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Abstract. Magnetic resonance imaging (MRI) is widely used in clini-
cal diagnosis. However, as a slow imaging modality, the long scan time
hinders its development in time-critical applications. The acquisition
process can be accelerated by types of under-sampling strategies in k-
space and reconstructing images from a few measurements. To recon-
struct the image, many parallel imaging methods use the coil sensitivity
maps to fold multiple coil images with model-based or deep learning-
based estimation methods. However, they can potentially suffer from the
inaccuracy of sensitivity estimation. In this work, we propose a novel
coil-agnostic attention-based framework for multi-coil MRI reconstruc-
tion which completely avoids the sensitivity estimation and performs
data consistency (DC) via a sensitivity-agnostic data aggregation con-
sistency block (DACB). Experiments were performed on the FastMRI
knee dataset and show that the proposed DACB and attention module-
integrated framework outperforms other deep learning-based algorithms
in terms of image quality and reconstruction accuracy. Ablation studies
also indicate the superiority of DACB over conventional DC methods.

Keywords: MRI reconstruction · Coil agnostic · Attention network.

1 Introduction

Magnetic resonance imaging (MRI) provides a non-invasive imaging tool and
can be applied to visualize different types of tissues. However, the acquisition
speed of MRI raw data is fundamentally limited due to both hardware and
physiological constraints. One common practice to accelerate the process is to
under-sample the measurements in k-space. However, the signals sampled below
the Nyquist-Shannon rate suffer from aliasing artifacts in image domain. With
the assumption that the target images can be expressed using sparse representa-
tions in image domain [9] or in some transformed space [13, 20, 28], compressed
sensing (CS) methods solve the ill-posed problems via iterative model-based al-
gorithms. Nevertheless, the sparsity prior can be difficult to hold in real-world
scenarios and model complicated features [38], which restrains the growth of
CS-based methods in modern MRI. The other method to reduce the acquisition
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time is parallel imaging (PI), which employs multiple coils to unfold the targets
in image domain and exploits the coil correlations to generate clean reconstruc-
tions. GRAPPA is introduced in [11] which predicts the missing k-space data
with the acquired multi-coil data, e.g. the auto-calibration signal (ACS) lines. It
is still challenging to remove strong aliasing artifacts under low sampling rates,
using traditional reconstruction methods.

In recent years, deep neural networks show superior performance in image
super-resolution, de-noising, compressed sensing, and in-painting [40, 35, 2, 37].
Many methods using neural networks to reconstruct MR images are proposed.
The work in [19] uses magnitude and phase networks to perform residual learning
of aliasing artifacts and achieve de-aliased outputs. The method in [33] retrieves
promising reconstructions by maximizing the posteriori estimated via a pre-
trained variational auto-encoder (VAE). The method in [3] predicts the missing
k-space data from the sampled points using a neural network. Many PI methods
conventionally incorporate the sensitivity maps in the reconstruction pipelines [1,
8], which can be pre-computed via model-based algorithms, e.g. ESPIRIT [34].
However, the reconstruction performance can be affected when the sensitivity
estimation is inaccurate with few ACS lines at a high acceleration factor [39,
32]. A different class of methods have been proposed to jointly predict MR
images and sensitivity maps. Deep J-Sense [4] unrolls an alternating optimization
to jointly refine the reconstructed images and the estimated sensitivity maps.
Joint-ICNet [16] merges deep learning networks with model-based methods and
updates the sensitivity maps at each stage. Those methods rely on the sampled
multi-coil data to estimate the coil sensitivities, which can be susceptible to coil
configuration discrepancies and suffer from estimation errors.

In this paper, we introduce a novel multi-coil MRI reconstruction frame-
work which incorporates spatial attention modules and interleaved data aggre-
gation consistency blocks into a multi-level densely connected network struc-
ture. The proposed method is completely coil-agnostic when exhibiting data
consistency in reconstruction steps, and therefore invulnerable to coil config-
urations. We show that it outperforms other state-of-the-art methods qualita-
tively and quantitatively. In ablations, we evaluate the effectiveness of model
components and demonstrate the superior performance over other sensitivity
estimation-based approaches. The implementation of our method is available at
https://github.com/JLiu-Edinburgh/CoilfreeMRI-ACCV2022. The main contri-
butions are summarized below:

– we propose a coil-agnostic attention-based network for parallel MRI recon-
struction;

– we develop a novel data aggregation consistency block (DACB) to explicitly
utilize the multi-coil k-space consistency constraints without the estimation
of sensitivity maps, where data consistency is performed with complex-valued
measurements using a coil-invariant mapping to complex domain;

– we introduce a novel locality-aware spatial attention module (LoA-SAM) to
achieve both adaptability and locality-aware spatial contexts and incorporate
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multi-level dense connections to facilitate feature transmission at multiple
levels, which shows to improve the performance;

– we perform extensive experiments on texture-rich FastMRI knee dataset to
validate the efficacy of the proposed coil-agnostic method, showing its supe-
rior performance against the competing methods.

