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Abstract. In recent years, various studies have demonstrated that uti-
lizing the prior information of StyleGAN can effectively manipulate and
generate realistic images. However, the latent code of StyleGAN is de-
signed to control global styles, and it is arduous to precisely manipulate
the property to achieve fine-grained control over synthesized images. In
this work, we leverage a recently proposed Contrastive Language Im-
age Pretraining (CLIP) model to manipulate latent code with text to
control image generation. We encode image and text prompts in shared
embedding space, leveraging powerful image-text representation capa-
bilities pretrained on contrastive language images to manipulate par-
tial style codes in the latent code. For multiple fine-grained attribute
manipulations, we propose multiple attribute manipulation frameworks.
Compared with previous CLIP-driven methods, our method can perform
high-quality attribute editing much faster with less coupling between
attributes. Extensive experimental illustrate the effectiveness of our ap-
proach. Code is available at https://github.com/lxd941213/TeCM-CLIP.

1 Introduction

Image manipulation is an interesting but challenging task, which has attracted
the interest of researchers. Recent works on Generative Adversarial Networks
(GANs)[9] have made impressive progress in image synthesis, which can generate
photorealistic images from random latent code[14–16]. These models provide
powerful generative priors for downstream tasks by acting as neural renderers.
However, this synthesis process is commonly random and cannot be controlled
by users. Therefore, utilizing priors for image synthesis and processing remains
an exceedingly challenging task.

StyleGAN[15, 16], one of the most commonly used generative network frame-
works, introduces a novel style-based generator architecture that can generate
high-resolution images with unparalleled realism. Recent works[5, 30, 36] have
demonstrated that StyleGAN’s latent space, W, is introduced from a learned
piecewise continuous map, resulting in less entangled representations and more
feasible operations. The superior properties of W space have attracted a host of
researchers to develop advanced GAN inversion techniques[1, 2, 10, 29, 33, 34, 39]
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to invert real images back into the latent space of StyleGAN and perform mean-
ingful operations. The most popular approach is to train an additional encoder
to map real images to W space, which not only enables faithful reconstructions
but also semantically meaningful edits. In addition, several methods[1–3, 29, 34,
43] recently proposed W+ space based on W space, which can achieve better
manipulation and reconstruction.

Existing methods for semantic control discovery include large amounts of an-
notated data, manual examination[10, 30, 36], or pre-trained classifiers[30]. Fur-
thermore, subsequent operations are usually performed by moving along with
directions in the latent space, using a parametric model (e.g. 3DMM in Sty-
leRig[33]) or a trained normalized flow in StyleFlow[3]. Therefore, existing con-
trols can only perform image operations along with preset semantic directions,
which severely limits the creativity and imagination of users. Whenever addi-
tional unmapped directions are required, further manual work or large amounts
of annotated data is required. Text-guided image processing[8, 19, 21–23, 28] has
become feasible thanks to the development of language representations across
a modality range. Recently StyleCLIP[26] achieved stunning image processing
results by leveraging CLIP’s powerful image-text representation. However, Style-
CLIP has the following shortcomings: 1) For each text prompt, the mapper needs
to be trained separately, which lacks activity in practical applications; 2) Map-
ping all style codes results in poor decoupling. HairCLIP[35] is designed for hair
editing, it has designed a framework to quickly process hairstyles and colors for
images and edit directly with textual descriptions or reference images, eliminat-
ing the need to train a separate mapper for each attribute. However, HairCLIP
just edits hair attributes, it maps all the style codes like StyleCLIP, which slows
down the speed and increases the coupling of attributes.

In this work, we design a model that requires fewer operations and can be
disentangled more thoroughly. Overall, our model is similar to StyleCLIP[26]
and HairCLIP[35]. The obvious difference is that the first two models map all
style codes, while our model only needs to map partial style codes. Through
extensive experiments, we found that the attributes controlled by each style
code are different. If we desire to change a certain attribute of the image (such
as hairstyle, emotion, etc.), we only need to perform a partially targeted style
codes mapping manipulation. Our method not only exceedingly facilitates image
mapping manipulation but provides less entanglement.

