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Abstract. Transformer attracts much attention because of its ability to learn
global relations and superior performance. In order to achieve higher perfor-
mance, it is natural to distill complementary knowledge from Transformer to
convolutional neural network (CNN). However, most existing knowledge distil-
lation methods only consider homologous-architecture distillation, such as dis-
tilling knowledge from CNN to CNN. They may not be suitable when applying
to cross-architecture scenarios, such as from Transformer to CNN. To deal with
this problem, a novel cross-architecture knowledge distillation method is pro-
posed. Specifically, instead of directly mimicking output/intermediate features of
the teacher, partially cross attention projector and group-wise linear projector are
introduced to align the student features with the teacherâĂŹs in two projected
feature spaces. And a multi-view robust training scheme is further presented to
improve the robustness and stability of the framework. Extensive experiments
show that the proposed method outperforms 14 state-of-the-arts on both small-
scale and large-scale datasets.

Keywords: Knowledge distillation · Cross architecture · Model compression.

1 Introduction

Knowledge distillation (KD) has become a fundamental topic for model perfor-
mance promotion. It has been successfully applied to various applications including
model compression [1] and knowledge transfer [2]. KD usually adopts a teacher-student
framework, where the student model is trained under the guidance of the teacher’s
knowledge. The knowledge is usually defined by soft outputs or intermediate features
of the teacher model.

Existing KD methods focus on convolutional neural network (CNN). However,
there recently emerge many new networks such as Transformer. It shows superior on d-
ifferent computer vision tasks including image classification [3] and detection [4], while
its huge computation and limited platform acceleration support limits the application of
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Fig. 1. (a) The comparison of CNN and Transformer. The formation of the features are ab-
solutely different. (b) The cosine similarity between features from different models on Im-
ageNet. Note that the features are mapped into the same dimension by a linear projection.
For “CNN→CNN”, the bars represent the similarities between CNN ResNet152 and CNNs
{ResNet18, ResNet32, ResNet50, ResNet101, ResNet152}; For “T→T”, the bars represent the
similarities between Transformer ViT-L/16 and Transformers {ViT-B/32, ViT-B/16, ViT-L/32,
ViT-L/16}; For “T→CNN”, the bars represent the similarities between Transformer ViT-L/16
and CNNs {ResNet18, ResNet32, ResNet50, ResNet101, ResNet152}.

Transformer, especially for edge devices. On the other hand, with several years of de-
velopment, there are sufficient acceleration libraries including CUDA [5], TensorRT [6]
and NCNN [7], making CNN hardware friendly on both servers and edge devices. To
this end, it is a natural idea to distill the knowledge from high-performance Transformer
to compact CNN. However, there is a large gap between the two architectures. As shown
in Figure 1-(a), Transformer consists of self-attention-based transformer blocks while
CNN contains a sequence of convolutional blocks. Further, the features are arranged in
a totally different way. The intermediate outputs of CNNs are formed with c channels
of h′×w′ feature maps. Different from CNN, the features of Transformer consist of N
feature vectors with 3hw elements, where N refers to the patch number.

Unfortunately, existing methods focus on homologous-architecture KD such as CN-
N→CNN and Transformer→Transformer, which are not suitable for the cross-architecture
scenarios. As shown Figure 1-(b), the knowledge “transferability” is defined quantita-
tively. In particular, the output feature of the student is aligned to the feature space of
the teacher, and then, the cosine similarity of the aligned student feature vector and
the teacher feature vector is computed. For homologous-architecture cases, the trans-
ferability is between 0.6 − 0.7, while it is much lower, typically lower than 0.55, on
the cross-architecture condition. Consequently, it is more difficult to distill knowledge
across different architectures and a new KD framework should be designed to deal with
it.

In this work, a novel cross-architecture knowledge distillation method is proposed
to bridge the large gap between Transformer and CNN. With the help of the proposed
framework, the knowledge from Transformer is efficiently transferred to the studen-
t CNN network and the knowledge transferability is significantly improved via this
method. It encourages the student to learn both local spatial features (with the origi-
nal CNN model) and the complementary global features (from the transformer teacher
model). In particular, two projectors including a partially cross attention (PCA) projec-
tor and a group-wise linear (GL) projector, are designed. Instead of directly mimicking
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the output of the teacher, these two projectors align the intermediate student feature
into two different feature spaces and knowledge distillation is further operated in the
two feature spaces. The PCA projector maps the student feature into the Transformer
attention space of the teacher. This projector encourages the student to learn the global
relation from the Transformer teacher. The GL projector maps the student feature into
the Transformer feature space in a pixel-by-pixel manner. This projector directly allevi-
ates the feature formation differences between the teacher and the student. In addition,
to alleviate the instability caused by the diversity in the cross-architecture framework,
we propose a cross-view robust training scheme. Multi-view samples are generated to
disturb the student network. And a multi-view adversarial discriminator is constructed
to distinguish the teacher features and the disturbed student features, while the studen-
t is trained to confuse the discriminator. After convergence, the student can be more
robust and stable.