2 Related Works

2.1 Deep Neural Networks in MRI Reconstruction

Recently, deep neural networks have widely drawn attention and convolutional
neural networks (CNN) achieved great success in computer vision tasks [18, 29].
Many methods leverage the representations of neural networks to obtain grat-
ifying achievements in MRI reconstruction. A deep cascade of CNNs was pro-
posed in [30] to recover the aliased MR images. LPD-Net was introduced in [43]
which converts the conventional CS problem into two easy sub-problems that are
solved via a primal-dual network. The method in [23] adopts a CNN-based itera-
tive framework to remove noise-like artifacts caused by under-sampling. A deep
framework was proposed in [22] which fuses network structures with the con-
ventional iterative optimization to provide more accurate solutions to CS-MRI
problems. Generative adversarial networks (GAN) [10] produce photo-realistic
images via an adversarial game between a generator and a discriminator. The
method in [38] adopts a GAN-based framework to achieve sharp and realistic re-
constructions. GANCS [25] leverages the interleaved null-space projections and
deep residual blocks to remove the aliasing artifacts. The method in [41] uses a
self-attention layer in the generator to capture the global information of high-
level features. A GAN-based framework was proposed in [21] to ensure rich and
natural textures using multi-level feature refinement and attentive selection. The
methods in [26, 6] incorporate the GAN prior in MRI reconstruction by optimiz-
ing the latent space of a pre-trained generative network.

Although deep neural network models recorded promising achievements in
MRI reconstruction, how to produce high-fidelity reconstructions from highly
under-sampled measurements still remains open, which can potentially limit the
maximum acceleration factor in MRI scanning. We propose a locality-aware
spatial attention module, which learns adaptive position-specific kernels to in-
troduce more spatial diversities, and a GAN-based multi-level densely connected
framework to boost the reconstruction performance in a fast MRI diet.

2.2 Sensitivity Encoding-Based Reconstruction

Coil sensitivity maps are widely employed for parallel MRI reconstruction. The
method in [12] utilizes the pre-computed sensitivity maps to calculate the sen-
sitivity weighted combination. The methods in [1, 44] use the sensitivity maps
in the interleaved data consistency layers. The weighted average block proposed
in [8] merges the sensitivity maps concurrently with the preceding outputs in each
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reconstruction stage. However, the reconstruction performance can be severely
affected by the inaccuracy of sensitivity estimation, particularly when very lim-
ited k-space points are sampled under high acceleration factors [32, 16]. The work
in [32] attempts to overcome this problem by predicting the sensitivity maps via
a trainable network. Joint-ICNet [16] jointly updates the reconstructions and
sensitivity maps. However, it can be affected by the estimation inaccuracy, e.g.
caused by different machine configurations including coil deployment orders.

To avoid such issues, we propose a novel block to exploit generalized data
consistency without using sensitivity maps, which yields superior performance
over other approaches depending on coil sensitivity estimation.

3 Method

3.1 Problem Formulation

MRI reconstruction is traditionally modelled as follows:

min
x
‖A(x)− y‖2 + λR(x), (1)

where A denotes the encoding operation involving the coil projection, the Fourier
transform, and under-sampling in k-space, y = {yi}i is the collection of multi-coil
measurements, and R(x) is a regularization. However, the iterative optimization
methods can be computationally onerous. We instead leverage a trained neural
network to provide an end-to-end solution. As illustrated in Fig. 1, the devised
framework takes as input the under-sampled signals and reconstructs the target
clean images via a network cascade. The framework utilizes a novel data aggrega-
tion consistency block (DACB) in a coil-agnostic manner and is characterized by
locality-aware spatial attention (LoA-SAM) and multi-level dense connections.

