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Abstract. Cross-view geo-localization (CVGL) aims to retrieve the im-
ages that contain the same geographic target content and are from dif-
ferent views. However, the target content usually scatters over the whole
image, and they are indiscernible from the background. Thus, it is diffi-
cult to learn feature representation that focuses on these contents, ren-
dering CVGL a challenging and unsolved task. In this work, we design
a Content-Aware Hierarchical Representation Selection (CA-HRS) mod-
ule, which can be seamlessly integrated into current deep networks to
facilitate CVGL. This module can help focus more on the target con-
tent while ignoring the background region, thus as to learn more dis-
criminative feature representation. Specifically, this module learns hier-
archical important factors to each location of the feature maps accord-
ing to their importance and enhances the feature representation based
on the learned factors. We conduct experiments on several large-scale
datasets (i.e., University-1652, CVUSA and CVACT), and the experi-
ment results show the proposed module can obtain obvious performance
improvement over current competing algorithms. Codes are available at
https://github.com/Allen-lz/CA-HRS.

Keywords: Geo Localization · Feature Selection · Image Retrieval.

1 Introduction

As a practical and challenging sub-task of image retrieval [27, 14, 30], cross-view
geo-localization (CVGL) aims to find the target images in one view among large-
scale candidates (gallery) that have the same contents with the input query image
in another view. Formally, there are three views of images, i.e., satellite-view,
drone-view, and ground-view images. It contains three types of tasks according
to different views of the input and target images: Drone → Satellite with the
input image of drone-view and the target images of satellite-view; Satellite →
⋆ Corresponding author is Tianshui Chen. This work is supported in part by National
Natural Science Foundation of China (NSFC) under Grant No. 62206060 and in
part by Science and Technology Project of Guangdong Province under Grant No.
2021A1515011341.
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Input Image CVIM CVIM+CA-HRS

Fig. 1. Two examples of the input image (left), the learned feature maps by the baseline
CVIM (middle), and the learned feature maps by integrating the CA-HRS module
(right).

Drone with the input image of satellite-view and the target images of drone-
view; Ground → Satellite with the input image of ground-view and the target
images of satellite-view.

Recently, CVGL receives increasing attention as it benefits variant applica-
tions such as agriculture, aerial photography, event detection, and accurate deliv-
ery [27, 10, 32, 18]. Current works for this task combine metric learning [15, 2, 14]
or domain adaptation [12, 23] with deep neural networks to learn view-invariant
feature representation. More recent works further introduce manually annotated
orientation information to regularize training to improve CVGL performance.
However, this works either increase the model complexity and inference time or
incur additional annotation overhead, making them impractical and unscalable.
On the other hand, the target contents usually scatter over the whole image.
Current algorithms roughly find the content regions but can not well highlight
these regions to learn more discriminative feature representation. As shown in
Figure 1, the learned feature representation is slightly obvious but can not be
distinguished from the surrounding background regions.

To address these issues, we design a novel yet effective Content-Aware Hierar-
chical Representation Selection (CA-HRS) module that helps to better focus on
the target content meanwhile suppress the background regions. We experimen-
tally find that it has higher activation values on the content regions and slightly
lower activation values on the background regions. Thus, it is expected to set the
regions with higher activation values the higher value and set the regions with
lower activation values with lower values, and thus make the contents distin-
guished from the background regions. To achieve this end, the CA-HRS module
computes an average representation as a threshold. Then, it sets the locations
with the activation values higher than this threshold as positive while those val-
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ues lower than this threshold as positive to obtain an enhancement coefficient
map. Moreover, the content regions usually have different scales for different
images, and we propose to compute multi-scale enhancement coefficient maps,
and combine them to obtain the hierarchical enhancement coefficient maps. Fi-
nally, we design an adaptive residual fusion mechanism to seamlessly and flexibly
integrate the CA-HRS into current CVGL algorithms for feature enhancement
to facilitate the performance of CVGL. As shown in Figure 1, by integrating
the CA-HRS module into the current cross-view image matching (CVIM) algo-
rithm [30], it can learn feature maps that obviously focus on the content regions
while ignoring most of the background regions. Moreover, the CA-HRS incur
no additional parameters and very limited computational overhead (i.e., about
1.0%), and thus it can be integrated into variant CVGL algorithms to boost
their performance.