The contributions of this work can be summarized as follows:

1) Through extensive experiments, we analyze the properties controlled by
each style code. When we need to change an attribute, we only need to manip-
ulate the style codes that control the attribute, which can reduce the coupling
between attributes while reducing the workload.

2) To further reduce the influence on other attributes, we design several
decoupling structures and introduce background and face loss functions.

3) Extensive experiments and analyses reveal that our method has better
manipulation quality and less training and inference time.
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2 Related Work

2.1 GAN Inversion

With the rapid development of GANs, quite a few methods have been proposed
to understand and control their latent space. The most normal method is GAN
inversion, where the latent code most accurately reconstructs the input image
from a pre-trained GAN. StyleGAN[15, 16] is used in quite a few methods due
to its state-of-the-art image quality and latent spatial semantic richness. In gen-
eral, there are currently three ways to embed images from the image space to
the latent space: 1) learn an encoder that maps a given image to the latent
space[6, 29, 34]; 2) select a random initial latent code and optimize it with gra-
dient descent[1, 2, 18]; 3) Mix the first two methods. Between them, methods
that perform optimization are better than encoders in terms of reconstruction
quality but take longer. In addition, encoder-based methods can be divided into
W and W+ spaces after encoding. Among them, the W space is the latent space
obtained by performing a series of fully connected layer transformations on Z
space, which is generally considered to reflect the learning properties of entan-
glement better than Z space. W+ space and W space are constructed similarly,
but the latent code w ∈ W+ fed to each layer of generators is different, which
is frequently used for style mixing and image inversion.

2.2 Latent Space Manipulation

A host of papers[3, 29, 30, 43] propose various methods to learn semantic manipu-
lation of latent codes and then utilize pretrained generators for image generation.
Specifically, the latent space in StyleGAN[15, 16] has been manifested to enable
decoupled and meaningful image manipulations. Tewari et al.[33] utilize a pre-
trained 3DMM to learn semantic face edits in the latent space. Nitzan et al. [24]
train an encoder to obtain a latent vector representing the identity of one image
and the pose, expression, and illumination of another. Wu et al.[36] proposed to
use the StyleSpace S, and demonstrated that it is better disentangled than W
and W+. Collins et al.[5] perform local semantic editing by manipulating corre-
sponding components of the latent code. These methods quintessentially follow
an "invert first, manipulate later" process, first embedding the image into the
latent space, and then manipulating its latent space in a semantically meaningful
way. In this paper, we use a pre-trained e4e[34] model to embed images into the
W+ space, while encoding text prompt using CLIP’s powerful image-text repre-
sentation capabilities. Our approach is general and can be used across multiple
domains without requiring domain or operation-specific data annotations.

2.3 Text-guided Image Generation and Manipulation

Reed et al.[28] generated text-guided images by training a conditional GAN con-
ditioned on text embeddings obtained by a pre-trained encoder. Zhang et al.[40,
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Fig. 1. We show the overall structure of our method by taking emotion ("happy") as
an example. Our method supports the completion of corresponding sentiment editing
according to the given text prompt, where the image is feature-mapped by pre-trained
e4e[34], and the text is encoded into a 512-dimensional vector by CLIP’s text encoder.

41] used multi-scale GANs to generate high-resolution images from text descrip-
tions through a sketch-refinement process. AttnGAN[38] fused attention mech-
anisms between text and image features. Additional supervision is used in other
works to further improve image quality. Several studies focus on text-guided
image processing and kind of methods that use GAN-based encoder-decoder ar-
chitectures to separate the semantics of input images and textual descriptions.
ManiGAN[20] introduced a new text-image combination module that produces
high-quality images. Different from the aforementioned works, StyleCLIP[26]
proposed to combine the high-quality images generated by StyleGAN with the
wealthy multi-domain semantics learned by CLIP[27] and use CLIP to guide the
generation of images. TediGAN[37] encoded images and texts simultaneously
into the latent space and then performed style mixing to generate corresponding
images to realize text-guided image manipulation. Later improved versions of Te-
diGAN[37] also used CLIP[27] for optimization operations to provide text-image
similarity loss. Since StyleCLIP needs to train a separate mapper network for
each text prompt, it lacks flexibility in practical applications. Therefore, Hair-
CLIP[35] proposed a unified framework of text and image conditions to encode
text or image conditions into the latent space to guide image generation.

