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Abstract. Currently, many face forgery detection methods aggregate
spatial and frequency features to enhance the generalization ability and
gain promising performance under the cross-dataset scenario. However,
these methods only leverage one level frequency information which lim-
its their expressive ability. To overcome these limitations, we propose
a multi-scale wavelet transformer framework for face forgery detection.
Specifically, to take full advantage of the multi-scale and multi-frequency
wavelet representation, we gradually aggregate the multi-scale wavelet
representation at different stages of the backbone network. To better fuse
the frequency feature with the spatial features, frequency-based spatial
attention is designed to guide the spatial feature extractor to concentrate
more on forgery traces. Meanwhile, cross-modality attention is proposed
to fuse the frequency features with the spatial features. These two at-
tention modules are calculated through a unified transformer block for
efficiency. A wide variety of experiments demonstrate that the proposed
method is efficient and effective for both within and cross datasets.

1 Introduction

Due to the various image-editing software and publicly available deep generator
models, it is easy to manipulate existing faces and make forged faces very re-
alistic and indistinguishable from genuine ones. These photo-realistic fake faces
may be abused for malicious purposes, raising severe security and privacy issues
in our society. Therefore, it is extremely necessary to develop effective meth-
ods for face forgery detection. To defend against the possible malicious usage of
face forgery, various face forgery detection methods have been proposed. Previ-
ous researchers [1,2] mainly designed methods based on texture artifacts caused
by the face forgery techniques in the spatial domain. Due to the fast evolution
of face forgery techniques, these artifacts are gradually concealed. Therefore,
although these methods achieved high within-dataset detection accuracy, their
performance dropped severely in the cross-dataset scenario, especially when con-
fronted with new face forgery methods.
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Level Sub-bands Deepfakes(DF) Face2Face(F2F) FaceSwap(FS) NeuralTextures(NT)

- Ori-Img 1.301 1.092 1.307 1.296

Level-1

LL 1.281 1.008 1.265 1.208
LH 2.688 2.709 2.970 2.959
HL 2.716 2.778 2.720 2.857
HH 2.582 2.914 3.258 2.758

Level-2

LL 1.208 0.958 1.165 1.162
LH 2.817 2.840 2.882 3.106
HL 2.598 2.686 2.549 2.871
HH 3.184 2.929 3.162 3.127

Level-3

LL 1.189 1.055 1.136 1.246
LH 2.473 2.493 2.510 2.826
HL 2.135 2.409 2.166 2.837
HH 2.774 2.917 2.936 2.985

Table 1: EMD of multi-level frequency components. Cropping the face in the
first frame of every video in FF++ dataset, and then calculating the EMD
of the original images or sub-bands frequency features between the fake and
corresponding real images. These sub-bands are obtained by three level discrete
wavelet transform.

To make the algorithm generalize well to unseen forgery methods, recently,
many face forgery detection methods attempt to aggregate information from
frequency domains. Yu et al. [3] utilized channel difference images and the spec-
trum obtained by DCT to detect fake faces. Other researchers leveraged Discrete
Fourier Transform (DFT) [4] and Discrete Cosine Transform (DCT) and block
DCT [5] for frequency information extracting. However, these methods only uti-
lized one level frequency information. And we found that multi-level frequency
features have more discriminable details between real and fake images. Only
using one level frequency may be less effective for extracting the abundant fre-
quency information, which limits the expressive ability of the obtained features.
As we all know, Discrete Wavelet Transform (DWT) is often used to obtain
multi-level frequency, so we choose Haar DWT to extract frequency features.