The contributions of this work can be summarized in the following. First,
we design a novel yet effective content-aware hierarchical feature selection (CA-
HRS) module that can help feature enhancement by focusing more on content
regions while ignoring the background regions. Second, we introduce an adaptive
residual fusion mechanism that can integrate the CA-HRS into current algo-
rithms flexibly and seamlessly. Finally, we conduct extensive experiments on the
large-scale University-1652, CVUSA, and CVACT datasets, and the experiment
results show that the proposed module can obviously improve the performance
of current state-of-the-art algorithms.

2 Relate Work

With the advancement of deep learning in images [17, 16, 4], cross-view geo-
localization based on deep learning has achieved significant development. Siamese
network [6] and metric learning are often used in image retrieval. The contrastive
loss can reduce the distance between two matched positive samples and increase
the distance between two unmatched negative samples [15]. The triple loss can
simultaneously reduce and increase the distance between positive and negative
samples [14, 2]. There is still a lot of works that use metric learning to train deep
neural networks to learn discriminative features [8, 7, 11, 22].

In order to reduce the distance between two different domains, the most direct
method is to transform the image features in one domain to another domain,
namely cross-domain adaptation task [28, 5]. Lin et al. introduce a cross-view
feature translation approach to greatly extend the reach of image geo-localization
methods [12]. Shi et al. applied a regular polar transform to warp a satellite image
such that its domain is closer to that of a ground-view panorama [21]. Shi et al.
proposed a novel Cross-View Feature Transport (CVFT) technique to explicitly
establish cross-view domain transfer that facilitates feature alignment between
ground and satellite images [23].

The orientation information is also integrated into the neural network for
learning. Liu et al. integrated the orientation information of each pixel into the
convolution neural network for cross-view geo-localization, which improved the
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geo-localization accuracy [14]. Vo et al. proposed a new loss function, which
combined rotation invariance and orientation regression in the training process,
so that the network learned orientation and got a better feature representation
[24]. Rodrigues et al. proposed a semantic-driven data enhancement technology
that enables Siamese Network to discover objects that are difficult to capture
[20]. Then, the enhanced samples are input to a multi-scale attention embed-
ding network to perform the matching task. Zhu et al. [33] propose to estimate
the orientation and align a pair of cross-view images with unknown alignment
information.

In order to enable the network to focus on the feature extraction of im-
ages in different domains. CBMA [26] simply combines convolutional layers with
sigmoid to extract key features. Zheng et al. applied Instance loss [31] to cross-
view geo-localization [30]. Satellite images, ground images, and drone images
were extracted by using corresponding backbone network to extract features.
These features share the same classifier. They continued to use this network
structure in their subsequent work LPN [25], LPN used a fixed division method
to extract local features using context, so that the features were discriminative.
Arandjelovic et al. proposed NetVLAD [1], which is a scene recognition method.
It can extract local features and aggregate them to enhance the expressive abil-
ity of features. the method can also be applied to CVGL. Hu et al. introduced a
CVM-Net [11], in which NetVLAD is embedded in Siamese network [6]. CVM-
Net extracts the local features and then integrate them for image retrieval and
geo-localization. Experiments show that the network with local features is better
than that with only global features.

3 Hierarchical Enhancement Coefficient Map

In this section, we present the computing process of the hierarchical enhance-
ment coefficient map (HECM) which helps to pay more attention to the im-
portant content regions while ignoring the unimportant background regions. In
the context of the CVGL task, we observe the activation values of the content
regions are usually slightly higher than those of the background regions. Thus,
it is expected to increase the higher activation values even higher to emphasize
the content regions and meanwhile to decrease the smaller activation values to
even smaller to suppress the background. On the other hand, the different con-
tent regions usually share different scales. To achieve the above end, we propose
to compute HECM that has higher important factors for regions with higher
activation values and has smaller important factors otherwise.

Specifically, given the input feature maps of layer l, denoted as f l ∈ RW l×Hl×Cl

in which W l, H l and Cl are the width, height, and channel number, we first com-
pute an mean activation value for each location, formulated as

al =
1

Cl

Cl∑
c=1

f l,c, (1)
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where f l,c is the c-th feature map of f l. Then, average the activation values over
all locations to obtain the mean representation, formulated as

thrl0 =
1

W lH l

W l∑
w=1

Hl∑
h=1

alwh. (2)

As discussed above, we consider the regions with activation values higher than
the mean representation as important content region while those with activation
values smaller than the mean representation as unimportant background regions.