In general, StyleCLIP[26], TediGAN[37], and HairCLIP[35] all work well for
text-guided image generation, and HairCLIP outperforms the previous two mod-
els in speed. But the methods mentioned above do not decouple multiple proper-
ties well. Through extensive experiments, we discovered the properties controlled
by each style code. Therefore, we merely perform feature mapping on partial style
codes and achieve fewer entanglement and faster speed.
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3 Proposed Method

As mentioned above, the latent space is divided into Z space, W space, and W+
space, where Z space is normally distributed, and W space is obtained from the
random noise vectors z ∈ Z via a sequence of fully connected layers. However,
several studies[4, 29, 34, 36, 43] have demonstrated that inverting the images to
a 512-dimensional vector w ∈ W cannot achieve accurate reconstruction. Subse-
quently, it has become more normal practice to encode images into an extended
latent space W+ consisting of concatenating 18 different 512-dimensional w vec-
tors, one for each input layer of StyleGAN[15, 16]. In this paper, we perform an
inversion with a pre-trained e4e[34], which maps the images to latent space, W+,
so that all style codes generated by the encoder can be recovered at the pixel
level and semantic level. Since each layer of the 18-layer W+ space controls dif-
ferent attributes of the image, we manipulate the corresponding style codes from
w ∈ W+ according to the attributes to be manipulated. At the same time, the
text embedding encoded by CLIP[27] is fused into the latent space of the image.
Finally, the manipulated image can be generated from the StyleGAN generator
and the specific network structure is shown in Fig. 1.

3.1 Image and Text Encoders

Our approach is based on the representative of a pre-trained StyleGAN[15, 16]
generator and W+ latent space, which requires a powerful encoder to precisely
encode the image into the latent domain. We select e4e[34] as our image encoder,
which encodes the image into W+ space. The latent code w is composed of 18
different style codes, which can represent the fine details of the original image
more completely, accordingly, it is better than previous methods in reconstruc-
tion quality.

Unlike StyleCLIP[26], which only uses CLIP[27] as supervised loss, we refer to
HairCLIP[35], which encoders the text prompts into 512-dimensional conditional
embedding. Since CLIP is well trained on large-scale image-text pairs, it is easy
to encode text prompts into conditional embedding and then fuse them with
latent space effectively to achieve text-driven images.

3.2 Latent Mapper with Disentangled Latent Space

Quite a few works[15, 16, 31, 37] have manifested that different StyleGAN layers
correspond to different semantic-level information in the generated image. Style-
CLIP and HairCLIP take the same strategy, with three mappers Mc, Mm, Mf

with the same network structure, which are responsible for predicting manipu-
lated ∆w corresponding to different parts of the latent code w = (wc, wm, wf ).
But in fact, this mapping method cannot disentangle the associations between
various attributes well. Through extensive experiments, we found that each style
code w ∈ W+ controls one or more attributes, and we only need to manipulate a
few of the style codes (fusion text conditional embedding and feature mapping).
As an example, the first four style codes can be processed for hair manipulation.
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Specifically, we first perform a four-layer full connection mapping of the style
codes to be processed and also perform a four-layer full connection mapping for
the text conditional embedding, and the specific formula is as follows:

w
′

edit = Reshape (MLP (wedit)) ,

w
′

text = Reshape (MLP (wtext)) .
(1)

where MLP represents a four-layer fully connected layer, and Reshape repre-
sents a deformation operation on the style code. wedit ∈ R512 and wtext ∈ R512

are the style code that needs to be manipulated and the text conditional em-
bedding, respectively. w

′

edit ∈ R4×512 and w
′

text ∈ R4×512 are the corresponding
results after processing. Then processed by Affine Modulation Module (AMM)
and then according to weights (learnable parameters) for additive fusion. We
further add a two-layer fully-connected mapping for the fused style codes, which
can do further information fusion. For other style codes that are not related to
the attributes, we directly concatenate the original style codes and the modified
style codes.
Affine Modulation Module. We design this module after referring to several
methods[12, 25, 32] and making improvements. As shown in Fig. 1, after each
mapper network goes through four fully connected layers, Affine Modulation
Module (AMM) is used to fuse text-conditional embeddings to the style codes.
AMM is a deep text-image fusion block that superimposes normalization lay-
ers, multiple affine transformation layers, and nonlinear activation layers (leak-
lyrelu) in the fusion block. AMM uses conditional embedding to modulate the
style codes that were previously mapped and output in the middle. Its specific
mathematical formula is as follows:

α1, β1 = MLP (w
′

text),

α2, β2 = MLP (w
′

text),
(2)

out = activation(α1 × w
′

edit + β1),

out = activation(α2 × out+ β2),
(3)

wout = MLP (out). (4)

where out is the intermediate variable.

3.3 Loss Function

Our goal is to manipulate an attribute (e.g., hairstyle, emotion, etc.) in a disen-
tangled way based on text prompts, while other irrelevant attributes (e.g., back-
ground, identity, etc.) need to be preserved. We introduce CLIP loss, identity
loss, and latent loss used in StyleCLIP. In addition, for some attribute manip-
ulation tasks, such as hairstyle manipulation, we design a face loss; and for the
task of facial emotion manipulation, we introduce a background loss.
CLIP Loss. Our mapper is trained to operate on image attributes indicated by
desired text prompts while preserving other visual attributes of the input image.
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We guide the mapper by minimizing the cosine distance of the generated image
and text prompts in the CLIP latent space.

Lclip (w) = Dclip (G (Concat(wfix, wedit +M(wedit, wtext))) , wtext) . (5)

where M is the AMM mentioned above, G is a pre-trained StyleGAN genera-
tor and Dclip is the cosine distance between the CLIP embeddings of its two
arguments. In addition, wedit and wfix are the style codes that need to be ma-
nipulated and do not need to be manipulated, respectively.
Latent Loss. To preserve the visual attributes of the original input image, we
minimize the L2 norm of the manipulation step in the latent space.

Llatent(w) = ∥M (wedit, wtext)∥2 . (6)

Identity Loss. Similarity to the input image is controlled by the L2 distance
in latent space, and by the identity loss

Lid(w) = 1− ⟨R (G (Concat(wfix, wedit +M(wedit, wtext)))) , R(G(w))⟩ . (7)

where R is a pre-trained ArcFace[7] network for face recognition, and ⟨·, ·⟩ com-
putes the cosine similarity between it’s arguments. G is the pre-trained and fixed
StyleGAN generator.
Face Loss. Although only processing partial style codes could decrease attribute
entanglement, the majority of style codes control multiple attributes, which leads
to the issue of entanglement still not being well solved. Face loss is introduced
which is mainly used to optimize and reduce the impact on the face when manip-
ulating attributes that are not related to the face. Firstly, we use the pre-trained
MTCNN[42] to detect faces and set all the values in the detected face position
to 1, and all other positions to 0, and record it as the mask:

mask = MTCNN(G(w)), (8)

w
′
= Concat(wfix, wedit +M(wedit, wtext)),

Lface (w) =
∥∥∥G(w)⊙mask −G(w

′
)⊙mask

∥∥∥
2
.

(9)

Background Loss. Background loss is the opposite of face loss. When we need
to manipulate the face, the background loss can reduce the impact on attributes
other than the face. The formula is as follows:

Lbackground (w) = ∥G(w)⊙ (1−mask)−G(w
′
)⊙ (1−mask)∥2. (10)

Our total base loss function is a weighted combination of these losses:

Lbase (w) = λclip Lclip (w) + λlatent Llatent (w) + λid Lid(w). (11)

where λclip, λlatent, λid are set to 0.6, 1.0, 0.2 respectively by default. For tasks
related to face manipulation, such as emotional manipulation, age manipula-
tion, gender manipulation, etc., we also introduce a background loss function,
as follows:

Ltotal (w) = Lbase (w) + λbackground Lbackground (w). (12)
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And for the manipulation of hairstyle and hair color, we use face loss to reduce
the impact on the face:

Ltotal (w) = Lbase (w) + λface Lface (w). (13)

where both λbackground and λface are set to 2.0.