The filter fLL, fLH , fHL, and fHH of DWT are 1
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, and they are used to calculate the frequency (LL, LH, HL,

HH) of an image I. The LL, LH, HL, and HH are defined as LL = fLL ∗ I,
LH = fLH ∗ I, HL = fHL ∗ I, HH = fHH ∗ I. DWT divides an image into four
frequency components with half resolution of the original image: a low-frequency
component (LL) and three high-frequency components (LH, HL, HH). And the
LL can be further decomposed into four frequency components recursively. In
this way, we can get multi-level wavelet representations. Earth Mover’s Distance
(EMD) [6] is used to measure the dissimilarity between two multidimensional
distributions, whose formula is defined in [6]. The total EMD distance of FF++
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MSWT for Face Forgery Detection 3

dataset is calculated by three level frequency components between the real and
fake data, whose results are shown in Table 1. We observe that the distance of
high-frequency information between real and fake facial images is bigger than
low-frequency one at each level, which demonstrates that different level high fre-
quencies are all useful so that fusing multi-level high frequencies can make the
representations more expressive for face forgery detection.
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Gray LH HL HH Gray LH HL HH

Fig. 1: High-frequency sub-bands are obtained by DWT. The images in the 1st
and 3rd lines are fake images, and the others are real images. In this figure, we
show the fake facial images and their corresponding real images. The 1st and 5th
column are the gray images, and the column 2 to 4 and 6 to 8 are high frequency
sub-bands corresponding to the cropped red box. The forged pixels have fewer
high-frequency details (LH, HL, HH) compared with the real ones.

We also visualize the examples of the real and fake high frequency by DWT
in Figure 1 and 2. In Figure 1, we enlarge the local region of the first level DWT,
so we can see that there are more details in low-level high frequency. Figure 2
shows the whole high-frequency sub-bands of the three-level DWT, and there is
more global semantic information in high-level frequency. So the low-level and
high-level high-frequency features are all important for facial forgery detection.

Taking the above considerations, we take the multi-scale analysis of wavelet
decomposition into consideration and propose a multi-scale wavelet transformer
framework for face forgery detection named MSWT. Specifically, we gradually
aggregate the multi-scale wavelet features at different stages of the backbone
network to take full advantage of multi-level high-frequency representation. To
better fuse the frequency feature with the spatial features, frequency-based spa-
tial attention is designed to guide the spatial feature extractor to concentrate
more on forgery traces. Meanwhile, cross-modality attention is proposed to fuse

1860



4 Liu, J. et al.

Gray LH L1 HL L1 HH L1 LH L2 HL L2 HH L2 LH L3 HL L3 HH L3

Fig. 2: The images in 1st and 2nd lines are the fake and the real facial images,
respectively. Columns 2 to 10 are level 1, 2, and 3 high frequency (LH, HL, and
HH) sub-bands by DWT. There is more details in lower levels, and more global
semantic structure in higher levels.

the RGB spatial features and the frequency features. These two attention mod-
ules are calculated through a unified transformer block for efficiency named
frequency and spatial feature fusion (FSF) module. The main contributions are
summarized as follows:

– To make full use of frequency features, we are the first to utilize the multi-
scale properties of wavelet decomposition to improve the feature fusion of
spatial and frequency domains, and propose a multi-scale wavelet trans-
former framework for face forgery detection.

– To better capture the manipulation trace, frequency-based spatial attention
is designed to guide spatial feature extractor to focus on forgery regions.

– To better fuse the frequency features with the RGB spatial features, cross-
modality attention is introduced.

– Experiments demonstrate that the proposed method works well on both
within-dataset and cross-dataset testing compared with other approaches.

2 Related Work

2.1 Forgery Detection

Forgery Detection based on Spatial Feature. In order to resist manipu-
lated faces and protect media security, many forgery detection algorithms have
been proposed in academia. Because deep learning can learn good feature repre-
sentation, some methods are proposed to extract RGB spatial features based on
deep learning. These approaches mainly include consisrency-based [7], attention-
based [8], and domain generalization methods [9]. Zhao et al. [8] proposed a
method based on multi-attention and textural feature enhancement to enlarge
artifacts in shallow features and capture discriminative details for face forgery
detection, fusing the low-level and high-level features by attention maps. Zhao
et al. [7] proposed patch-wise consistency learning between patches from the fea-
ture maps, which utilizes consistency loss to learn and optimize the consistency
of the patches from real or fake regions. Wodajo et al. [10] proposed a convolu-
tional vision transformer for deepfake video detection, and the network consists
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MSWT for Face Forgery Detection 5

of a convolutional neural network (CNN) and a vision transformer (ViT). The
ViT processes the features learned by CNN and then exports the classification
results. Different from Wodajo et al. , we only utilize transformer encoder as the
attention module to fuse high-frequency components and RGB spatial features.