Intuitively, we can compute the ECM ml
0 ∈ RW l×Hl

, in which the value ml
0,wh

denote the important of location (w, h) and it can be computed by

ml
0,wh = 1(alwh ≥ thrl0). (3)

In this way, we can obtain an ECM ml
0 to indicate the importance of each

location. Considering different scales of content regions, we further introduce the
average pooling with different kernel sizes that operates on the mean activation
map al to obtain the thresholds and ECMs for different scales. For scale i, we
first perform an average pooling with a kernel size of kli × kli on al to obtain an

new mean activation map ali ∈ RW l
i×Hl

i . Then, the threshold can be computed
by

thrli =
1

W l
iH

l
i

W l
i∑

w=1

Hl
i∑

h=1

ali,wh. (4)

Similarly, we compare the activation value of each location of a with the
threshold to obtain the corresponding ECMml

i, in whichml
i,wh can be computed

by
ml

i,wh = 1(alwh ≥ thrli). (5)

Finally, we combine all the ECMs to obtain the HECM ml. For each location
(w, h), the value can be compute by

ml
wh = 1 + log10(1 +

K∑
i=0

ml
i,wh), (6)

where K is the number of scales, and the log functions are used to normalize the
important values for more stable training.
Selection of the kernel sizes. To ensure seamless and flexible integration with
current CVGL algorithms, the kernel sizes of the pooling operations should be
automatically adjusted according to the size of the input feature maps. Con-
cretely, it is expected that the kernel size of the largest kernel can not large
than min(W l, H l)/2 and the kernel sizes of different pooling have great vari-
ance. Suppose there are K scales of pooling operation, we can first obtain the
maximal kernel size and base kernel variation stride:

klm = min(h,w)/s, (7)
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Fig. 2. A illustration of adaptive residual fusion (ARF). In particular, f̂l is the final
enhanced feature map of l-th layer, m̂l is the final hierarchical enhancement coefficient
map of CA-HRS of l-th layer.

slb = max(1,min(Wl, H
l)/K − 1). (8)

Then, we can compute the kernel size for the i-th by:

kli = klm − i× slb. (9)

4 Adaptive residual fusion mechanism

As suggested in previous works, local information may be lost if the network goes
deeper. This may lead to fuzzy boundaries of the target content, and thus re-
sulting in degration of the CVGL performance. Inspired by previous work [9], we
design an adaptive residual fusion (ARF) mechanism that takes the HECM for
enhancement to avoid losing the local information. Figure 2 presents an overall
computing process of the ARF mechanism. It first uses the bilinear interpolation
to re-sample the previous HECM ml−1 to the same size with ml, and adds them
to obtain the final HECM for layer l, formulated as

m̂l = ml + ϕbi(m
l−1,W l, H l), (10)

where ϕbi is the bilinear interpolation operation that re-samples the ml−1 from
the size of W l−1 ×H l−1 to the size of W l ×H l. Once we obtain m̂l, we perform
dot product of the final HECM m̂l and each channel of the feature maps:

f̂ lc = f lc · m̂l. (11)

We perform the operation for all channels and obtain the final enhanced
feature representation f̂ l.

5 Experiments

In this section, we present in-depth ablative studies to analyze the effect of each
component of the proposed CA-HRS module. We also combine the CA-HRS
module with current leading algorithms and compare it with state-of-the-art
algorithms to show its superiority.
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5.1 Experimental Settings