Extensive experiments are conducted on both large-scale datasets and small-scale
datasets, including ImageNet [8] and CIFAR [9]. The experimental results of different
teacher-student pairs demonstrate that the proposed method stably performs better than
14 state-of-the-arts. In summary, the main contributions of our work are three-fold:

– We propose a cross-architecture knowledge distillation framework to distill excel-
lent Transformer knowledge to guide CNN. In this framework, partially cross at-
tention (PCA) projector and group-wise linear (GL) projector are designed to align
the student feature space and promote the transferability between teacher features
and student features.

– We propose a multi-view robust training scheme to improve the stability and ro-
bustness of the student network.

– Experimental results show that the proposed method is effective and outperforms
14 state-of-the-arts on both large-scale datasets and small-scale datasets.

2 Related Work

Hinton et al. [10] proposes the concept of knowledge distillation, using the soft
output of teacher to guide the learning of student. Recently, it has been applied mainly
to model compression [1] and knowledge transfer [2]. Different formations of distilled
knowledge are explored to better guide the student network, including final output [10,
11] and hint layer knowledge [12–19]. For hint layer knowledge, many endeavors have
been taken to match the student hint layers and the teacher-guided layers. For example,
AT [12] defines single-channel attention maps as knowledge. However, the computation
of the attention maps causes channel-dimension information loss. FitNet [13] directly
distills the features from intermediate layers without information loss. However, this
restriction is somewhat hard and not all the information is beneficial. Liu et al. [17]
distill the knowledge called instance relationship graph (IRG), which contains instance
feature, instance feature relationship and feature space transformation. It is not limited
by the dimension mismatch between the teacher and the student.

The methods above all focus on convolutional neural network (CNN). Recently,
Transformer becomes increasingly popular because of its impressive performance. How-
ever, due to the totally different architecture, many previous KD methods can not be
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directly applied to Transformers. There are some works [20–22] studying knowledge
distillation between Transformers. DeiT [20] proposes a distillation token similar to the
class token, to make the student Transformer learn the hard label from the teacher and
ground truth (GT). MINILM [21] focuses on the attention mechanisms in Transformer
and distills the corresponding self-attention information. IR [22] distills the internal
representations (e.g., self-attention map) from the teacher Transformer to the student
Transformer.

In summary, existing methods usually present a transformation to match the teach-
er’s features and the student’s features. However, nearly all of them require similar
or even the same architecture between teacher and student. To deal with the cross-
architecture knowledge distillation problem, we carefully design projectors to match
the teacher and the student in the same feature space. Consequently, a compact student
CNN model can well learn the global feature from a teacher Transformer model despite
the big gap in the architectures.

3 The Proposed Method

In this section, the framework of the proposed method is first introduced. Then, two
key components of the framework including cross-architecture projectors and a cross-
view robust training scheme are presented. The former is constructed to alleviate the
feature mismatch for cross-architecture scenarios and help the student learn the global
relation of the features, while the latter is adopted to improve the robustness and stability
of the student. Finally, the loss function and training procedure are described.

3.1 Framework

The overall framework of the proposed method is depicted in Figure 2. In this figure,
the upper pink network represents the teacher network, while the lower blue network is
the student network. For the transformer teacher ΘT, the input sample x ∈ R3×H×W

is divided into (N = HW
hw ) patches {xn ∈ R3×h×w}Nn=1. After the inference of several

transformer blocks, the feature hT ∈ RN×(3hw) is generated. And the final predicted
possibility is then computed via a multi layer perceptron (MLP) head as shown in Figure
2. For the CNN student ΘS, it receives the whole image without patch-wise partition
as input. Similarly, after the inference of several CNN blocks, the final student feature
hS ∈ Rc×(h′w′) can be obtained. Note that c is the channel number and h′w′ = HW

22s .
The s denotes the number of CNN stages (usually equals 4). It is then used to predict
the class.

Due to the differences of the design principles and architectures between transform-
ers and CNNs, it is hard to make the student features directly mimic the teacher features
using the existing KD methods. To solve this problem, we propose a cross-architecture
projector which consists of a partially cross attention (PCA) projector and a group-wise
linear (GL) projector. The PCA projector maps the student features into the transformer
attention space. By mapping the CNN feature space to this attention space, it is easier
for the student to learn the global relationship among different regions by minimizing
the distances between the student attention maps and the teacher attention maps. The
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Fig. 2. Overall framework of the proposed method.