Forgery Detection based on Frequency. Because of the effectiveness of
frequency information for forgery detection, some proposed networks combined
the spatial features with frequency information. Li et al. [11] offered a single-
center loss to learn the frequency-aware features and used the Discrete Cosine
Transform (DCT) transform to get the frequency representation. Qian et al. [5]
proposed F3-Net for face forgery detection, utilizing DCT and block DCT to
calculate the global and block frequency information. Zhu et al. [12] also utilized
frequency and spatial feature for forgery detection, with a two-stream archi-
tecture for RGB image and high-frequency component respectively. SPSL [4]
was proposed by Liu et al. , in which DFT is applied to extract the phase spec-
trum as the high-frequency representation. However, these methods only use one
level frequency information, discarding the valuable information in multi-level
frequency information.

2.2 Wavelet in Computer Vision Tasks

For images, DWT obtains frequency and spatial components simultaneously, as
shown in Figure 1. Besides, wavelet transform has the characteristics of multi-
resolution analysis, by which multi-scale frequency feature representation cal-
culated by DWT has tremendous significance in computer vision tasks. For ex-
ample, DWT is used in image depth prediction [13], image denoising [14,15],
restoration [16], compression [17], and fusion [18,19], achieving good performance
at that time.

3 Proposed Method

3.1 Overview of the Structure

For face forgery detection, we propose a multi-scale wavelet transformer archi-
tecture. The comprehensive framework is depicted in Figure 3, which takes the
RGB image and the multi-level high-frequency representations via DWT as in-
puts and fuses high-frequency features and the RGB spatial features with the
proposed fusion module. According to the different input sources, the network is
divided into the RGB branch which takes the RGB image as input, and the high
frequency branches which take the wavelet-based high frequency representations
as input. For the RGB branch, following most works, we take Xception [20] as
the feature extractor. According to the resolution of feature maps, we split it
into four convolutional feature extracting stages and one classifier, shown as the
yellow and green blocks in Figure 3.

For the high frequency branches, we take Haar wavelet [21] to get the multi-
level high-frequency representations (shown as the red blocks in Figure 3) as
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Fig. 3: The architecture of the proposed method. The backbone is Xception [20].
This backbone is split into four stages according to its features’ resolution. The
backbone extracts the features from the original image, and DWT is used to
divide the input image into the low-frequency (L) and high-frequency (H) com-
ponents at each channel (RGB). The frequency and spatial feature fusion (FSF)
module as shown in the red dashed rectangle takes high-frequency information H
and the spatial features Feat extracted from the corresponding backbone stage
as inputs.

input due to its simplicity and efficiency. DWT can divide a gray image into
four frequency components which consist of one low-frequency (LL) and three
high-frequency components (LH, HL, and HH) with half resolution of the origi-
nal image. We do DWT for each channel of the RGB image respectively. There-
fore, each frequency component consists of three channel maps corresponding
to the red, green, and blue channel of the RGB image. As shown in the high
frequency branch of Figure 3, taking the three high-frequency components “H”
as the frequency representations at the current level and using the low-frequency
component “L” to do further wavelet decompositions, we can get the multi-level
frequency representations. As analyzed in the introduction, frequency represen-
tations at different levels contain different useful information. In our method, we
use high-frequency representations of the first three levels.