Datasets For a fair comparison, we follow previous works [25] to conduct ex-
periments on the CVUSA [27], CVACT [14], and University-1652 [30] datasets.
CVUSA and CVACT are two most-used datasets that cover the ground-view
and satellite-view images and are used to evaluate the subtask of Ground →
Satellite. Therein, CVUSA contains a training set of 35,532 ground-and-satellite
image pairs and a validation set of 8884 image pairs. CVACT contains 35,532
ground-and-satellite image pairs for training, 8884 image pairs for validation,
and 92,802 image pairs for testing. There exists merely one true-matched image
for each query image on the CVUSA test set and exist several true-matched
images for each query image on the CVACT test set. Different from the above
two datasets, University-1652 covers the satellite-view and drone-view images,
which are used to evaluate both two subtasks of Satellite → drone and Drone
→ Satellite. Specifically, in the Satellite → Drone task, it provides 37,855 drone-
view images in the query set and 701 true-matched satellite-view images and 250
satellite-view distractors in the gallery. There is only one true-matched satellite-
view image under this setting. In the Drone → Satellite task, it provides 701
satellite-view query images, and 37,855 true-matched drone-view images and
13,500 drone-view distractors in the gallery. There are multiple true-matched
drone-view images under this setting.

Implementation Details We only perform simple data enhancement with ran-
dom cropping at a certain size and a 0.5 probability of horizontal flipping for
all images that are input to the network. Since there are few aerial images, we
also perform a 90°random rotation operation on images. None of the above data
enhancements are used in the testing stage. The height and width of the input
image are set to 256. n and s are set to 3 and 2 respectively, the correspond-
ing scale number is 3. For the first 5 epochs of training, a warmup strategy is
utilized to slowly increase the learning rate to its initial value. And, after every
80 epochs, the learning rate change to 1/10 of its original value. The Stochastic
Gradient Descent (SGD) is used as the optimizer. We adopt the structure of
D2 for backbone ResNet-50, and adopt CA-HRS module after the last convolu-
tional layer for backbone VGG-16 since VGG-16 does not divide the layers like
ResNet-16.

Evaluation Protocol In the evaluation phase, the feature map output by
backbone is transformed into a vector through the shape change of the tensor.
Then the vectors belonging to the query image and gallery image will be nor-
malized. Finally, the cosine similarity between them is calculated to measure
the similarity between images, and the retrieval result is generated according to
the similarity. The images ranked in the top-10 of similarity will be used as the
retrieved results.
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Table 1. Comparison of R@1 and AP of different integration strategies. The best
results are highlighted in bold.

Structure
Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

S1 62.85 66.54 75.46 62.28

S2 63.01 67.32 77.03 62.89

S3 63.85 68.36 78.07 64.82

S4/D4 63.16 67.74 77.19 63.05

D3 63.54 68.42 77.51 63.62

D2 64.87 69.28 80.03 64.73

D1 64.02 68.76 78.73 64.17

Table 2. Comparison of R@1 and AP of different scale numbers. The best results are
highlighted in bold.

Scale number
Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

1 63.13 67.52 76.89 63.01

2 63.93 68.01 77.85 63.28

3 64.87 69.28 80.03 64.73

4 64.16 68.53 79.19 63.92

5 64.09 68.34 78.75 63.64

6 63.82 68.17 78.46 63.33

Table 3. Comparison of R@1 and AP of the CVIM+CA-HRS with and without the
ARF mechanism. The best results are highlighted in bold.

Method
Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

CVIM+CA-HRS w/o ARF 63.12 67.48 78.32 64.11

CVIM+CA-HRS w/ ARF 64.87 69.28 80.03 64.73

5.2 Analyses the CA-HRS module

To analyze the effect of the CA-HRS module, and integrate it into two baselines,
namely cross-view image matching (CVIM) [30] and local pattern network (LPN)
[25]. Both two algorithms use the ResNet-50 and VGG-16 that have four layer
blocks as the backbone.

Analysis of integration strategy As a plug-and-play module, CA-HRS can
be integrated into any layer of the deep neural network. However, it may lead
to different effects if integrating this module into different layers. In this part,
we analyze the effect of this choice. Here, we conduct experiments using the
CVIM baseline with ResNet-50 backbone on the University-1652 dataset. We
design two categories of integration strategies: shallow layer integration that
mainly integrates the CA-HRS in shallow layers and deep layer integration that
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Table 4. Comparison of R@1, R@Top1% and AP of the LPN and CVIM with and
without the CA-HRS module foar the Satellite→Drone, Drone→ Satellite and Ground
→ Satellite subtasks on the University-1652, CVUSA and CVACT datasets. The best
results are highlighted in bold.

