion Transformer is the first time it has been used in the field of vision, followed
by local or global connections through different hierarchical networks to extract
features. The first Transformer model in the fine-grained visual classification
task is the TransFG [11] model, which improves the performance of pure Vision
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Transformer models in fine-grained visual classification by adding the Part Se-
lection Module and redesigning the loss function. In our work, we also add part
modules to the pure Vision Transformer model and apply them to fine-grained
visual classification tasks.

3 Method

In this chapter, we will better explain our approach. The steps to construct the
input data are described in section 3.1. The entire PEDTrans model framework,
the Patch Enhancement Module, and Module are shown in section 3.2, which
uses three different dropout strategies.

3.1 Patch embedding

The input information of the Vision Transformer model is different from the tra-
ditional convolutional neural network because Transformer was originally used
to solve text problems. Therefore we design image data as text vectors to be
input into the Vision Transformer. The initial image area is marked S = H ∗W
and divided into patches of size P ∗ P , so the number N of patches can be
calculated from Eq. (1):

N = (H/P ) ∗ (W/P ) . (1)

3.2 PEDTrans

Generally speaking, the size of the input image is set to a square, H = W .
Patches are projected into D-dimensional vector space by a learnable linear pro-
jection. Since the original image is divided into patches that cannot represent
relative location information, a learning position vector Epos is added to xp. In
addition, a token for classification is added before the first token converted from
the patch. The final vector is like Eq. (2):

Z0 =
[
xclass;E(x1p); · · · ;E(xNp )

]
+ Epos. (2)

where E is the patch embedding projection, E ∈ R(D∗p2∗c), c is the number
of channels of the original image, and Epos represents the learning position
embedding. The embedded image is transmitted to the interior of the Vision
Transformer model. First, a Layer Normalization (LN) process is applied, which
is then fed to Multi-head Self-attention (MSA) Module and Multi-layer Per-
ceptron (MLP) Module. For better classification, such encoders are repeated L
times and use a shortcut connection structure in the ResNet model. The output
from Layer i can be calculated according to Eq. (4).

z
′

l = MSA (LN (zl−1)) + zl−1. (3)

zl = MLP
(
LN(

(
z

′

l

))
+ z

′

l . (4)
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Fig. 2. PEDTrans: An image is divided into patches of the same size and enhanced
by self-attention patches. Further, the linear projection embeds the patch into vector
space, then combines it with the position embedding by addition. The Dropout Patch
Module was designed to remove the duplicate and invalid patches before the last en-
coder to allow patch selection . The remaining patches are entered into the last encoder.

Following ViT, the original image is divided into N patches. The local rela-
tionship between patches helps the model select more effective patches. Although
the patches add location information when embedded, the local patches’ rela-
tionship is insufficient. We propose a Patch Enhancement Module for attention
mechanism to enhance this local relationship. In addition, effective patches are
a minority in a large number of patches. Redundant and duplicate patches can
burden the classification results of models and mask patches that benefit classifi-
cation. Our Dropout Patch Module can remove similar patches that are not good
for classification. This section describes the details of our proposed PEDTrans.
The framework of the whole model is shown in Fig. 2.

Patch Enhancement Module (PEM) In deep convolutional neural networks,
the interaction between channels is very important. Different channels can get
different weights through the attention mechanism, which enhances the charac-
teristics of important channels. In Vision Transformer, patches are divided by
the original image, ignoring the connections between local images. In addition,
patch characteristics are critical to the final classification of the model, so us-
ing self-attention to enhance patch characteristics before converting patches to
tokens increases the link between patches and makes important patches more
effective in the final classification.
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Fig. 3. This is a feature enhancement module with a sliding window length of 2.
Each patch in the graph performs local information interaction through self-attention.
Through this self-attention mechanism, different patches can obtain weights multiplied
by the original feature map to obtain new enhanced feature patches.

We propose a sliding window to establish local information connections. The
framework of this module is shown in Fig.3. Before the sliding window, we use
global average pooling to process patches, and then use shared weights to learn
the importance of local patches. Local attention weight is shown in Eq. (5).