3.2 Locality-Aware Spatial Attention Module (LoA-SAM)

Attention modules, e.g. the key constituent of transformers [36], are widely used
to model the feature correlations and improve the representation capacity. How-
ever, the quadratic complexity hinders their implementations to high-resolution
features which are closely linked with dense prediction tasks, e.g. image re-
constructions. To avoid the substantial computational increase, we proposed a
locality-aware spatial attention module (LoA-SAM) to capture the local contex-
tual cues in an adaptive manner, which shows to achieve reconstruction gains.
In this section, we introduce the structure of LoA-SAM.

Relative Feature Aggregation Block (RFA) We introduce a relative feature
aggregation block (RFA) in this section, which captures the spatially relative
information and potentially adds reconstruction performance gains. The input
feature volume h of size C × H ×W , where C is the number of channels and
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Fig. 1. Overview of the model architecture. The RSS input is first mapped via a head
block and fed for a cascade of U-shaped sub-networks with multi-level dense shortcuts.
The output features are fused to give the single-channel outcome via a tail block. For
simplicity, only two sub-networks with three transitional levels are presented. The final
framework has four sub-networks with four encoding-decoding levels

H ×W refers to the spatial resolution, is respectively mapped to hp and hq by
two branches, as illustrated in Fig. 2 (d). We shift hp as follows,

ps(hp;∆i)(x) = hp(x+∆i), (2)

where x denotes the spatial position, i.e. h(x) is a vector formed with the el-
ements across the channel axis at position x, and ps refers to the pixel-shift
operator which spatially shifts the feature volume by ∆i ∈ {−L, .., 0, .., L}2.
Zero-padding is adopted for boundary pixels. L is selected to be 2 in our exper-
iments. The relative direction vector d(x;∆i) at position x is given as follows,

d(x;∆i) = ps(hp;∆i)(x)− hq(x). (3)

Each direction vector is combined with the corresponding relative similarity
s(x;∆i) which is computed as follows,

s∗(x;∆i) = 1− sim(ps(hp;∆i)(x), hq(x))

s(x;∆i) = 1− s∗(x;∆i)

τ(maxj(s∗(x;∆j)) + ε)
, (4)

where sim denotes the Cosine similarity. The hyperparameter τ is practically
set to 0.25, and ε is 10−6. The feature aggregation ĥ(x) is given by:

g(x;∆i) = conv([d(x;∆i), s(x;∆i)])

ĥ(x) = conv([g(x;∆i)]i), (5)

where conv denotes a convolutional layer and [ ] refers to the concatenation of
feature maps along the channel axis.
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Fig. 2. Illustration of basic modules. C and N2 indicate the channel and spatial sizes
of output features. a) densely connected block, b) DACB, c) LoA-SAM, and d) RFA

Adaptive Spatial Attention Selection The feature aggregation from RFA
is passed to a tiny U-net, as shown in Fig. 2 (c), to predict the spatially varying
kernels of size k2 × H ×W . The spatial attention selection is implemented by
computing the weighted average of the neighboring positions:

h̃(x) = h(x) +
∑
δ∈∆

ω(x, δ)h(x+ δ), (6)

where h̃(x) is the output of LoA-SAM, ∆ is the kernel grid, e.g. {−1, 0, 1}2 for
k = 3 in our experiments, δ is the moving footprint, and ω(δ, x) denotes the
predicted preference of position x + δ. Different from [46, 5] which predict the
kernels of size Ck2 × H × W for adaptive filtering and introduce a substan-
tial computational burden, LoA-SAM captures both the adaptive property and
spatial diversity of attention patterns with reducing computational overheads.

3.3 Data Aggregation Consistency Block (DACB)

Data Consistency for MRI Reconstruction We define two data consistency
(DC) operators: the soft DC operator Ω∗ and the hard DC operator Ω as follows,

Ω∗(x; y,m) = F−1(m� F (x) + υy

1 + υ
+ (1−m)� F (x))

Ω(x; y,m) = F−1(m� y + (1−m)� F (x)), (7)
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Coil-Agnostic Attention Network for PI MRI 7

where x = f(h) denotes the prediction given by reducing the channels of h, υ is a
parameter, m refers to the sampling mask, F and F−1 are the Fourier transform
and its inverse, and � denotes the Hadamard multiplication. Ω∗ is adopted in [1,
15] and [27] updates the prediction by:

x← x− ηF−1(m� F (x)− y). (8)

The two update rules can be converted into a general form as below,

x← γx+ (1− γ)Ω(x; y,m). (9)