Dataset Task Methods Backbone R@1 R@Top1% AP

University-1652

Satellite → Drone

CVIM [30] ResNet-50 74.47 97.15 59.45
CVIM [30] + CA-HRS ResNet-50 80.03 98.29 64.27

LPN [25] ResNet-50 86.45 - 74.79
LPN [25] + CA-HRS ResNet-50 86.88 98.72 74.83

Drone → Satellite

CVIM [30] ResNet-50 58.23 86.00 62.91
CVIM [30] + CA-HRS ResNet-50 64.87 90.45 69.28

LPN [25] ResNet-50 75.93 - 79.14
LPN [25] + CA-HRS ResNet-50 76.67 93.76 79.77

CVUSA Ground → Satellite

CVIM [30] VGG-16 43.91 91.78 -
CVIM [30] + CA-HRS VGG-16 48.83 93.96 53.82

LPN [25] VGG-16 79.69 98.50 -
LPN [25] + CA-HRS VGG-16 84.89 99.39 87.18

LPN [25] ResNet-50 85.79 99.41 -
LPN [25] + CA-HRS ResNet-50 87.16 99.49 89.15

CVACT Ground → Satellite

LPN [25] VGG-16 73.83 95.87 -
LPN [25] + CA-HRS VGG-16 77.15 96.96 80.11

LPN [25] ResNet-50 79.99 97.03 -
LPN [25] + CA-HRS ResNet-50 80.91 97.07 83.20

mainly integrates the CA-HRS in deep layers. As shown in Table 1, the back-
bone of ResNet-50 contains 4 layers, Sx indicates that CA-HRS is preferentially
embedded in the shallow layers of ResNet-50, Dx indicates that CA-HRS is
preferentially embedded in the deep layers of ResNet-50, and x represents the
number of CA-HRS. We find the performance increasingly becomes better from
strategy S1 to S3, as stacking more CA-HRS may better enhance feature rep-
resentation. However, the performance degrades when adding more CA-HRS,
i.e., S4. One possible reason for this phenomenon is that may over-emphasize
the content regions and lose some less-obvious but equally-important regions.
Thus, the performance inversely increases from setting D4 to D2. As shown D2
achieves the best performance for both the Drone → Satellite and Satellite →
Drone subtasks. Thus, we select the D2 strategy.

Analysis of scale number The number of scales in the CA-HRS module
controls the richness of the scale information and it also plays key roles in the
CVGL tasks. To analyze its effect, we further conduct experiments that vary
the scale number from 1 to 6, and present the performance comparisons on the
University-1652 dataset. As shown in Table 2, the R@1 and AP both the Drone
→ Satellite and Satellite → Drone subtasks increases obviously when increasing
the scale number from 1 to 3, as it enhances feature representation from more
scale and thus focus more and better on the content regions. However, the R@1
and AP become saturate or even worse when further increasing it from 3 to 6.
Obviously, the scale information is saturated, and thus adding more scale can
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Table 5. The comparison results of LPN with CA-HRS module and current state-of-
the-art competitors for the Drone → Satellite and Satellite → Drone subtasks on the
University-1652 dataset. The best results are highlighted in bold.

Methods Dataset Backbone
Drone → Satellite Satellite → Drone
R@1 AP R@1 AP

CVIM [30] University-1652 ResNet-50 58.49 63.31 71.18 58.74
Contrastive Loss [13] University-1652 ResNet-50 52.39 57.44 63.91 52.24

Triplet Loss (M = 0.3) [3] University-1652 ResNet-50 55.18 59.97 63.62 53.85
Triplet Loss (M = 0.5) [3] University-1652 ResNet-50 55.58 58.60 64.48 53.15

Soft Margin Triplet Loss [11] University-1652 ResNet-50 53.21 58.03 65.62 54.47
LPN [25] University-1652 ResNet-50 75.93 79.14 86.45 74.79

LPN+CA-HRS University-1652 ResNet-50 76.67 79.77 86.88 74.83

not help capture more information and have the risk to be over-fitting. Based
on these analyses, we set the scale number as 3 in the experiments.

Analysis of the ARF mechanism In this work, we introduce the ARF mech-
anism to better update the HECM. Here, we further conduct an experiments to
analyze its contribution by comparing the results that removes this mechanism.
As shown 3, we find the R@1 and AP suffer from evident drop on both Drone
→ Satellite and Satellite → Drone subtasks.