To fuse the information among different branches, we aggregate the informa-
tion from the high frequency branches into the RGB branch using the proposed
light-weight Frequency and Spatial Feature Fusion (FSF) module at three levels
for efficiency, shown as the red dashed rectangle of Figure 3. The information
of the three high frequency branches is fused into the corresponding stages of
the RGB branch to match their resolutions. Except for matching resolution,
another reason is that, as analyzed in the introduction the low level frequency
representations contain more details, while the high level frequency represen-
tations contain more global structure information, which has similar meanings
to the features in the multiple stages of the RGB branch. The FSF module is
based on the transformer and its details are described in the next subsection
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3.2. Finally, the enhanced features are input into the classifier, and the whole
network is optimized end-to-end using the cross-entropy loss.

3.2 Frequency and Spatial Feature Fusion Module

The structure of frequency and spatial feature fusion (FSF) module is shown in
Figure 4 (a). It takes features Feat from the RGB branch and high-frequency
representations H at the corresponding level as inputs to fuse the high fre-
quency and RGB spatial features. FSF module consists of two attention blocks.
One block is used to enhance spatial feature maps Feat with the high-frequency
guided attention which is denoted as frequency-based spatial attention (FSA).
The other block is used to fuse the high-frequency information into Feat with
cross-modality attention (CMA). Finally, the outputs of these two blocks are
concatenated as the output of FSF module as shown in Figure 4 (a). The high-
frequency representations H (LH,LH,HH) are obtained by DWT via the origi-
nal image, while Feat are RGB spatial features obtained from the RGB branch.
To match the meaning of Feat, each part of H is first processed with the cor-
responding convolutional block. Then they are concatenated and fused with
another convolution to get the output high-frequency feature maps FH . This
operation is defined as:

FH = fcombine

(
Concat

(
fLH
conv (LH) , fHL

conv (HL) , fHH
conv (HH)

))
(1)

where fconv is convolution block used to process the high-frequency features,
and then the processed high-frequency features are concatenated with Concat.
fcombine fuses all high-frequency features with another convolution operation.
The total operation process is shown in the blue dashed rectangle of Figure 4
(a).

On the other hand, to match the channel dimension of feature maps FH , a
down-channel convolution is performed on the RGB spatial features Feat. The
down-channel feature is defined as:

FS = fDownConv (Feat) (2)

where fDownConv means the down-channel convolution operation.
The high frequency features FH and spatial features FS are fused using

frequency-based spatial attention (FSA) and cross-modality attention (CMA),
which are the yellow and the green rectangular boxes in Figure 4 (a). The first
attention is used to guide the RGB spatial feature learning with high frequency
information, and the second one is used to fuse information from high frequency
features and spatial features. They are illustrated in the following subsection in
detail.

Frequency-based Spatial Attention The area of the manipulated region
usually contains the total face or an expression region. For example, the main
region of the original face is replaced by another face when using Deepfake as
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the forgery method. Therefore, leveraging the long-term relationship is helpful
to enhance the representation ability of the features. We take transformer to
model this relation. However, using the spatial features FS to calculate the self-
attention may not be the best choice, since the self-attention based on FS is
more likely disturbed by the appearance details. Therefore, we propose to use
FH to calculate the attention, since the manipulated regions have similar high-
frequency forgery traces. The architecture of frequency-based spatial attention is
shown in the left rectangular box in the Figure. 4 (b). First, the attention query
QFS

H and key KFS
H are calculated by embedding the high-frequency features FH .

And the value V FS
S is obtained by embedding spatial features FS . The output

is named O1, which is defined as:

O1 = MHA
(
QFS

H ,KFS
H , V FS

S

)
(3)

where MHA is the multi-head attention of the vision transformer, and the su-
perscript FS means the vector of Frequency-based Spatial Attention.