In parallel imaging scenarios, multi-coil signals can be combined and projected
via sensitivity maps as follows,

s = Φ({Si}; {Ci}) =

∑
i C̄iSi∑
j |Cj |2

Si = Ψ(s;Ci) = Cis, (10)

where Si denotes the i-th coil image, and Ci and C̄i refer to the i-th sensitivity
map and its conjugate. The output x is projected into the coil sensitivity via (10)
and updated, e.g. use (9). The multiple images are then combined into a single
view. The data consistency in (9) is eventually extended to be:

x← γx+ (1− γ)Φ({Ω(Ψ(x;Ci); yi,m)}; {Ci}), (11)

where yi denotes the measurement acquired by the i-th coil.

Data Consistency Block Data consistency is widely used for multi-coil MRI
reconstructions. The sensitivity maps were either estimated by model-based al-
gorithms [1, 8, 12], or via trainable neural networks [32, 16]. The former method
requires extra computational cost and the reconstruction quality can be severely
affected when the sampled ACS lines are not enough to guarantee the estima-
tion accuracy. The latter approach transfers the estimation into end-to-end re-
construction pipelines, whereas it introduces extra parameter overheads and can
be sensitive to machine configurations, e.g. coil number and deployment order,
imposing restrictions on the generalization ability of reconstruction systems.

The focal point of consistency enforcement is to “correct” the intermediate
reconstructions with the observed measurements. Instead of using sensitivity
maps in data consistency operations, e.g. (11), we propose a simple yet effective
block, named data aggregation consistency block (DACB), to tactfully perform
approximated data consistency without sensitivity maps. Similar to the update
rules in (9) and (11), we map the feature volume h into a 2-channel output,
as illustrated in Fig. 2 (b), representing the complex-valued signal aggregation,
and correct it using the summation of the measurements. Different from indi-
vidually enforcing data consistency on each coil view and combining the outputs
together using sensitivity maps, which is the conventional deep multi-coil MRI
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reconstruction method, we propose to leverage the linearity of the Fourier trans-
form, i.e. the aggregation of the transforms equals the transformed aggregation,
and adopt the summation operator instead of coil combination. To eliminate the
impact of the bottleneck design, a shortcut is adopted at the feature level to
take the advantage of residual learning. The data consistency is executed by,

h← γh+ (1− γ)f∗(Ω(f(h);
∑

yi,m)), (12)

where f and f∗ are two convolutional layers used to fuse feature channels. DACB
incorporates no sensitivity maps and can avoid defects caused by the inaccurate
sensitivity estimation. This method is inherently robust to coil configurations
due to the permutation-invariance property of the linear aggregation operation.

3.4 Framework Design

Multi-Level Dense Connections We proposed a multi-level densely con-
nected architecture which “reuses" the learned features at multiple levels via
intra- and inter-connections. The illustrative diagram is displayed in Fig. 1 where
two U-shaped sub-networks with three transitional levels are presented for sim-
plicity. In order to enable information propagation between sub-networks and
consecutively reuse the features, all preceding feature volumes at the same level
are collected via skip-connections and combined with the current features, which
forms the multi-level densely connected structure.

Network Architecture In our experiments, each sub-network, shown in Fig. 1,
has four transitional layers where the bottom level has 64c feature channels with
c = 2. Densely connected layers [14], illustrated in Fig. 2 (a), are adopted at
decoding levels. The LoA-SAM and DACB blocks are embedded at the top
decoding levels. Two convolutional layers are used as the head and tail blocks to
expand and reduce feature channels. Four sub-networks are used in our pipeline.
The input zero-filled z is computed using Root-Sum-of-Squares (RSS):

z =
√∑

|F−1(yi)|2. (13)

The output reconstruction G is a single-channel image.

3.5 Objective Function

The L1 loss and structural similarity index (SSIM) [45] are used to measure
the reconstruction errors. Moreover, we adopt an adversarial loss Ladv [24] to
encourage rich and sharp details. Let G and s be the reconstruction and the RSS
map of the fully sampled reference. The total loss is given by:

L = E{(G,s)}[λrec((1− α)L1(G, s) + αLSSIM (G, s)) + λadvLadv], (14)

where α = 0.64, λrec = 10 and λadv = 0.05. We found that the least squares
GAN [24] provides stable training. The discriminator in CycleGAN [47] is adopted.
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Fig. 3. First) fully sampled, second) mask, last) zero-filled at 8× (left) and 4× (right)