Analysis of complexity and efficiency. As we introduce an additional CA-
HRS module, we also analyze the model complexity and efficiency. As discussed
above, the CA-HRS module does not contain any learnable parameters, and thus
the model size is the same as the baselines without integrating the CA-HRS
module. Here, we main analyze the number of multiply-accumulate operations
(MAC) and inference time with and without the CA-HRS module. We find the
number of MAC are nearly the same for both the CVIM and LPN baselines with
and without the CA-HRS modules. In addition, the inference time increases from
6.80 ms to 6.87 ms and from 6.95 ms to 7.01 ms, with the relative increases of
1.03% and 0.86%, respectively. These comparisons suggest the CA-HRS does not
incur additional computation overhead and is practical for real-world applica-
tions.
Contribution of CA-HRS module. As the above-mentioned description, we
use the CVIM and LPR algorithms as baselines. Here, we emphasize the compar-
ison with these two baselines to show the contribution of the CA-HRS module.

(i) Comparisons with the CVIM baseline. To ensure fair comparisons, we
conduct experiments to compare the results in paper [30]. Here, we perform the
comparison with the ResNet-50 as the baseline on the University-1652 dataset
and with the VGG-16 as the baseline on the CVUSA dataset. The results are
presented in Table 4. On the University-1652 dataset, integrating the CA-HRS
module obviously improves all metrics on both Satellite → Drone, Drone →
Satellite subtasks. For example, it outperforming the baseline CVIM by 5.56%,
1.14%, 4.82% in R@1, R@Top1 and AP for the Satellite → Drone task, and
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Table 6. The comparison results of LPN with CA-HRS module and current state-
of-the-art competitors for Ground → Satellite subtask on the CVUSA and CVACT
datasets. The best results are highlighted in bold. - indicates the corresponding results
are not provided.

Methods Backbone
CVUSA CVACT

R@1 R@5 R@10 R@Top1% R@1 R@5 R@10 R@Top1%

MCVPlaces [27] AlexNet - - - 34.40 - - - -
Regmi [19] X-Fork 48.75 - 81.27 95.98 - - - -

Siam-FCANet [2] ResNet-34 - - - 98.30 - - - -

CVM-Net [11] VGG-16 18.80 44.42 57.47 91.54 20.15 45.00 56.87 87.57
Zhai [29] VGG-16 - - - 43.20 - - - -

Orientation [14] VGG-16 27.15 54.66 67.54 93.91 46.96 68.28 75.48 92.04
CVIM [30] VGG-16 43.91 66.38 74.58 91.78 31.20 53.64 63.00 85.27
CVFT [23] VGG-16 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93
LPN [25] VGG-16 79.69 91.70 94.55 98.50 73.85 87.54 90.66 95.87

LPN+CA-HRS VGG-16 84.89 95.18 97.04 99.39 77.15 90.11 92.50 96.96

LPN [25] ResNet-50 85.79 95.38 96.98 99.41 79.99 90.63 92.56 97.03
LPN+CA-HRS ResNet-50 87.16 95.98 97.55 99.49 80.91 90.95 92.93 97.07

6.64%, 4.45%, and 6.37% for the Drone → Satellite subtask, respectively. On
the CVUSA dataset, it also obtains evident improvement by integrating the
CA-HRS module. Specifically, the R@1 and R@Top1 improvements are 4.92%
and 2.18%. These comparisons well demonstrate the effectiveness of the CA-HRS
module.

(ii) Comparison with the LPN baseline. LPR is a more recent-proposed al-
gorithm and it achieves better overall performance. Here, we also compare with
the results that are reported in the original paper [25] for fair comparisons. Here,
we conduct experiments with ResNet-50 as the backbone on the University-1652
dataset and with both ResNet-50 and VGG-16 on the CVUSA and CVACT
datasets. As shown in Table 4, integrating the CA-HRS with the LPN algorithm
also leads to performance improvement over all settings. On the University-1652
dataset, integrating the CA-HRS module improves the R@1 and AP from 86.45%
and 74.79% to 86.88% and 74.83% for the Satellite → Drone and from 75.93%
and 79.14% to 76.67% to 79.77%, respectively. On the CVUSA and CVACT
datasets with VGG-16 as the backbone, the R@1 and R@Top1 improvements are
5.20% and 0.89% on the CVUSA dataset and 3.32% and 1.09% on the CVACT
dataset. These comparisons further suggest that the CA-HRS can generalize to
different baseline algorithms to facilitate the CVGL task.