Frequency and Spatial Feature Fusion (FSF)

H
( LH,HL,

HH )

LH HL HH

Conv

C

Conv

Feat

Conv down_channels

Frequency-based 

Spatial Attention

C

output

Conv Conv

Cross-Modality 

Attention

FH
FS

O1 O2

Frequency-based Spatial Attention

FH FS

Embedding

𝑄𝐻
𝐹𝑆 𝐾𝐻

𝐹𝑆 𝑉𝐻
𝐶𝑀 

Conv Conv Conv

𝑄𝑆
𝐶𝑀 𝐾𝐻

𝐶𝑀 

Conv Conv

x

Multi-head 
att map 

𝑉𝑆
𝐹𝑆 

Conv

Multi-head attention (FS)

x

Multi-head 
att map

Multi-head attention (CM)

Cross-Modality Attention

Embedding
EmbeddingEmbedding

(a) (b)

Fig. 4: (a) FSF module. (b) The architectures of frequency-based spatial atten-
tion (FSA) and cross-modality attention (CMA). The left block is FSA, in which
Q and K are calculated with high-frequency features and V is obtained by spatial
features. The right one is CMA, in which Q is calculated with spatial features,
and the others are obtained with high-frequency features.

Cross-Modality Attention The cross-modality attention is used to fuse the
information from the high-frequency representations and RGB spatial features.
The architecture of cross-modality attention is shown in the right rectangular
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box in Figure 4 (b). The key KCM
H and value V CM

H are calculated by embedding
the high-frequency features FH , and the query QCM

S is obtained by embedding
spatial features FS . And the output of cross-modality attention is O2, which is
defined as follows:

O2 = MHA
(
QCM

S ,KCM
H , V CM

H

)
(4)

where the superscript CM means the vector is in Cross-Modality Attention.
By the above two attentions, the features are enhanced through the frequency

information from two different aspects. On the one hand, the features are en-
hanced by fusing the information of the relative regions in the spatial domain
with high frequency guiding. On the other hand, the features are enhanced by
fusing the information of the relative regions at the high frequency domain with
cross-modality attention. Finally, we concatenate O1 and O2 as the output of
FSF module, and then send them and the original RGB spatial features of this
stage of RGB branch into the next RGB branch stage as shown in Figure 3.

4 Experiments and Analysis

4.1 Datasets

There are four popular datasets used in experiments, FaceForensics++ (FF++)
[22], Celeb-DF [23], FFIW [24], and WildDeepfake (WDF) [25] datasets. FF++:
[22] It consists of four manipulation methods, which are DeepFakes [26], Face2Face
[27], FaceSwap [28], and NeuralTexture [29]. And the videos have three com-
pression settings: raw, high quality (c23), and low quality (c40). FF++ is widely
used in the forgery detection task, including 1000 videos for each manipulation
method and real data. According to the official split, we extract frames from
720, 140, and 140 videos as training, validation, and testing datasets respec-
tively. We get frames from videos by FFmpeg. We use all frames and 300 frames
(each video) in the training and testing phases. Celeb-DF: [23]. Li et al. pro-
posed Celeb-DF dataset for forgery detection. Before long, they added more
videos into Celeb-DF, and then the Celeb-DF V2 dataset appeared. Celeb-DF
V2 is the most popular cross-dataset in forgery detection. Therefore, we also use
Celeb-DF V2 as one of the cross-dataset evaluations. For each test video, we
extract one frame for every five frames in each video. To evaluate methods in
more realistic scenarios, two new public large-scale deepfake datasets in the wild
FFIW [24] and WDF [25] are used for within- and cross-domain evaluations.
FFIW is a large scale deepfake dataset with high quality, and the fake videos
are photo-realistic and close to the real world. WDF collects videos purely from
the internet which is more diverse and closer to the real-world deepfakes.