GL projector maps the student features into the transformer feature space. In this trans-
former feature space, the student is guided to mimic the global transformer features in
a pixel-by-pixel manner.

To improve the robustness and stability of the student, a cross-view robust training
scheme is proposed. Multi-view samples are generated by a multi-view generator which
randomly conducts some transformations and generates mask and noise adding to the
inputs. Fed with the multi-view inputs, the student generates different features. A multi-
view adversarial discriminator is constructed to distinguish the teacher features and
the student features in the transformer feature space. Then the goal is to puzzle the
discriminator.

Eventually, we integrate the proposed losses and give end-to-end training to obtain
a strong student network.

3.2 Cross-architecture projector

(1) Partially cross attention projector Partially cross attention (PCA) projector maps
the student feature space into transformer attention space. It is designed to map the
CNN features to Query, Key, Value matrices and then mimic the attention mechanism.
It consists of three 3× 3 convolutional layers:

{QS,KS, VS} = Proj1(hS), (1)

where the matrixes QS,KS, VS are computed and aligned to mimic the query QT, the
keyKT and the value VT of the Transformer teacher. In the transformer attention space,
the self-attention of the student is calculated as:

AttnS = softmax(
QS(KS)

T

√
d

)VS, (2)

in which d is the query size. The calculation of AttnT is similar. Hence, we can min-
imize the distance between the attention maps of the teacher and those of the student
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to guide the student network. To further improve the robustness of the student, we con-
struct the partially cross attention of the student to replace the original AttnS:

PCAttnS = softmax(
g(QS)(g(KS))

T

√
d

)g(VS),

s.t. g(MS(i, j)) =

{
MT(i, j), p ≥ 0.5

MS(i, j), p < 0.5
, (M = Q,K, V ).

(3)

Note that (i, j) denotes the matrix element index of M . The function g(·) replaces the
QS,KS, VS matrixes of the student by the corresponding matrixes of the teacher, with
the probability p subject to uniform distribution. In this manner, the loss is constructed:

Lproj1 = ||AttnT − PCAttnS||22 + ||
VT · VT√

d
− VS · VS√

d
||22, (4)

to make the student mimic the teacher in the attention space.

(2) Group-wise linear projector Group-wise linear (GL) projector maps the stu-
dent feature into transformer feature space. It consists of several shared-weight fully-
connected (FC) layers:

h′S = Proj2(hS), (5)

where h′S ∈ RN×(3hw) is aligned to have the same dimension with teacher feature
hT. Specifically, for the regular image input with size of 224 × 224, the dimensions
are hS ∈ R256×196 and h′S ∈ R196×768. In order to realize a pixel-by-pixel mapping
manner, the projector needs at least 196 FC layers with 256 × 768 parameters. each
of them maps the pixel from the original feature space to the corresponding “pixel”
in the transformer space. A large number of FC layers may cause huge computation.
In order to obtain a compact projector, we propose the group-wise linear projector
where a 4× 4 neighborhood shares an FC layer. Hence, the GL projector only contains
16 FC layers. Furthermore, drop-out is also adopted to reduce the computation and
improve the robustness. Finally, after obtaining the new aligned student feature, the
loss is computed as:

Lproj2 = ||hT − h′S||22, (6)

to minimize the distance between the teacher feature and the student feature in the
transformer feature space.

3.3 Cross-view robust training

Due to the big difference between the architectures of the teacher and the student, it
is not that easy for the student to learn to be robust. To improve the robustness and the
stability of the student network, we proposed a cross-view robust training scheme. The
proposed training scheme contains two important components, i.e., a multi-view gen-
erator (MVG) and the corresponding multi-view adversarial discriminator. The MVG
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takes the original image as the input, and generates images with different transforma-
tions with some probability:

x̃ = MVG(x) =

{
Trans(x), p ≥ 0.5

x, p < 0.5
, (7)

in which Trans(·) contains the common transformations, such as color jettering, ran-
dom crop, rotation, patch-wise mask, etc. The probability p is also subject to the uni-
form distribution. These transformed versions of the samples are then fed to the student
network. Subsequently, the multi-view adversarial discriminator is constructed to dis-
tinguish the teacher feature hT and the transformed student feature h′S, which is com-
prised of a three-FC-layer network. In this manner, the target of the cross-view robust
training is to confuse the discriminator and obtain a robust student feature. The training
loss of the discriminator is computed as:

LMAD =
1

m

m∑
k=1

[
− logD(h

(k)
T )− log(1−D(h′

(k)
S ))

]
. (8)

Note that D(·) denotes the multi-view adversarial discriminator. And m is the total
number of training samples. For the student network which can be seen as the generator
in the adversarial training, the loss is written as:

LMVG =
1

m

m∑
k=1

[
log(1−D(h′

(k)
S ))

]
. (9)

Minimizing this loss can help to generate the student feature h′S which distributes sim-
ilarly to that of the teacher feature hT.