5.3 Comparison with State of the Arts

In this part, we present the comparisons with current state-of-the-art algorithms
to show the superiority of the proposed CA-HRS. Here, we present the results
of LPN+CA-HRS as it achieves the overall best performance.
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Performance on University-1652 As all of the current algorithms that have
reported their results on University-1652 use the ResNet-50 as the backbone,
we also present our results with the same backbone for fair comparisons. As
shown in Table 5, LPN is the previous best-performing algorithm for both the
Drone → Satellite and Satellite → Drone tasks, which obtains very obvious
improvement compared with early works. By integrating the CA-HRS module,
it can further improve the performance. Specifically, it leads to 0.74% and 0.43%
R@1 improvement on both two subtasks, respectively.

Performance on CVUSA and CVACT On the CVUSA and CVACT datasets,
current algorithms use ResNet-50, VGG-16, and some other networks as back-
bones. For fair comparisons, we divide them into three groups according to the
used backbone networks for fair comparisons, i.e., ResNet-50-based, VGG-16-
based, and other-net-based. Besides, current algorithms [25][23] mainly present
the R@K (K=1,5,10) and R@Top1% and do not report the AP, and thus we also
present these metrics for comparisons. The comparison results are presented in
Table 6. When using the VGG-16 as the backbone, the current best-performing
algorithm is also LPN that achieves the R@1, R@5, R@10, R@Top1% of 79.69%,
91.70%, 94.55%, 98.50% on the CVUSA dataset and 73.85%, 87.54%, 90.66%,
95.87% on the CVACT dataset. By integrating the CA-HRS module into the
LPN, it boosts these metrics by 5.20%, 3.48%, 2.49%, 0.89% on the CVUSA
dataset and 3.30%, 2.57%, 1.84%, 1.09% on the CVACT dataset. It is notewor-
thy that the improvement is more obvious for the more strict metric. When
using the ResNet-50 as the backbone, the LPN can achieve even better perfor-
mance compared with those using VGG-16. Expectedly, it can still improve the
performance when integrating the CA-HRS module.

6 Conclusion

In this work, we design a novel yet effective content-aware hierarchical represen-
tation selection module that can be seamlessly integrated into current CVGL
algorithms to facilitate the performance of CVGL. The proposed module helps
to locate the content regions while ignoring the background regions to learn dis-
criminative feature representation. We conduct extensive experiments on multi-
ple CVGL datasets (e.g., University-1652, CVUSA and CVACT) to demonstrate
the superiority of our proposed module.

References

1. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: Cnn ar-
chitecture for weakly supervised place recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5297–5307 (2016)

2. Cai, S., Guo, Y., Khan, S., Hu, J., Wen, G.: Ground-to-aerial image geo-localization
with a hard exemplar reweighting triplet loss. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 8391–8400 (2019)

4222



Content-aware Hierarchical Representation Selection for CVGL 13

3. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image
similarity through ranking (2010)

4. Chen, T., Pu, T., Wu, H., Xie, Y., Lin, L.: Structured semantic transfer for multi-
label recognition with partial labels. In: Proceedings of the AAAI conference on
artificial intelligence. vol. 36, pp. 339–346 (2022)

5. Chen, T., Pu, T., Wu, H., Xie, Y., Liu, L., Lin, L.: Cross-domain facial expression
recognition: A unified evaluation benchmark and adversarial graph learning. IEEE
transactions on pattern analysis and machine intelligence (2021)

6. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05). vol. 1, pp. 539–546.
IEEE (2005)

7. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain
adaptation with preserved self-similarity and domain-dissimilarity for person re-
identification. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 994–1003 (2018)

8. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06). vol. 2, pp. 1735–1742. IEEE (2006)

9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: European conference on computer vision. pp. 630–645. Springer (2016)

10. Hsieh, M.R., Lin, Y.L., Hsu, H.W.: Drone-based object counting by spatially reg-
ularized regional proposal network. ICCV pp. 4165–4173 (2017)