4 Experiments

4.1 Multi-Coil Reconstruction Comparisons

Implementations. We use the FastMRI multi-coil knee database [42] to con-
duct experiments, which contains rich textural and structural details. k-space
raw data are acquired via 15 coils and converted to image domain via the in-
verse Fourier transform. Fixed random masks are used in under-sampling as
shown in Fig. 3, where the reduction factors are respectively 8 and 4. The
model was trained for 35 epochs with a batch size of 2, using an Adam op-
timizer [17] with β1=0.5, β2=0.999, and a learning rate of 10−5, in PyTorch
on a NVIDIA GTX 1080Ti. We compare our method with other deep learning
approaches: VS-Net [8], ISTA-Net+ [44], DeepCascade [30, 16], DC-CNN [31],
FastMRI U-net [42, 16], and Joint-ICNet [16]. The sensitivity maps are estimated
via ESPIRIT [34] and used in VS-Net, ISTA-Net+, and DeepCascade. DC-CNN
simultaneously reconstructs multiple coil views, FastMRI U-net uses image mag-
nitude maps, and Joint-ICNet estimates coil sensitivities in the reconstruction
pipeline. DeepCascade and U-net were also used in [16] as competing methods.
The evaluation metrics are PSNR and SSIM, where higher values are better,
and FID and KID [7], where lower values are preferred. More qualitative results,
including 4× accelerated reconstructions, are shown in Supplementary Material.

Results. The reconstructions using different methods are displayed in Fig. 4,
where it shows that the proposed reconstruction framework produces superior
results to other comparison methods. It generates more fine-grained textures and
better preserves anatomic structures, which leads to more faithful and visually
appealing reconstructions. From the last sample in Fig. 4, we observed that the
reconstructions using VS-Net, ISTA-Net+, and DeepCascade suffer from arti-
facts, see the zoomed views. It is caused by the irregular artifacts in the estimated
sensitivity maps, see Section 4.3 for more details. The quantitative compar-
isons presented in Table 1 show that our method consistently outperforms other
competing approaches in terms of all evaluation metrics (p-value�0.05). Our
model has fewer parameters than Joint-ICNet with faster inference speed, which
potentially enables real-time reconstruction. Ablation studies are conducted to
demonstrate that the superior performance is attributable to the proposed model
components and structure, and not simply owing to the size of model.

4.2 Ablation Studies on Model Components

Framework Configurations. To perform ablation studies on model compo-
nents: multi-level dense connections, LoA-SAM, and DACB, we implement the
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Fig. 4. Comparison results of 8× accelerated MRI reconstruction.

Table 1. Quantitative results of accelerated multi-coil knee MRI reconstruction. 4×
accelerated reconstructions have the same runtime (s) and model size (MB) as 8×

method PSNR↑ SSIM↑ FID↓ KID↓ runtime↓ size↓

zero-filled 28.75 0.817 379.58 0.459 - -
VS-Net [8] 36.18 0.912 141.15 0.078 0.034 4.32

ISTA-Net+ [44] 36.32 0.911 170.11 0.108 0.189 1.47
8× DeepCascade [30, 16] 35.82 0.909 146.17 0.081 0.083 1.73

DC-CNN [31] 34.96 0.892 180.47 0.124 0.035 1.11
FastMRI U-net [42, 16] 36.19 0.922 145.58 0.095 0.011 10.59

Joint-ICNet [16] 35.59 0.921 137.57 0.090 0.283 263.43
proposed 37.74 0.930 76.08 0.011 0.112 159.11

zero-filled 33.16 0.883 201.20 0.173 - -
VS-Net [8] 40.56 0.956 111.34 0.052 - -

ISTA-Net+ [44] 40.81 0.956 112.45 0.052 - -
4× DeepCascade [30, 16] 40.57 0.956 109.46 0.050 - -

DC-CNN [31] 39.32 0.945 111.32 0.049 - -
FastMRI U-net [42, 16] 39.37 0.951 108.52 0.055 - -

Joint-ICNet [16] 39.27 0.955 88.69 0.035 - -
proposed 41.10 0.963 64.37 0.009 - -

final pipeline, represented in (E), and its different variants in (A)-(D) and (F).
For fair comparisons, feature volumes of model (A) and (F) are repeated to ap-
proximate the parameter overheads of their counterparts with multi-level dense
connections. For the same reason, the convolutional layers in DACB are main-
tained for (A)-(C). The U-net in LoA-SAM is only used for kernel prediction
with limited parameters, while the reconstruction branch with a vast majority
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Coil-Agnostic Attention Network for PI MRI 11