ωi = s

 i+(k−1)/2∑
i=i−(k−1)/2

ωi ∗ xip

 . (5)

xip ∈ Ω =
{
xi−(k−1)/2
p , · · · , xip, · · · , xi+(k−1)/2

p

}
. (6)

where ωi is the shared weight, s is the Softmax function, and the set Ω consists
of k patches are connected before and after the i-th patch. This method can be
realized by fast one-dimensional convolution with kernel k, as shown in Eq. (7) :

ωi = s
(
Conv1Dk(mean(xip))

)
. (7)

where Conv1D is a one-dimensional convolution, which can change the relation-
ship between the upper and lower patches by adjusting the size of the k value
to adjust the length of the sliding window. We do not use a structure similar to
the ResNet model because we find that using a shortcut connection structure
here does not increase performance very well. The general channel attention
expression is represented by Eq. (8):

Xout = XT
inW +Xin. (8)

Xout = s

(
QKT

√
k

)
Xin. (9)
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However, we use a similar approach to self-attention in PEM to achieve fea-
ture enhancement, as shown in Eq. (9) where Q is obtained by the linear mapping
of xp and K is obtained by the global average pooling of xp. k is the size of the
sliding window. It can be understood more simply in Eq. (10).

Xout = XT
inW. (10)

More detailed results will be given in Chapter 4 of the ablation study and the
reasons for the performance difference between the two will be analyzed.

Dropout Patch Module (DPM) This part contains three dropping strate-
gies, namely, dropping out based on similarity, dropping out randomly and drop-
ping out based on attention weight.

The Dropout Patch Module is implemented based on the correlation be-
tween patches to remove the most redundant patch and retain the most effective
patches for final classification. We proposed that the Dropout Patch Module es-
tablishes a discarded patch combination by calculating the correlation coefficient
matrix between patches. Fig.2 shows the details of the Dropout Patch Module
in the PEDTrans module. Specifically, the input to Dropout Patch Module is a
feature embedded Xin ∈ R(N∗P 2) where N is the number of patches, and P 2

is the characteristic length of each embedded patch. Refer to Eq. (11) for the
calculation process. We calculate the correlation matrix M ∈ R(N∗N) between
each patch, then drop out a patch by random selection and drop out patches
that are too similar to the patch based on the calculated similarity matrix M
and dropout rate γ.

The similarity matrix M of the Dropout Patch Module is calculated using the
correlation measure in the bilinear pooling [18] algorithm, which measures the
similarity between patches using the normalized cosine distance. Input features
are first normalized, then similar matrices are constructed by matrix multiplica-
tion to obtain similar relationships between patches.

M = N (Xin) • N
(
XT
in

)
=


1 M12 · · · M1p

M21 1 · · · M2p

...
...

. . .
...

Mp1 Mp2 · · · 1

 . (11)

In Eq. (11), N is a normalization function, and the similarity matrix M is a
symmetric matrix. That is, the diagonal element Mii = 1. Mij indicates how
similar the i-th patch is to the j-th patch.

The algorithm 1 description indicates that the i-th patch is randomly selected
for dropout, and if Mij > min(A), the j-th patch will be dropout where A is the
most similar set to patch i, and its size is N ∗ γ. In other words, the similarity
between every two patches will be arranged in descending order, leaving only
patches that are similar to m(N∗γ) where m(N∗γ) is the N ∗ γ-th similarity.
Dropout Patch Module contains only one super parameter: γ, which controls
the percentage of similar patches discarded.
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Algorithm 1: Dropout Patch Module

Data: Patches feature map Xin; Dropout rate γ
Result: The index of the reserved patch

1 Computing the correlation matrix M ;
2 Randomly select a patch i;
3 Dropout patch i;
4 while j ≤ N do
5 if Mij > min(A) then
6 Dropout patch j;
7 else
8 Retain patch j;
9 end

10 end

The above is the dropout strategy based on patch similarity. The follow-
ing describes the random dropout strategy and the dropout strategy based on
attention weight.

According to the description in algorithm 1, the random dropout strategy
is to randomly select N ∗ γ patches from N patches and return the remaining
indexes. The self-attention weight dropout strategy relies on the self-attention
score of each layer of patches to drop out, discards the N ∗ γ patches with the
smallest weight, and returns the reserved index.

4 Experiments

This chapter introduces the detailed settings of the experiment in section 4.1,
including dataset, training hyperparameter settings, and hardware device in-
formation. Quantitative experimental analysis is given in section 4.2. Ablation
study is performed in subsequent section 4.3. Qualitative analysis and experi-
mental visualization are further given in section 4.4.

4.1 Experiments Setup

Datasets We tested the effectiveness of PEDTrans on several widely used fine-
grained datasets, CUB-200- 2011 [29], Stanford Dogs [16], Stanford Cars [17],
and NABirds [27] are datasets tested by general fine-grained visual algorithms
to assess the performance of fine-grained visual algorithms very well, and they
are challenging. Specific dataset information is shown in Table 1.