11. Hu, S., Feng, M., Nguyen, R.M., Lee, G.H.: Cvm-net: Cross-view matching net-
work for image-based ground-to-aerial geo-localization. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 7258–7267 (2018)

12. Lin, T.Y., Belongie, S., Hays, J.: Cross-view image geolocalization. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 891–898
(2013)

13. Lin, T.Y., Cui, Y., Belongie, S., Hays, J.: Learning deep representations for ground-
to-aerial geolocalization. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. pp. 5007–5015 (2015)

14. Liu, L., Li, H.: Lending orientation to neural networks for cross-view geo-
localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 5624–5633 (2019)

15. Melekhov, I., Kannala, J., Rahtu, E.: Siamese network features for image matching.
In: 2016 23rd International Conference on Pattern Recognition (ICPR). pp. 378–
383. IEEE (2016)

16. Pu, T., Chen, T., Wu, H., Lin, L.: Semantic-aware representation blending for
multi-label image recognition with partial labels. arXiv preprint arXiv:2203.02172
(2022)

17. Pu, T., Chen, T., Xie, Y., Wu, H., Lin, L.: Au-expression knowledge constrained
representation learning for facial expression recognition. In: 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). pp. 11154–11161. IEEE
(2021)

18. Qian, Y., Chaofeng, W., Barbaros, C., X., S.Y., Frank, M., Ertugrul, T., H., K.L.:
Building information modeling and classification by visual learning at a city scale
(2019)

19. Regmi, K., Shah, M.: Bridging the domain gap for ground-to-aerial image match-
ing. In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion. pp. 470–479 (2019)

4223



14 L. Zeng et al.

20. Rodrigues, R., Tani, M.: Are these from the same place? seeing the unseen in cross-
view image geo-localization. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. pp. 3753–3761 (2021)

21. Shi, Y., Liu, L., Yu, X., Li, H.: Spatial-aware feature aggregation for image based
cross-view geo-localization. Advances in Neural Information Processing Systems
32, 10090–10100 (2019)

22. Shi, Y., Yu, X., Campbell, D., Li, H.: Where am i looking at? joint location and
orientation estimation by cross-view matching. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4064–4072 (2020)

23. Shi, Y., Yu, X., Liu, L., Zhang, T., Li, H.: Optimal feature transport for cross-
view image geo-localization. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 34, pp. 11990–11997 (2020)

24. Vo, N.N., Hays, J.: Localizing and orienting street views using overhead imagery.
In: European conference on computer vision. pp. 494–509. Springer (2016)

25. Wang, T., Zheng, Z., Yan, C., Zhang, J., Sun, Y., Zhenga, B., Yang, Y.: Each part
matters: Local patterns facilitate cross-view geo-localization. IEEE Transactions
on Circuits and Systems for Video Technology (2021)

26. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention
module. In: Proceedings of the European conference on computer vision (ECCV).
pp. 3–19 (2018)

27. Workman, S., Souvenir, R., Jacobs, N.: Wide-area image geolocalization with aerial
reference imagery. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 3961–3969 (2015)

28. Xie, Y., Chen, T., Pu, T., Wu, H., Lin, L.: Adversarial graph representation adap-
tation for cross-domain facial expression recognition. In: Proceedings of the 28th
ACM international conference on Multimedia. pp. 1255–1264 (2020)

29. Zhai, M., Bessinger, Z., Workman, S., Jacobs, N.: Predicting ground-level scene
layout from aerial imagery. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 867–875 (2017)

30. Zheng, Z., Wei, Y., Yang, Y.: University-1652: A multi-view multi-source bench-
mark for drone-based geo-localization. In: Proceedings of the 28th ACM interna-
tional conference on Multimedia. pp. 1395–1403 (2020)

31. Zheng, Z., Zheng, L., Garrett, M., Yang, Y., Xu, M., Shen, Y.D.: Dual-path convo-
lutional image-text embeddings with instance loss. ACM Transactions on Multime-
dia Computing, Communications, and Applications (TOMM) 16(2), 1–23 (2020)

32. Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q.: Vision meets drones: A challenge.
arXiv: Computer Vision and Pattern Recognition (2018)

33. Zhu, S., Yang, T., Chen, C.: Revisiting street-to-aerial view image geo-localization
and orientation estimation. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. pp. 756–765 (2021)

4224