Table 2. Ablations on model components at 8× acceleration

method ML-dense LoA-SAM DACB PSNR↑ SSIM↑ FID↓ KID↓

(A) × × × 36.53 0.921 89.83 0.025
(B)

√
× × 37.06 0.926 85.39 0.024

(C)
√ √

× 37.33 0.926 84.16 0.022
(D)

√
×

√
37.53 0.929 80.14 0.017

(E) ours
√ √ √

37.74 0.930 76.08 0.011
(F) ×

√ √
37.11 0.927 82.13 0.018

Table 3. Ablations on data consistency blocks and data type at 8× acceleration. The
proposed method performs no sensitivity estimation and is therefore free of ME-Arti

method input DC output PSNR↑ SSIM↑ FID↓ KID↓ ME-Arti

(E)-CSM complex CSDC complex 36.58 0.916 94.56 0.029 strong
(E)-CSM-a complex CSDC single 36.83 0.920 87.46 0.022 weak
(E)-CSM-b RSS CSDC single 36.99 0.925 83.95 0.020 trivial
(E) proposed RSS DACB single 37.74 0.930 76.08 0.011 free

Fig. 5. Ablation results on data consistency blocks and data type at 8× acceleration.

of parameters remains unchanged for a fair comparison. The model configura-
tions and final performance are shown in Table 2.

Results. The results in Table 2 demonstrate that the proposed model com-
ponents consistently improve the reconstruction performance in terms of evalu-
ation metrics. Comparing model (B) and (E) with model (A) and (F), we found
that the multi-level dense connections improve the reconstructions in all metrics.
It can be observed that compared with model (B), both LoA-SAM and DACB
which are respectively used in model (C) and (D) deliver performance gains in all
evaluations. The complete model (E) consistently gives the best results, which
indicates the efficacy of the proposed method and implies a positive synergy
effect between LoA-SAM and DACB in improving reconstruction quality.

4.3 Ablation Studies on Data Consistency Methods

Implementations. We compare the proposed method with three variants to
elucidate how the proposed DACB and RSS-based pipeline benefit the recon-
struction performance. The first variant, dubbed (E)-CSM, has 2-channel inputs
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12 J. Liu et al.

Fig. 6. Map estimation artifacts. First) RSS of fully sampled signal, second) positive
component of the imaginary part of a sensitivity map, third) positive component of
the imaginary part of the combined image, and last) reconstruction using (E)-CSM

Table 4. Ablation analysis on residual feature connection in DACB at 8× acceleration

method DC PSNR↑ SSIM↑ FID↓ KID↓

(E) proposed DACB 37.74 0.930 76.08 0.011
(E)-ResFree ResFree 37.40 0.928 79.37 0.014

and outputs representing complex values. The pre-computed sensitivity maps
are used to combine multi-coil frames via (10). Data consistency is implemented
using (11), which we refer to as CSDC. It is extended to be (E)-CSM-a and
(E)-CSM-b by progressively adopting the single-channel magnitudes as output
and input. The evaluation and visual results are presented in Table 3 and Fig. 5.

Results. From Table 3, we observed that the data type has considerable ef-
fects on the reconstruction results and DACB further contributes a performance
gain. Comparing to (E)-CSM-b which uses the conventional sensitivity-based DC
approach, the proposed method shows superior results, substantiating the effi-
cacy of DACB. In Fig. 5, we found that (E)-CSM suffers from strong artifacts
which can be alleviated by adopting (E)-CSM-a and -b. The proposed model
avoids the sensitivity estimation and yields clean reconstructions. We postulate
that the artifacts emanate from the sensitivity maps, when they are not appro-
priately estimated and the irregularities attend to the complex-valued inputs.
Such artifacts can be propagated to the final reconstructions when the model
fails to overcome them, which is demonstrated in the next subsection.