Table 1. Experimental results of layer-by-layer analysis of the 18-layer StyleGAN
generator. We list the attributes corresponding to all eighteen layers of style codes.
Most style codes control multiple attributes. Among them, we use "micro features" to
represent the style codes with low effects.

n-th attribute n-th attribute
1 eye glasses, head pose, hair length 10 eye color, hair color
2 eye glasses, head pose, hair length 11 skin color
3 eye glasses, head pose, hair length 12 micro features
4 head pose, hair length 13 skin color, clothes color
5 hairstyle, cheekbones, mouth, eyes, nose, clothes 14 skin color, clothes color
6 mouth 15 micro features
7 eyes, gender, mustache, forehead, mouth 16 micro features
8 eyes, hair color 17 micro features

9 hair color, clothes color, lip color, mustache color,
eyebrow color, eye color, skin color 18 clothes color

4 Experiments and Comparisons

To explore the efficiency and effectiveness of our method, we evaluate and com-
pare our method with other methods on multiple image attribute manipulation
tasks. The main comparison contents include hairstyle, hair color, emotion, age,
gender, etc.

4.1 Implementation Details and Evaluation Metric

Implementation Details. We use e4e[34] as our inversion encoder and Style-
GAN2 as our generator. We trained and evaluated our model on the CelebA-HQ
dataset[13]. We collected text prompts from the internet describing attributes
such as hairstyle, hair color, facial emotion, age, gender, etc. The number of
text prompts for each attribute varies, ranging from 5 to 10. For each attribute
mapper, it merely maps the style codes related to the attribute that needs to
be manipulated and fuses the text conditional embeddings, which are randomly
selected from the text set. For the training strategy, the base learning rate is
0.0001, the batch size is 1, and the number of training iterations for each at-
tribute mapper is 20,000. We use the Adam optimizer[17], with β1 and β2 set to
0.9 and 0.999, respectively.
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Input TediGAN StyleCLIP HairCLIP Ours

Fig. 2. Visual comparison with other methods. The left side of each row is the text
prompt, the first column is the input image, and each subsequent column is the gener-
ated result of each method.

Evaluation Metric. Since our task is to edit the image, the pixel level of the
image will change greatly, and we can only analyze the results according to
the semantic level. Therefore, some indicators, such as PSNR, SSIM, FID[11],
etc. that are commonly used in the field of image generation are not suitable
for our task. We only evaluate whether the output satisfies the text prompt
and whether the identity attribute is consistent with the input. For the metric
of accuracy (ACC), we use CLIP[27] to calculate the similarity between text
prompts and outputs, and introduce identity similarity (IDS) to evaluate the
identity consistency between the outputs and the inputs.

4.2 Comparisons with State-of-the-art Methods

We mainly conduct comprehensive comparisons on the manipulation of character
hairstyles, hair color, facial emotion, and other attributes. Our method merely
does mapping training once for the attributes to be manipulated. Compared
with mainstream methods such as StyleCLIP[26] and HairCLIP, the speed is
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Input TediGAN StyleCLIP HairCLIP Ours

Fig. 3. Visual comparison with other methods on hair color editing.

faster and the coupling between properties is lower. As shown in Table 3, our
method is less than StyleCLIP in both training and inference time. The proper-
ties controlled by each style code in the W+ space are given in Table 1. Through
extensive experimentation, and with the help of more than 20 people, which we
analyzed and discussed together, we finally determined the properties controlled
by each style code in the W+ space.

Hairstyle Manipulation. We comprehensively compare our method with cur-
rent state-of-the-art text-driven image processing methods TediGAN[37], Style-
CLIP, and HairCLIP in hairstyle editing. According to Table 1, the 5-th style
code can control the hairstyle, while the first 4 style codes can control the length
of the hair. Through extensive experiments, we found that jointly editing the first
5 layers of style codes can achieve better hairstyle editing results. Therefore, we
only do feature mapping for the first 5 layers of style codes and embed text
features, and do nothing for other style codes. According to the experimental
results shown in Fig. 2, TediGAN fails to edit hairstyles. Both the qualitative
and quantitative results of StyleCLIP are close to our method, but the issue
with StyleCLIP is slow and requires training a mapper for each text prompt.
And StyleCLIP does not match the text "Mohawk hairstyle" well. In general,
HairCLIP has the best effect on hairstyle editing, but there is a clear difference
in hair color, indicating that there is a coupling between attributes. We can
find from the quantitative results in Table 2 that the results generated by Hair-
CLIP are the closest to the text prompts but lose certain identity information
compared to our method.
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Input TediGAN StyleCLIP Ours

Fig. 4. Visual comparison with other methods on emotion editing.