3.4 Optimization

In this subsection, we introduce the overall optimization and the training procedure
of the proposed method. In order to train the student network, the loss function can be
obtained by:

Ltotal = (Lproj1 + Lproj2) + λ · LMVG, (10)

in which λ is the penalty coefficient balancing the loss terms. For the multi-view adver-
sarial discriminator, the loss function is LMAD in Equation (8).

The overall training procedure of the proposed method is summarized in Alg. 1.
In detail, the cross-architecture teacher-student framework is first constructed. The P-
CA projector and the GL projector are then embedded in the student network to map
the student features into the teacher attention space and feature space. Subsequently, a
cross-view robust training scheme is adopted to train the framework. The framework
main body (i.e., ΘS, Proj1(·) and Proj2(·)) and the multi-view adversarial discrimina-
tor D(·) are alternatively updated. After convergence, the modules Proj1(·), Proj2(·)
and D(·) are removed and only the compact student network ΘS is remained to carry
out the inference phase.
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8 Y. Liu et al.

Algorithm 1: The procedure of cross-architecture knowledge distillation.
Input: Database Dtrain = {xtrain,ytrain}, ΘS, ΘT, D(·), Proj1(·), Proj2(·).

1 e = 0;
2 Initialize ΘS, Proj1(·), Proj2(·) and D(·);
3 repeat
4 Compute the transformed features h′

S and {QS,KS, VS} through Proj1(·) and
Proj2(·), using Equation. (1) and Equation (5);

5 Update ΘS, Proj1(·) and Proj2(·) using Equation. (10);
6 if e%5 = 0 then
7 Update D(·) using Equation. (8);
8 end
9 e = e+ 1;

10 until done;
11 Remove Proj1(·), Proj2(·) and D(·), and predict the label through ΘS in inference

phase;
12 return ΘS.

4 Experiments

4.1 Settings

Databases and Networks. We evaluate the proposed method on two databases: CI-
FAR [9] and ImageNet [8]. The data are augmented using the same strategies as in
the PyTorch official examples [23]. For networks, we use the popular CNNs as the
student network, including ResNets [24], MobileNet v2 [25], Xception [26] and Ef-
ficientNet [27]. The typical Transformers are applied as the teacher network, such as
ViT [3], and Swin Transformer [28].
Implementation Details. We train all the networks from scratch. For CIFAR datasets,
the total number of epochs is 200 with a standard batch size of 64. The learning rate is
initialized as 0.1 and multiplied by 0.1 at epoch 100 and epoch 150. For ImageNet, the
total number of epochs is 120 with a 256 batch size. The learning rate is initialized as
0.1 and multiplied by 0.1 at epoch 30, epoch 60 and epoch 90, respectively. A standard
stochastic gradient descent (SGD) optimizer with 10−4 weight decay and 0.9 momen-
tum is adopted. All the experiments are conducted on a platform with 8 Nvidia Tesla
GPU cards and 96-core Intel(R) Xeon(R) Platinum 8163 CPU. In addition, every single
setting is repeated 5 times with different random seeds on Pytorch.