4.2 Experiment Details

We crop the face and resize them to 384×384 according to key points by MTCNN
[33] as the input of the network. The model of RGB branch is initialized with
the parameters pre-trained on ImageNet. In the training phase, we only use
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Methods
DF c40 F2F c40 FS c40 NT c40 FF++ c23 FF++ c40

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Two-branch [30] - - - - - - - - 96.43 - 86.34 -
MADFD [8] - - - - - - - - - 98.9 - 87.2

Xception [20] 95.1 99.0 83.4 93.7 92.0 97.4 77.8 84.2 95.7 96.3 86.8 89.3
F3Net [5] 97.9 - 95.3 - 96.5 - 83.3 - 97.5 98.1 90.4 93.3
SPSL [4] 93.4 98.5 86.0 94.6 92.2 98.1 76.7 80.4 - 95.3 80.3 82.8

FADFL [31] - - - - - - - - 96.6 99.3 89.0 92.4
GFFD [32] 98.6 - 95.7 - 92.9 - - - - - - -

ours 97.8 99.7 94.6 98.5 98.2 99.1 86.6 93.8 98.6 99.8 94.9 98.6

Table 2: The results of within-dataset evaluation on FF++ dataset (video level).
In this table, we show the results of each manipulation method (DF, FF, FS,
and NT) based on c40. The last two columns show the results of c23 and c40 of
FF++ dataset. The metrics are ACC and AUC.

random horizontal flip as data augmentation, because we don’t want other data
augmentations to interfere with the final experimental results. The loss function
of the model is cross-entropy loss. The batch size is set to 24. For training, we
adopt AdamW [34] optimizer to optimize the total network, whose coefficients
are set to 0.9 and 0.999 as default. The learning rate is initialized as 0.0001 and
decreases by 0.5 with StepLR schedule for each 6× 104 iterations, and the total
number of iteration is 1.5× 105. For attention layers, the number of heads is set
to 1, 2, 5 empirically, and the embedding dimension is set to be 64, 128, 320 at
attention level 1 to 3 respectively.

4.3 Results and Analysis

Metrics of the results: In essence, face forgery detection is a two-class task, so
we choose accuracy rate (ACC) and area under the receiver operating character-
istic curve (AUC) to evaluate the performance of models. In the next tables, we
calculate the frame and video level results in the cross-dataset evaluation. For
video level, the same as other works [32,30,5], we average the prediction scores
of all frames for each video as the final prediction of this video.

Within-dataset evaluation. The results of within-dataset evaluation are
presented in Table 2, which includes different compression ratio (c23 (high qual-
ity) and c40 (low quality)) and four manipulation methods of FF++. We can
see that our method achieves the best or comparable performance under dif-
ferent settings. It is notable that on the harder datasets, e.g. FF++ with low
quality, especially FS and NT, we achieve more significant improvement which
verifies the learned feature by our method is more effective for different forgery
methods and robust with quality variation. Compared with GFFD using SRM
to obtain high frequency features, our method outperforms it by 6.6% on FS,
which shows multi-scale DWT is more effective for extracting the abundant high
frequency information than these low-level filters. Compared with F3Net, SPSL,
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Datasets Celeb-DF V2 [23]

Methods
Frame Level Video Level
ACC AUC ACC AUC

DDPGF [35] - 56.90 - -
Two-branch [30] - 73.41 - 76.65 -

MADFD [8] - 67.44 - -
DGFFD [9] 63.40 64.10 - -
F3-Net [5] - 65.17 - -

SPSL c23 [4] - 72.39 - -
GFFD [32] - - - 79.40
Xception 69.65 67.58 72.66 73.54

ours 72.69 74.55 76.37 80.65

Table 3: Cross-dataset evaluation on
Celeb-DF V2 [23] dataset, whose model
is trained on FF++ dataset. The ACC
values of some methods are missing,
so we mostly compare the performance
with AUC.