Map Estimation Artifacts (ME-Arti).We demonstrate how the artifacts
in Fig. 5 are caused. The RSS map in Fig. 6 shows no artifacts. We found that
such irregular shapes stealthily attend to separate image channels, representing
complex-valued signals, and can be manifested by solely visualizing the values
of the same sign, e.g. negative components. We display a sensitivity map and an
image combined via (10) in Fig. 6, where the irregular shapes coincide with the
artifacts in the reconstruction using (E)-CSM. It shows the impact of inaccurate
sensitivity estimation and implies the usefulness of the proposed method.
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Table 5. Ablation analysis on relative feature aggregation at 8× acceleration

method RFA PSNR↑ SSIM↑ FID↓ KID↓

(E) proposed
√

37.74 0.930 76.08 0.011
(E)-no-RFA × 37.69 0.929 78.43 0.013

4.4 Ablation Analysis on Data Consistency Bottleneck Design

In Section 3.3, we postulate the negative impact of the bottleneck structure in
conventional DC operations, i.e. channel reduction and expansion. To verify this,
we remove the skip-connection in DACB and implement the update rule below,

h← f∗(γf(h) + (1− γ)Ω(f(h);
∑

yi,m)). (15)

We denote by ResFree the update in (15), refer to the resultant model as (E)-
ResFree, and present the comparisons in Table 4. We found that ResFree reduces
PSNR and SSIM with a concomitant increase in FID and KID, which indicates
the impact of the bottleneck structure in normal DC operations. It is shown that
DACB is able to alleviate this issue and improve the model performance.

4.5 Ablation Analysis on Attention Feature

In this section, we testify the effectiveness of the relative feature aggregation
(RFA) block in LoA-SAM. We implement a variant, dubbed (E)-no-RFA, which
removes RFA and instead predicts the adaptive kernels directly from the input
features. The comparison results are shown in Table 5, where the removal of RFA
decreases PSNR and SSIM scores by a small margin and introduces moderately
higher FID and KID. It shows that the relative information provided by RFA
is preferable over the original features and enhances the capacity of LoA-SAM.
Note that RFA uses simple mathematical operations. We leave it a future work
to explore the potential benefits of more complex aggregation methods.

4.6 Robustness to Coil Configurations

As an alternative to model-based sensitivity estimation algorithms, neural net-
works can be used to predict the sensitivity maps, e.g. Joint-ICNet [16]. A dif-
ferent method is introduced in DC-CNN [31] which respectively performs data
consistency for parallel coil images. However, such methods, as substantiated in
the following, can be sensitive to machine configurations, which restricts mod-
els from generalizing to real-world scenarios. We randomly permute the coil
orders in inference to demonstrate the robustness of the proposed pipeline to
coil configurations. We compare it with Joint-ICNet and DC-CNN which take
multi-coil images as input respectively to the sensitivity estimation network and
the reconstruction model. Coil frame sequences are rolled by randomly sampled
shift numbers. The FastMRI database provides limited diversities of coil orders.
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Fig. 7. Comparisons of 8× accelerated MRI reconstruction using coil permutation.

Table 6. Performance results of 8× accelerated multi-coil knee MRI reconstruction
using random coil permutation

method permutation PSNR↑ SSIM↑ FID↓ KID↓

proposed None/rolled 37.74 0.930 76.08 0.011
Joint-ICNet [16] None 35.59 0.921 137.57 0.090
Joint-ICNet [16] rolled 33.18 0.905 143.43 0.092
DC-CNN [31] None 34.96 0.892 180.47 0.124
DC-CNN [31] rolled 31.86 0.848 237.91 0.216

Nevertheless, the great majority follow the same configuration. The results are
presented in Fig. 7 and Table 6. It is evident that the performance of both
Joint-ICNet and DC-CNN can be severely affected by coil permutation, which
shows their sensitivity to machine configuration discrepancies. The fact that the
number of coils is required to be kept fixed is another problem which can violate
the deployment of reconstruction models from training to real-world scanners.
Leveraging the permutation-invariance of the RSS and measurement summation
operators, the proposed method circumvents those issues and shows a strong
invulnerability and generalization capacity.

5 Conclusion

In this study, we introduce a framework to circumvent the coil sensitivity estima-
tion retrospectively required for multi-coil MRI reconstruction frameworks. We
propose a coil-agnostic data aggregation consistency block to perform approx-
imated data consistency and a spatial attention module to enhance the model
performance. In experiments, it was demonstrated that the proposed framework
outperforms other deep learning-based methods qualitatively and quantitatively.
In ablation studies, the proposed coil-agnostic pipeline showed superior perfor-
mance over conventional approaches in accelerated MRI acquisition settings.
The future researches include applying our method to other anatomical struc-
tures and extending it to dynamic MRI reconstruction.
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