4.2 Performance Comparison

We compare the performance of our method with 14 state-of-the-art knowledge dis-
tillation methods, including Logits [10], FitNet [13], AT [12], IRG [17], RKD [29],
CRD [30], OFD [14], ReviewKD [31], LONDON [32], AFD [33], AB [34], FT [35],
DeiT [20] and MINILM [21]. Among them, Logits, FitNet, AT, IRG, RKD, CRD, OFD,
ReviewKD and LONDON are CNN-based KD methods, and DeiT and MINILM are
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transformer-based KD methods. There exist few related works for the Transformer-
CNN framework. Consequently, several CNN-based methods including logits, RKD
and IRG are adopted for cross-architecture scenarios, since these methods do not rely
on the CNN architectures. Besides, for a fair comparison, we select CNNs and Trans-
formers with similar FLoating-point OPerations (FLOPs) or similar accuracy as the
teacher network or the student network.
Evaluation on CIFAR. Table 1 presents the KD results on CIFAR100. As shown in
this table, three KD modes of the teacher-student frameworks, including CNN-CNN,
Transformer-CNN and Transformer-Transformer, are evaluated. It can be seen that the
proposed method has the best performance among all the methods, including CNN-
based KD methods and transformer-based methods. For the most commonly used CNN-
CNN mode, the proposed cross-architecture KD method shows superior performance.
It is because the CNN student learns complementary global information from the Trans-
former teacher. The performance gap is even larger (usually more than 1%) when the
Transformer teacher and the CNN teachers have similar FLOPs. Because under similar
computation cost, Transformer teacher usually has higher accuracy than CNN teach-
er. For the Transformer-CNN mode, a higher performance gain (an average gain of
2.7%) is obtained compared with the CNN-CNN methods. This indicates that existing
KD methods do not take full advantage of the Transformer teacher, though they can be
adopted to the cross-architecture scenario. In Transformer-Transformer mode, the pro-
posed method results mostly surpass the Transformer-based KD results. Although the
Xceptionx2 model is slightly inferior to the ViT-B/16 model, the performance gain of
Xceptionx2 is higher than that of ViT-B/16. This indicates that cross-architecture KD
can obtain higher promotion than the conventional homologous-architecture KD. Be-
sides, in our cross-architecture framework, it is easier to adopt and accelerate the CNN
student into practical application.
Evaluation on ImageNet. Experiments are conducted on ImageNet to further veri-
fy the generalization and effectiveness of the proposed method. As shown in Table
2, our method exhibits the best performance on ImageNet. Similar to the settings of
CIFAR, two homologous-architecture modes including CNN-CNN and Transformer-
Transformer and one cross-architecture mode, i.e., Transformer-CNN, are compared. D-
ifferent from homologous-architecture methods, the proposed cross-architecture frame-
work encourages the student to learn both local spatial features (with the original CNN
model) and complementary global features (from the transformer teacher model). Con-
sequently, the CNN student obtains higher performance. Especially, from Table 2, some
CNNs (e.g., ResNet50x2-80.72%) guided by Transformer even surpasses the Trans-
former with similar model computation (e.g., ViT-B/32-78.29%), by more than 1.03%
accuracy. With hardware-friendly attributes, these improved CNNs are more potential
for edge device applications.

4.3 Ablation Study

(1) Different teacher-student pairs. In order to verify the generalization of the
proposed method, we evaluate it with different cross-architecture teacher-student pairs
in Table 3. It can be observed that our cross-architecture method obtains significant per-
formance promotion across different teacher-student pairs, compared with the baseline.
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Table 1. Performance comparison on CIFAR100. Note that “x2” denotes the channel number of
this network is twice of the original ResNet’s. And “x3” has the analogous meaning.

Mode Teacher Student Methods Test accuracy Teacher Student Methods Test accuracy

CNN→CNN
ResNet152x2
(212.0 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline_T 91.03%

ResNet101x3
(205.0 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 90.98%
Baseline_S 85.02% Baseline_S 88.21%

Logits 86.53% Logits 89.07%
FitNet 85.37% FitNet 88.51%

AT 86.41% AT 89.18%
RKD 86.22% RKD 89.39%
IRG 86.87% IRG 89.89%
OFD 86.79% OFD 89.62%
CRD 86.91% CRD 89.94%

ReviewKD 87.03% ReviewKD 90.04%
LONDON 87.16% LONDON 89.98%

ViT-B/16 ResNet50 Ours 87.39% ViT-B/16 ResNet50x2 Ours 90.33%
ViT-L/16 ResNet50 Ours 88.09% ViT-L/16 ResNet50x2 Ours 90.97%

Transformer
→CNN

ViT-B/16
(55.4 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline_T 90.92%

ViT-L/16
(190.7 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline_T 92.46%
Baseline_S 85.02% Baseline_S 85.02%

Logits 86.42% Logits 86.69%
RKD 86.13% RKD 86.73%
IRG 86.59% IRG 86.91%
Ours 87.39% Ours 88.09%

ViT-B/16
(55.4 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 90.92%

ViT-L/16
(190.7 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 92.46%
Baseline_S 88.21% Baseline_S 88.21%

Logits 88.86% Logits 89.28%
RKD 89.11% RKD 89.51%
IRG 89.38% IRG 89.68%
Ours 90.33% Ours 90.97%

Swin-L
(103.9 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline_T 93.78%

Swin-L
(103.9 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 93.78%
Baseline_S 85.02% Baseline_S 88.21%

Logits 86.78% Logits 88.93%
RKD 86.91% RKD 90.02%
IRG 87.06% IRG 89.97%
Ours 88.46% Ours 91.21%

Transformer
→

Transformer

ViT-L/16
(190.7 GFLOPs)

ViT-B/16
(55.4 GFLOPs)

Baseline_T 92.46%

Swin-L
(103.9 GFLOPs)

ViT-B/16
(55.4 GFLOPs)

Baseline_T 93.78%
Baseline_S 90.92% Baseline_S 90.92%

Logits 91.45% Logits 91.74%
IRG 91.59% IRG 91.88%
DeiT 91.57% DeiT 91.91%

MINILM 91.44% MINILM 91.75%

ViT-L/16
Xceptionx2

(57.3G / 90.27%)
Ours 91.15% Swin-L

Xceptionx2
(57.3G / 90.27%)