Datasets FFIW WDF

Methods ACC AUC ACC AUC

MesoNet [36] 53.80 55.40 64.47 -
TSN [37] 61.10 62.80 - -
C3D [38] 64.30 65.50 55.87 -
I3D [39] 68.80 69.50 62.69 -

FFIW-M [24] 71.30 73.50 - -
ADDNet [25] - - 76.25 -

Xception 95.05 99.32 81.74 87.46
ours 95.70 99.48 82.72 89.96

Table 4: The results of within-
dataset evaluation on FFIW and
WDF datasets (video level). In this
table, FFIW-M [24] and ADDNet
[25] mean the forgery detection
methods proposed in FFIW [24] and
WDF [25], respectively.

and FADFL adopting DFT or DCT to get frequency features, our method out-
performs it by 5.3%, 15.8%, and 6.2% on FF++ c40, which verifies multi-scale
DWT is more suitable for face forgery detection task due to its rich multi-scale
high-frequency information. MADFD [8] utilized multiple attention maps and
texture feature enhancement to capture local discriminative features. We uti-
lize RGB and high frequency branches and fuse these features by FSF module.
Compared with Two-branch and MADFD, it demonstrates that the proposed
framework and FSF module are effective in capturing the forgery information.
We also make a within-dataset evaluation on realistic scenarios i.e. FFIW and
WDF datasets, whose results are shown in Table 4. Our results are the best. So,
the proposed method is more suitable for diverse deepfakes and real-world face
forgery detection.

Cross-dataset evaluation. Celeb-DF V2 dataset is often used as cross-
domain evaluation, so we evaluate the model on Celeb-DF V2, whose results are
shown in Table 3. Considering the diversity of realistic scenarios, we also make a
cross-domain evaluation on WDF and FFIW datasets, whose results are shown
in Table 5. From the Table 3 and 5, we can observe that our method achieves
the state-of-the-art performance on Celeb-DF V2, FFIW, and WDF datasets.
Therefore, MSWT is robust and effective in within- and cross-dataset, which
demonstrates that multi-scale structure and FSF module can learn more forgery
details and make full use of high-frequency and spatial features.
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Datasets FFIW [24] WDF [25]

Methods
Frame Level Video Level Frame Level Video Level
ACC AUC ACC AUC ACC AUC ACC AUC

Xception 71.07 76.86 70.28 76.40 67.33 67.21 62.03 64.76
ours 73.11 81.54 76.10 82.68 68.55 68.71 63.28 67.30

Table 5: Cross-dataset evaluation on WildDeepfake (WDF) [25] and FFIW [24]
datasets, whose model is trained on FF++ dataset.

4.4 Ablation Study and Analysis

To demonstrate the effectiveness of the proposed framework, we do ablation
studies both on frequency and spatial feature fusion (FSF) module and multi-
scale high frequency representations. In the ablation study experiments, we use
FF++ as the training dataset and test on FF++ and CelebDF datasets as
within-dataset and cross-dataset evaluations.

Ablation study on frequency fusion. The frequency and spatial feature
fusion (FSF) module consists of a frequency-based spatial attention (FSA) and
a cross-modality attention (CMA). Therefore, we keep single attention (FSA
or CMA) to train the framework. To demonstrate the effectiveness of high-
frequency features in FSA module, we utilize only RGB features to calculate
attention, which is denoted as Xception+SA, and Xception+FSA means cal-
culating the attention by frequency features. Besides, we train the Xception
backbone by combining the high frequency sub bands into the corresponding
stage directly without attention,named Xception+DWT in Table 6.

Test type Self Eval Cross Eval

Methods
FF++ Celeb-DF V2

ACC AUC ACC AUC

Xception 95.73 96.30 69.65 67.58

Xception+DWT 96.85 99.35 71.45 69.22

Xception+SA 96.29 99.19 72.54 71.88

Xception+FSA 97.02 99.47 72.98 73.72

Xception+CMA 97.09 99.41 72.64 73.70

MSWT 97.23 99.48 72.69 74.55

Table 6: The results of ablation study
on frequency and spatial feature fusion
(FSF) module. The metrics are ACC
and AUC (frame-level).