Input TediGAN StyleCLIP Ours Input TediGAN StyleCLIP Ours

Fig. 5. Visual comparisons with other methods on gender and age editing. Gender on
the left, age on the right.

Table 2. Quantitative comparison of all attribute edits, where red font indicates the
best result for each column.

Hairstyle Hair color Emotion Gender Age
Method ACC IDS ACC IDS ACC IDS ACC IDS ACC IDS

TediGAN 0.1842 0.5276 0.2032 0.3647 0.2135 0.5716 0.1719 0.4816 0.1926 0.6673
StyleCLIP 0.2119 0.8574 0.2436 0.8217 0.2169 0.7808 0.2346 0.7211 0.2153 0.8037
HairCLIP 0.2367 0.8731 0.2303 0.9237

Ours 0.2325 0.8934 0.2377 0.8732 0.2478 0.8081 0.2153 0.7331 0.2410 0.7219
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Hair Color Manipulation. Same as hairstyle manipulation, we compared our
method with TediGAN, StyleCLIP, and HairCLIP on hair color editing. Accord-
ing to Table 1, the style codes of the 8-th, 9-th, 10-th layers control the color
of the hair. The qualitative comparisons of experimental results are shown in
Fig. 3. Intuitively, TediGAN failed on silver hair editing, and other effects were
mediocre. In addition, it is easy to find that the face color of HairCLIP is differ-
ent from the face color of the input. From the quantitative results in Table 2, we
can see that HairCLIP preserves the identity attribute better, and StyleCLIP
matches the text prompt better.
Emotion Manipulation. In addition to hair, we also experimented with facial
emotion editing and made qualitative and quantitative comparisons with Tedi-
GAN and StyleCLIP. Since HairCLIP cannot operate on attributes other than
hair, we omit it here. Emotions are reflected by facial features, consequently, we
edit style codes that control characters’ facial features. As shown in Table 1,
human facial features (nose, eyes, mouth) are controlled by layer 5, layer 6, and
layer 7. We use the same method to design an emotion mapper, and the gen-
erated results and the qualitative comparison results are shown in Fig. 4. The
results of TediGAN are closer to the textual prompt, but it is obvious that the
identity attributes vary greatly. Both StyleCLIP and our method retain perfect
identity attributes, but StyleCLIP does not work well for "Sad" emotion edit-
ing. It can also be found from the quantitative analysis in Table 2 that the IDS
of StyleCLIP and our method are relatively high, reaching 0.7808 and 0.8081
respectively, indicating that the identity attributes are well preserved. And the
ACC of our method is also the highest among the three, reaching 0.2478, which
illustrates that our method is more matched with text prompts.
Other Manipulations. In addition to the above-mentioned manipulations, we
also conducted experiments and comparisons on several attributes such as age
and gender. For the edits of age, our method cannot accurately generate the
specified age results, and can only be edited with approximate descriptions,
such as old, middle-aged, young, etc. Gender editing, it’s editing women as men
and men as women. These two attributes are related to human facial features,
consequently, we trained these two mappers in the same way as emotion editing.
The specific experimental and comparison results are shown in Fig. 5 and Table
2. Both in terms of qualitative and quantitative results, StyleCLIP and our
method are close, and both are better than TediGAN. StyleCLIP achieved the
best results on both the ACC indicator of gender and the IDS indicator of age,
reaching 0.2346 and 0.8037, respectively. Our method achieves the best results
on the IDS indicator of gender and the ACC indicator of age, reaching 0.7331
and 0.2410, respectively.

4.3 Ablation Study

To demonstrate the effectiveness of each component in our overall approach,
we perform ablation studies by evaluating the following subset models and loss
functions:
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Table 3. Quantitative time comparison on
a single 1080Ti GPU, where red fonts indi-
cate the best results.