Ours 91.36%

ViT-L/16 ResNet101x3 Ours 91.84% Swin-L ResNet101x3 Ours 92.07%

ViT-L/16
(190.7 GFLOPs)

ViT-B/32
(13.8 GFLOPs)

Baseline_T 92.46%

Swin-L
(103.9 GFLOPs)

ViT-B/32
(13.8 GFLOPs)

Baseline_T 93.78%
Baseline_S 89.46% Baseline_S 89.46%

Logits 90.22% Logits 90.59%
IRG 90.39% IRG 90.95%
DeiT 90.40% DeiT 90.99%

MINILM 90.26% MINILM 90.62%
ViT-L/16

(190.7 GFLOPs)

ResNet152
(11.0 G / 89.57%)

Ours 90.66% Swin-L
(103.9 GFLOPs)

ResNet152
(11.0 G / 89.57%)

Ours 91.20%

* Baseline_T: Baseline model of the teacher network.
* Baseline_S: Baseline model of the student network.
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Table 2. Performance comparison on ImageNet.

Mode Teacher Student Methods
Test accuracy
Top1 / Top5

Teacher Student Methods
Test accuracy
Top1 / Top5

CNN→CNN
ResNet152x2
(212.0 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 81.95 / 96.02

ResNet101x3
(205.0 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 82.03 / 96.06
Baseline_S 78.16 / 93.91 Baseline_S 78.16 / 93.91

Logits 79.06 / 94.67 Logits 79.19 / 94.71
AT 79.01 / 94.66 AT 78.92 / 94.63
FT 79.12 / 94.69 FT 79.11 / 94.69
AB 78.93 / 94.62 AB 79.01 / 94.65

OFD 79.63 / 94.81 OFD 79.55 / 94.79
AFD 79.38 / 94.76 AFD 79.45 / 94.78
IRG 79.85 / 94.87 IRG 79.75 / 94.84

ReviewKD 80.12 / 94.99 ReviewKD 80.08 / 94.97
LONDON 80.09 / 94.97 LONDON 80.15 / 95.01

ViT-B/16 ResNet50x2 Ours 80.74 / 95.38 ViT-B/16 ResNet50x2 Ours 80.72 / 95.38
ViT-L/16 ResNet50x2 Ours 80.92 / 95.43 ViT-L/16 ResNet50x2 Ours 81.01 / 95.46

Transformer
→CNN

ViT-B/16
(55.4 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline_T 82.17 / 96.11

ViT-L/16
(190.7 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline_T 84.20 / 96.93
Baseline_S 76.28 / 93.03 Baseline_S 76.28 / 93.03

Logits 77.02 / 93.40 Logits 77.45 / 93.57
RKD 77.27 / 93.50 RKD 77.82 / 93.75
IRG 77.39 / 93.55 IRG 77.75 / 93.71
Ours 78.34 / 94.06 Ours 78.85 / 94.31

ViT-B/16
(55.4 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 82.17 / 96.11

ViT-L/16
(190.7 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 84.20 / 96.93
Baseline_S 78.16 / 93.91 Baseline_S 78.16 / 93.91

Logits 79.02 / 94.62 Logits 79.31 / 94.72
RKD 79.68 / 94.82 RKD 79.78 / 94.85
IRG 79.60 / 94.79 IRG 79.83 / 94.88
Ours 80.72 / 95.38 Ours 81.01 / 95.46

Swin-L
(103.9 GFLOPs)

ResNet50
(4.1 GFLOPs)

Baseline_T 87.32 / 98.21

Swin-L
(103.9 GFLOPs)

ResNet50x2
(15.9 GFLOPs)

Baseline_T 87.32 / 98.21
Baseline_S 76.28 / 93.03 Baseline_S 78.16 / 93.91

Logits 77.60 / 93.64 Logits 79.68 / 94.83
RKD 77.85 / 93.76 RKD 79.92 / 94.92
IRG 77.89 / 93.79 IRG 80.10 / 94.99
Ours 78.96 / 94.42 Ours 81.39 / 95.64

Transformer
→

Transformer

ViT-L/16
(190.7 GFLOPs)

ViT-B/16
(55.4 GFLOPs)

Baseline_T 84.20 / 96.93

Swin-L
(103.9 GFLOPs)

ViT-B/16
(55.4 GFLOPs)

Baseline_T 87.32 / 98.21
Baseline_S 82.17 / 96.11 Baseline_S 82.17 / 96.11

Logits 83.18 / 96.55 Logits 83.49 / 96.65
IRG 83.27 / 96.59 IRG 83.60 / 96.69
DeiT 83.38 / 96.63 DeiT 83.71 / 96.72