Fig. 5: Visualization of multi-head
attention map in FSA and SA shown
in the 1st and 2nd rows. We choose
two patches (a manipulated patch
shown in green box) and a real patch
shown in red box) to illustrate the
difference between attention maps
calculated by FAS and SA respec-
tively.
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Test type Self Eval Cross Eval

DWT level
FF++ Celeb-DF

ACC AUC ACC AUC

Level 1 97.07 99.40 72.14 72.17

Level 2 97.14 99.39 72.50 73.10

Level 3 (MSWT) 97.23 99.48 72.69 74.55

Table 7: The results of ablation study on multi-level structure of DWT. The
metrics are ACC and AUC (frame-level).

The results are shown in Table 6. We can observe that the result of Xcep-
tion+DWT is better than Xception’s, which means that the high frequency is
useful for face forgery detection. Except for Xception, Xception+DWT which
combines the high-frequency information directly has the worst results due to
the misalignment between the frequency and RGB spaces. The results of Xcep-
tion+SA are worse than Xception+FSA, which demonstrates that it is more
effective to use the high frequency information to guide the attention calcula-
tion. The results of the method utilizing FSA or CMA are better than Xcep-
tion+DWT, which demonstrates the effectiveness of the frequency-based spatial
attention and cross-modality attention modules. The network with FSA and
CMA achieves the best performance, which demonstrates that the two fusion
modules are complementary.

To illustrate the influence of FSA and SA, we make a visualization of the
attention in the 1st and 2nd second rows of Figure 5. We can see that the
attention map of the manipulated region (the green rectangle) calculated via
frequency features has high values in the manipulated region. The attention map
of the real region (the red rectangle) is sparse in the manipulated region. While
the attention maps calculated via spatial features have little difference between
the manipulated and real regions, which learns less distinguish forgery details.
Therefore, when using frequency features to guide the attention calculation,
it effectively extracts the discriminable information between the real and fake
regions.

Ablation study on multi-scale high frequency structure. To illustrate
the influence and effectiveness of the multi-scale high-frequency fusion, we do
level-by-level experiments. We not only show the quantitative accuracy in Table
7, but also make a visualization of the attention map at each level shown in
Figure 6. In Table 7, level 1, level 2, and level 3 represent the number of DWT
levels used in the framework.

The results of the multi-scale wavelet transformer are shown in Table 7.
The performance of three-level frequency is the best compared with the results
of levels 1 and 2, which demonstrates that multi-scale fusion is beneficial for
face forgery detection. So the gradual aggregating fusion of multi-scale wavelet
representation at different stages of the network can take full advantage of the
frequency information.
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Fig. 6: Visualization of multi-level attention. The 1st and 2nd columns are fake
images from DF and the corresponding real images. The third and fourth
columns are fake images from NT and the corresponding real image. In this
figure, the first to the third rows represent attention at level 1, 2, and 3 respec-
tively.

We make a visualization on each level in Figure 6, we use the method pro-
posed in [40,41] to generate the visualization maps. We choose two examples
from ID replacement Deepfakes and expression modification NeuralTextures.
The fake image from Deepfakes and the corresponding real image, the fake face
from NeuralTextures and the corresponding real image are in the 1st to 4th
columns of Figure 6 respectively. The visualization maps show that the fusion
module can learn more global information at the higher level, and at the first
and second levels, the fusion module learns more details about the local region.
So via multi-scale frequency representations and fusion, we can enhance the fea-
ture learning from both the global structure and the local details simultaneously,
which is important to face forgery detection task.

5 Conclusion

Considering the multi-scale analysis property of DWT and making full use of
frequency information, we extract the multi-level frequency representations via
DWT and use these high frequency components to the proposed multi-scale
wavelet transformer architecture for face forgery detection. We apply transformer
as the attention block to integrate the high-frequency and RGB spatial features
at multiple levels. Specifically, the frequency based spatial attention guides spa-
tial features to focus on forgery regions. The cross-modality attention is used to
better fuse the frequency features with the RGB spatial features. The various
experiments demonstrate that the proposed framework is effective and robust
on self and cross datasets compared with the existing methods.
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