Method train time infer.time
StyleCLIP 10-12h 75ms

Ours 8h 43ms

Table 4. Quantitative comparison of face
loss and background loss, where red fonts
indicate the best results.

Hairstyle Emotion
λface ACC IDS λbg ACC IDS

0 0.2308 0.8636 0 0.2387 0.7988
1 0.2347 0.8742 1 0.2412 0.8010
2 0.2325 0.8934 2 0.2478 0.8081
3 0.2136 0.8898 3 0.2296 0.8103

Table 5. For the number of edited style codes, quantitative comparisons are made on
emotion editing and model scale, respectively, where red fonts indicate the best results.

Emotion Mapping moduleMethod ACC IDS Params(M) MFLOPs
Edit all style codes 0.2394 0.6083 170.2 170.1

Ours 0.2478 0.8081 28.37 28.35

Loss Function. We verify the effectiveness of face loss and background loss by
controlling variables, the results are shown in Fig. 6. To verify the importance
of the background loss, we did a comparative experiment on emotion editing,
and the experimental results are shown in the left half of Fig. 6. It can be seen
that when the background loss is not used, the generated results are significantly
different from the input on the hair, and after using the background loss, the
background similarity can be well maintained. Likewise, we conduct comparative
experiments on hairstyle editing to verify the effectiveness of face loss. The eyes
and mouth have changed to a large extent without using face loss, and after using
face loss, these changes are gone. The above two sets of comparative experiments
fully verify the effectiveness of our background loss and face loss. It should be
pointed out that these two losses limit the editing ability of images. As shown
in Table 4, face loss can reduce the loss of identity information, but it limits the
editing ability of images to a certain extent. Compared with face loss, the effect
of background loss is limited. When we do not use these two losses, our ACC
and IDS metrics both exceed StyleCLIP, which can also reflect the effectiveness
of our W+ feature selection.

Mapping All Style Vectors. To prove the effectiveness and efficiency of using
partial style codes, we map all style codes according to StyleCLIP. As can be
seen from Fig. 7, when mapping all style codes, the generated results will look
unnatural and cannot match the text prompts well. We also give the quantitative
comparison results in Table 5. Mapping all style codes not only increased the
number of parameters and FLOPs several times, but also worse the ACC and
IDS indicators, even the IDS decreased by nearly 0.2, which also proves that our
method not only reduces the number of parameters speeding up the training and
inference time but also generate better results.
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Input Ours w/o ℒ���������� Input Ours w/o ℒ����

Fig. 6. Visual comparison of our generated results with methods and variants of our
model. The top left and bottom left are comparisons of sentiment, two text prompts
are "happy" and "angry", where the left is the original input, the middle is our result,
and the right is the result without background loss. The top right and bottom right
are comparisons of hairstyles, the two text prompts are "afro hairstyle" and "bowl-cut
hairstyle", where the left is the original input, the middle is our result, and the right
is the result without face loss.

(a) (b) (c) (a) (b) (c)

Fig. 7. Visual comparison of our generated results with methods and variants of our
model. The text prompts are "happy" and "angry", respectively. (a) The input images.
(b) Results were obtained with our method (map part of the style codes). (c) Results
were obtained with "map all style codes".

5 Conclusions

We propose a new image attribute manipulation method, which combines the
powerful generative ability of StyleGAN with the extraordinary visual concept
encoding ability of CLIP, which can easily embed text prompts into images and
guide image generation. Our model support high-quality manipulation of multi-
ple attributes, including emotion editing, hairstyle editing, age editing, etc., in
a decoupled manner. Extensive experiments and comparisons demonstrate that
our method outperforms previous methods in terms of operational capability,
irrelevant attribute preservation, and image realism.

It should be pointed out that our method sometimes fails to edit certain
colors (blue, yellow, etc.) in hair color editing. We suspect that the editor’s style
codes are not complete enough, or that CLIP’s text encoder does not work well
with colors. Another point is that although our method is faster than StyleCLIP,
one mapper cannot edit all attributes. In the future, we will continue to refine
and improve these issues.
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