Experimental details We used most of the data enhancement methods in
our experiments (clipping for training, central clipping for testing). First, we
adjusted the image to 600 ∗ 600 and then clipped it to 448 ∗ 448. We use the
pre-training model of the official ViT-B 16 in ImageNet21K. The parameters
are set as follows: Batch size is 8, SGD optimizer is used, momentum is 0.9,
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Table 1. Detailed statistics for CUB-200-2011, Stanford Dogs and Stanford Cars.

Datasets Category Training Testing

CUB 200 5994 5794

Dog 120 12000 8580

Car 196 8144 8041

NABirds 555 23929 24633

learning rate is initialized to 0.02, cosine annealing is used as the scheduler of
the optimizer. The loss function uses a cross-entropy function and contrast loss
function. The Patch Enhancement Module sliding window super parameter k is
3, and the Dropout Patch Module dropout rate γ is 0.5. The experiments were
trained with four Nvidia RTX 3080 GPUs using the deep learning framework
Pytorch toolbox and Apex with FP16 training. In order to avoid the error caused
by the experimental equipment, we conducted the experiment again according
to the open source code and marked it with ∗.

Table 2. Comparison results of different methods on CUB-200- 2011, Stanford Dogs
and Stanford Cars.

Method Backbone CUB Cars Dogs

RA-CNN [9] VGG-19 85.3 92.5 87.3

MA-CNN [37] VGG-19 86.5 92.8 -

P-CNN [10] VGG-19 87.3 93.3 90.6

ResNet50 [12] ResNet-50 84.4 - -

Cross-X [22] ResNet-50 87.7 94.6 88.9

PMG [8] ResNet-50 89.6 95.1 -

FDL[19] DenseNet-161 89.1 84.7 84.9

API-Net [38] DenseNet-161 90.0 95.3 90.3

ViT [7] ViT-B 16 90.7 93.7 91.7

FFTV * [30] ViT-B 16 91.4 - 91.5

RAMS-Trans [14] ViT-B 16 91.3 - 92.4

TransFG * [11] ViT-B 16 91.3 94.8 92.3

PEDTans(ours) ViT-B 16 91.7 95.1 92.4
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4.2 Quantitative analysis

Our specific experimental results are shown in Table 2 and Table 3. PEDTrans
achieved 91.7% accuracy on CUB datasets. It is 1.0% higher than the original
Vision Transformer (ViT) model, and it does not use the overlapping strategy in
the TransFG model to improve accuracy. The overlap strategy improves accuracy
by increasing the number of patches. Our method is 0.3% more accurate than
TransFG on the Stanford Cars dataset. It implements state-of-the-art (SOTA)
on the data sets we tested and it is superior to most methods and has higher ac-
curacy than the original Vision Transformer model. We obtained 92.4% accuracy
on the Stanford dogs dataset, which is higher than 92.3% of the TransFG model
and better than other convolutional neural networks. On the NABirds dataset,
our model achieves an accuracy of 90.7%. In the experimental results, we use
bold to represent the optimal results and underline to represent the suboptimal
results.

Table 3. Comparison results of different methods on NABirds.

Method Backbone Acc

Cross-X [22] ResNet-50 86.4

API-Net [38] DenseNet-161 88.1

ViT [7] ViT-B 16 89.3

TPSKG [14] ViT-B 16 90.1

FFTV * [30] ViT-B 16 89.5

TransFG * [11] ViT-B 16 90.2

R2-Trans [11] ViT-B 16 90.2

PEDTans(ours) ViT-B 16 90.7

4.3 Ablation study

PEM: We performed an ablation study on PEDTrans to see how our framework
affects classification accuracy. All the experimental results are implemented on
the CUB dataset. We test these framework parts, including the Patch Enhance-
ment Module and Dropout Patch Module. The impact of the Patch Enhancement
Module is shown in Table 4.

A quantitative comparison between adding PEM and deleting PEM shows
that the model’s accuracy is improved by adding PEM. Specifically, the accuracy
of the ViT results increased from 90.7% to 91.2%. We think that building the
correlation of local information can increase the interaction between patches,
which will help the model increase the ability to select different patches, enhance
the characteristics of some patches, and improve the model’s accuracy.
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Table 4. Ablation study on PEM and
DPM on CUB-200-2011 dataset.

Datasets Accuracy (%)

ViT 90.7

+PEM 91.2

+DPM 91.2

PEDTrans(ours) 91.7

Table 5. Ablation study on value of slid-
ing window k on CUB-200-2011 dataset.