MINILM 83.17 / 96.55 MINILM 83.55 / 96.65

ViT-L/16
Xceptionx2

(80.37% / 95.24%)
Ours 82.56 / 96.34 Swin-L

Xceptionx2
(80.37% / 95.24%)

Ours 82.98 / 96.45

ViT-L/16 ResNet152x2 Ours 83.62 / 96.74 Swin-L ResNet101x3 Ours 84.37 / 96.97

ViT-L/16
(190.7 GFLOPs)

ViT-B/32
(13.8 GFLOPs)

Baseline_T 84.20 / 96.93

Swin-L
(103.9 GFLOPs)

ViT-B/32
(13.8 GFLOPs)

Baseline_T 87.32 / 98.21
Baseline_S 78.29 / 94.08 Baseline_S 78.29 / 94.08

Logits 79.40 / 94.76 Logits 79.30 / 94.73
IRG 79.20 / 94.64 IRG 79.10 / 94.60
DeiT 79.37 / 94.75 DeiT 79.27 / 94.71

MINILM 79.29 / 94.70 MINILM 79.19 / 94.67

ViT-L/16
ResNet152

(78.31% / 94.05%)
Ours 80.47 / 95.29 Swin-L

ResNet152
(78.31% / 94.05%)

Ours 81.09 / 95.52
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Table 3. Performance results of different teacher-student pairs on ImageNet. Note that the brack-
ets behind the networks report the FLOPs of the networks.

Teacher Student
Teacher accuracy Student accuracy Ours accuracy

Top1 Top5 Top1 Top5 Top1 Top5
ViT-B/16 (55.4G)

ResNet50
(4.1 GFLOPs)

82.17% 96.11% 76.28% 93.03% 78.34% 94.06%
ViT-L/16 (190.7G) 84.20% 96.93% 76.28% 93.03% 78.85% 94.31%

DeiT-B (55.4G) 83.12% 96.52% 76.28% 93.03% 78.53% 94.13%
Swin-B (15.4G) 86.38% 98.01% 76.28% 93.03% 78.87% 94.29%
Swin-L (103.9G) 87.32% 98.21% 76.28% 93.03% 78.96% 94.42%

ViT-B/16

ResNet18
(1.9 GFLOPs)

82.17% 96.11% 69.76% 89.08% 71.73% 90.41%
ViT-L/16 84.20% 96.93% 69.76% 89.08% 72.02% 90.52%
DeiT-B 83.12% 96.52% 69.76% 89.08% 71.85% 90.45%
Swin-B 86.38% 98.01% 69.76% 89.08% 72.01% 90.52%
Swin-L 87.32% 98.21% 69.76% 89.08% 72.09% 90.57%

ViT-B/16

MobileNetV2
(0.3 GFLOPs)

82.17% 96.11% 71.88% 90.29% 73.34% 91.01%
ViT-L/16 84.20% 96.93% 71.88% 90.29% 73.52% 91.18%
DeiT-B 83.12% 96.52% 71.88% 90.29% 73.40% 91.06%
Swin-B 86.38% 98.01% 71.88% 90.29% 73.56% 91.21%
Swin-L 87.32% 98.21% 71.88% 90.29% 73.66% 91.25%

ViT-B/16

EfficientNetB0
(1.6 GFLOPs)

82.17% 96.11% 77.69% 93.53% 79.23% 94.50%
ViT-L/16 84.20% 96.93% 77.69% 93.53% 79.34% 94.54%
DeiT-B 83.12% 96.52% 77.69% 93.53% 79.30% 94.52%
Swin-B 86.38% 98.01% 77.69% 93.53% 79.38% 94.55%
Swin-L 87.32% 98.21% 77.69% 93.53% 79.52% 94.60%

In addition, the accuracies of the student continue increasing as the teacherâĂŹs per-
formance becomes better. At this end, Transformer can be an excellent teacher since it
usually obtains better performance with similar FLOPs compared with a CNN network.
Using Transformer to guide the learning of a CNN student can be a potential direction.

(2) Effectiveness of the proposed projector. We analyze the effectiveness of the
proposed PCA projector and GL projector. Experimental results on ImageNet in Figure
3-(a) show great performance gain when the two projectors are involved during the KD
procedure. It indicates that PCA and GL projectors significantly improve the quality
of the CNN feature, though they are removed during the inference phase. We further
evaluate the transferability after adding these two projectors in Figure 3-(b). The cosine
similarity is increased by a large margin and is even higher than that of the homologous-
architecture. Therefore, it is possible to increase the knowledge transferability between
Transformer and CNN by carefully designed KD methods.