Value of k Accuracy (%)

1 91.2

3 91.7

5 91.5

7 91.3

In the Patch Enhancement Module, we also tested the size of the sliding
window and found that the best results at k = 3. The test results of sliding
windows of different sizes are shown in Table 5. Sliding windows are too small
to establish a good relationship between local patches and interact effectively,
but too large windows can cause some valid patches to be masked by the best
patches.

Table 6. Ablation study on shortcut connection on CUB-200-2011 dataset.

Method Accuracy (%)

PEDTrans(XWT +X) 91.3

PEDTrans(XWT ) 91.7

We try to use shortcut connections in this section, but we can not get good
results. Typically, channel attention is a shortcut connection after a series of
feature extraction, but a multilayer convolution does not characterize our model.
So, it is critical to multiply patches by the self-attention enhancement factor and
get good results. The test results of these two connection modes are shown in
Table 6.

DPM: We remove redundant patches from the last input level by adding a
dropout patch module before the last encoder. The performance of ViT and
ViT+DPM will be compared in this part, and compare three different dropout
strategies in DPM. The test results are shown in Table 4. Specifically, the accu-
racy of ViT is 90.7%, and after adding DPM, the accuracy is improved by 0.5%
to 91.2%. We believe that removing a large number of invalid, duplicate patches
will make it easier for the model to obtain the most recognizable patches and
thus improve the accuracy.

We also test the dropout rate γ in the dropout patch module with different
3 strategies and found that 50% dropout rate in DPM based on similarity is
the best value, γ = 0.5. The input position information of the last encoder
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is shown in Fig. 4. The random dropout strategy (Blue Border) can get more
scattered patches, while the self-attention score strategy (Yellow Border) can
get more focused patches centered on the classification object. The similarity
based dropout strategy (Red Border) is between the two. This strategy can
achieve the best results. It not only drops out part of the background, but also
eliminates some unimportant prospects. It has a certain regularization effect.
It is calculated based on similarity, so even if the first patch selected randomly
selects the foreground object, the module will keep the parts with differences
because the parts of the object are different. More detailed results are shown in
Table 7. Discarding too many patches will easily lose categorized patches, but
discarding too few patches will not highlight important ones.

.02 = .04 = .05 = .06 = .08 =

Similarity

Random

Attention 

Weight

Fig. 4. Illustration of dropout rate. The visual images with different dropout rate are
displayed, and the values of γ are 0.2, 0.4, 0.5, 0.6 and 0.8 respectively.

We only added DMP during training, with an accuracy of 91.3%. DPM was
added during training and testing, and the accuracy was 91.7%. Its more impor-
tant role is to select the discrimination region, which is perfectly combined with
patch in ViT.

4.4 Analyze visualization results

We show the visualization of PEDTrans on four benchmarks in Fig. 5. We ran-
domly selected two images from the four standard datasets we tested for visu-
alization, and we drew an overall attention image based on the corresponding
weight scales (1, 2, 4, 8) of the last four layers of the network. The transparent
white areas in the image are important areas from which we can see that our
model can accurately capture the most easily distinguishable parts of the object
under test, such as the mouth and eyes of a bird; The logo of the car, the lamp
of the car, and the intake grille that BMW can recognize most easily; Dog’s ears,
eyes, etc.
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14 Lin et al.

Table 7. Ablation study on value of dropout rate γ on CUB-200-2011 dataset.

Value of γ Similarity Random Attention-Weight

0.2 91.3 91.3 91.2

0.4 91.4 91.3 91.2

0.5 91.7 91.2 91.4

0.6 91.5 91.2 91.3

0.8 91.2 91.2 91.5

    

Fig. 5. Visualization results of PEDTrans in CUB-200-2011, Stanford Dogs, Stanford
Cars and NABirds, where the first line are input images, while the second and third
lines are partial attention maps generated by the ViT and PEDTrans. Best viewed in
colour.

5 Conclusion

This work proposes a fine-grained visual classification network based on the
Vision Transformer model and has achieved advanced results on standard fine-
grained visual classification datasets. We build relationships between patches
through self-attention mechanisms like channel interactions in convolutional neu-
ral networks. Through this connection, we enhanced patches that help distin-
guish between images. Fine-grained visual classification networks are most im-
portant in finding patches that are easy to distinguish between images, so the
Vision Transformer model is more helpful in choosing really effective patches,
but most of the small patches are redundant. Duplicate patches can be effec-
tively removed and play a certain role in regularization through our proposed
Drop Patches module. The final visualization fully demonstrates the validity of
our proposed model.
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