(3) Effectiveness of the cross-view robust training. As reported in Figure 3-(a),
for regular evaluation without noise, student networks obtain 0.2%-0.4% top-1 accu-
racy gain on ImageNet with the cross-view robust training scheme. To further verify
its effectiveness, we also report the results for noisy evaluation, where the validation
dataset is augmented differently from the training augmentation. Under this protocol,
the top-1 accuracy gain after adding the cross-view robust training scheme is enlarged
to more than 1.0%. It demonstrates that the proposed robust training scheme enhances
the noise robustness of the student network.
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Fig. 3. (a) Performance of each component in the proposed method. (b) The cosine similarities
between the features from different models. The student network is ResNet50. Among these
blue bars, the features are mapped into the same dimension with the teacher features by a linear
projector. All the results are obtained on ImageNet.

(4) Applications on other tasks. The proposed cross-architecture KD method also
performs well on other tasks. As shown in Tab. 4, our method is evaluated on three
visual tasks including object detection [36], instance segmentation [37] and face anti-
spoofing [38].

For detection and segmentation, we follow the recent protocol of the COCO database [39]
and report average precision (AP). Note that AP in segmentation is computed using
mask intersection over union (IoU). The proposed method shows superiority compared
with the conventional KD method in Tab. 4. For the conventional KD method Logits,
the performance of the cross-architecture mode is even worse than the performance of
the homologous-architecture mode. This further manifests that our method effectively
solves the mismatching problem of cross-architecture KD. In addition, for face anti-
spoofing, which is a binary classification task, we adopt ResNet18, Inception-v3 and
ResNext26 as the backbones of the student. Equal Error Rate (EER) is reported as the
evaluation metric. And the experiments are conducted on CelebA-Spoof [38], which is
one of the largest datasets for face anti-Spoofing. It is worth mentioning that there ex-
ist few useful information of class correlation on the binary classification task. Hence,
conventional KD method Logits has marginal enhancement on the student. In contrast,
the proposed method also obtains a satisfactory performance from Tab. 4. It is interest-
ing to notice that, though the proposed method is designed for the classification task, it
has good generalization when it is directly applied to other tasks such as detection and
segmentation.

5 Conclusions

In this paper, a novel cross-architecture knowledge distillation method is proposed.
In particular, two projectors including a partially cross attention (PCA) projector and a
group-wise Linear (GL) projector are presented The two projectors promote the knowl-
edge transferability from teacher to student. In order to further improve the robustness
and stability of the framework, a multi-view robust training scheme is proposed. Ex-
tensive experimental results show that our method outperforms 14 state-of-the-arts on
both large-scale datasets and small-scale datasets.
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Table 4. Evaluation on other visual tasks, including object detection, instance segmentation and
face anti-spoofing.

Task (Dataset) Teacher backbone Student backbone Method AP ∆AP

Object
Detection
(COCO)

−−

ResNet50

Baseline 34.5 0
ResNet152x2 Logits 35.0 0.5

ViT-L/16 Logits 34.9 0.4
ViT-L/16 Ours 35.5 1.0
−−

ResNet101

Baseline 37.1 0
ResNet152x2 Logits 37.7 0.6

ViT-L/16 Logits 37.4 0.3
ViT-L/16 Ours 38.1 1.0
−−

ResNeXt101

Baseline 39.2 0
ResNet152x2 Logits 39.8 0.6

ViT-L/16 Logits 39.6 0.4
ViT-L/16 Ours 40.3 1.1

Task (Dataset) Teacher backbone Student backbone Method AP ∆AP

Instance
Segmentation

(COCO)

−−

ResNet50

Baseline 32.6 0
ResNet152x2 Logits 33.3 0.7

ViT-L/16 Logits 33.1 0.5
ViT-L/16 Ours 33.6 1.0
−−

ResNet101

Baseline 33.9 0
ResNet152x2 Logits 34.5 0.6

ViT-L/16 Logits 34.2 0.3
ViT-L/16 Ours 34.8 0.9
−−

ResNeXt101

Baseline 35.1 0
ResNet152x2 Logits 35.5 0.4

ViT-L/16 Logits 35.3 0.2
ViT-L/16 Ours 35.9 0.8

Task (Dataset) Teacher backbone Student backbone Method EER −∆EER

Face
Anti-Spoofing
(CelebA-Spoof)

−−

ResNet18

Baseline 1.6 0
ResNet152x2 Logits 1.6 0

ViT-L/16 Logits 1.6 0
ViT-L/16 Ours 1.3 0.3
−−

Inception-v3
Baseline 1.4 0

ResNet152x2 Logits 1.3 0.1
ViT-L/16 Logits 1.4 0
ViT-L/16 Ours 1.1 0.3
−−

ResNeXt26
Baseline 1.3 0

ResNet152x2 Logits 1.3 0
ViT-L/16 Logits 1.3 0
ViT-L/16 Ours 0.9 0.4
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