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Abstract. Direct detection of 3D objects from point clouds is a chal-
lenging task due to sparsity and irregularity of point clouds. To capture
point features from the raw point clouds for 3D object detection, most
previous researches utilize PointNet and its variants as the feature learn-
ing backbone and have seen encouraging results. However, these methods
capture point features independently without modeling the interaction
between points, and simple symmetric functions cannot adequately ag-
gregate local contextual features, which are vital for 3D object recogni-
tion. To address such limitations, we propose ReAGFormer, a reaggrega-
tion Transformer backbone with affine group features for point feature
learning in 3D object detection, which can capture the dependencies
between points on the aligned group feature space while retaining the
flexible receptive fields. The key idea of ReAGFormer is to alleviate the
perturbation of the point feature space by affine transformation and ex-
tract the dependencies between points using self-attention, while reaggre-
gating the local point set features with the learned attention. Moreover,
we also design multi-scale connections in the feature propagation layer to
reduce the geometric information loss caused by point sampling and in-
terpolation. Experimental results show that by equipping our method as
the backbone for existing 3D object detectors, significant improvements
and state-of-the-art performance are achieved over original models on
SUN RGB-D and ScanNet V2 benchmarks.

Keywords: 3D object detection · Transformer · Point cloud.

1 Introduction

3D object detection from point clouds is a fundamental task in 3D scene under-
standing and has wide applications in robotics, augmented reality, etc. However,
most of the latest progress in 2D object detection cannot be directly applied to
3D object detection due to the sparsity and irregularity of point clouds.

Prior works first convert the point cloud into the regular data format [1–4]
and then use convolutional neural networks for feature extraction and 3D object
detection. However, the conversion process always leads to geometric information
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Fig. 1. Illustration of the ReAGF Transformer block. Affine self-attention is introduced
to align the group feature space while capturing the dependencies between points within
each group. Compared to using only symmetric functions (e.g. max), we reaggregate
point features via dependencies learned from reaggregation cross-attention, thus im-
prove feature aggregation efficiency.

loss due to quantization errors. PointNet and its variants [5, 6] alleviate this issue
by extracting features directly from the raw point clouds, which can preserve
the spatial structure and geometric information of the point cloud. As a result,
PointNet and its variants are widely used as the feature learning backbone in
3D object detection [7–11]. However, these methods cannot adequately consider
the dependencies between points during the capture of point features, and the
simple symmetric function (e.g. max) cannot effectively utilize the dependencies
between points to aggregate local contextual features, which are vital for 3D
object detection.

Recently, Transformer [12] has achieved great success in computer vision [13–
16]. Thanks to its long-range dependencies modeling capability, the Transformer
is an ideal way to address the above limitations. However, how to integrate
the advantages of PointNet-like backbone and Transformer to boost 3D object
detection is still an open problem. One effort is to combine Transformer with
PointNet++ and its variants, such as PCT [17] and PT [18], which focus on the
classification and segmentation of point clouds, and the resulting architecture
may be suboptimal for other tasks such as 3D object detection. Other solutions
introduce the sampling and grouping in PointNet++ into Transformer and de-
sign a pure Transformer model for 3D object detection, such as Pointformer [19],
but such solutions still use simple symmetric functions (e.g. max) to aggregate
point features, which limits the representation of the model.

In this paper, we propose a plug-and-play reaggregation Transformer back-
bone with affine group features for 3D object detection, named as ReAGFormer,
which utilizes the ability of the Transformer to model the dependencies between
points and reaggregate point features through learned attention, while retaining
the flexible receptive fields. Specifically, we propose a reaggregation Transformer
block with affine group features (ReAGF Transformer block) to form the down-
sampling stage of the backbone. As shown in Fig. 1, in the ReAGF Transformer
block, we introduce affine self-attention (ASA) to interact on the relationship
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between points. ASA first conducts an affine transformation on the features of
each intra-group point to eliminate the perturbation of the feature space caused
by the sparsity of the point cloud, and align the features of all groups. Then self-
attention is employed to capture the relationship between points on the aligned
group features. For local aggregation features generated by the symmetric func-
tion (e.g. max), we model the dependencies between them and the intra-group
points by reaggregation cross-attention (RCA), and reaggregate the features by
the learned attention. To reduce the geometric information loss caused by point
sampling and interpolation, we also use multi-scale connections on the feature
propagation layer [6] in the upsampling stage.

To validate the effectiveness and generalization of our method, we replace
the backbone of three different state-of-the-art methods of VoteNet [7], BR-
Net [10] and Group-Free [11] with our proposed ReAGFormer while not chang-
ing the other network structures. Experimental results show that when us-
ing our proposed ReAGFormer as the feature extraction backbone, all three
methods achieve significant improvements, and the modified BRNet and Group-
Free achieve state-of-the-art results on ScanNet V2 [20] and SUN RGB-D [21]
datasets, respectively.

Our main contributions can be summarized as follows:

• We introduce the reaggregation Transformer block with affine group features
(ReAGF Transformer block), which alleviates the perturbation of the local
feature space by affine transformation and models the dependencies between
points, while reaggregating the point set features with the learned attention.

• Based on ReAGF Transformer block, we build reaggregation Transformer
backbone with affine group features, named as ReAGFormer, which can align
different groups of feature space and efficiently capture the relationship be-
tween points for 3D object detection. Our ReAGFormer can be served as a
plug-and-play replacement features learning backbone for 3D object detec-
tion.

• Experiments demonstrate the effectiveness and generalization of our back-
bone network. Our proposed method enables different state-of-the-art meth-
ods to achieve significant performance improvements.

2 Related Work

2.1 Point Cloud Representation Learning

Grid-based methods such as projection-based methods [22, 23] and voxel-based
methods [2, 24, 25] were frequently used in early point cloud representations.
Such methods can effectively solve the problem of difficult point cloud feature
extraction caused by irregular point clouds. However, the quantification process
in the projection-based methods suffers from information loss, while voxel-based
methods require careful consideration of computational effort and memory cost.

Recently, the method of learning features directly from the raw point cloud
has received increasing attention. Prior works include MLP-based [5, 6, 26] meth-
ods, convolution-based methods [27–33] and graph-based methods [34–37]. As
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representative methods, PointNet and its variants [5, 6] are widely used for point
feature learning in 3D object detection. However, these methods lack the ability
to capture dependencies, in addition, the symmetric function in PointNet and
its variants cannot adequately aggregate local point set features. In this work,
we address the above limitations with Transformer to boost 3D object detection.

2.2 3D Object Detection in Point Clouds

Due to the sparsity and irregularity of point clouds, early 3D object detection
methods usually transformed point clouds into regular data structures. One class
of methods[1, 4, 38] projects point cloud to the bird’s eye view. Another class of
methods[2, 3, 39, 40] converts the point cloud into voxels. There are also meth-
ods that use templates [41] or clouds of oriented gradients [42] for 3D object
detection.

With the rapid progress of deep learning on point clouds, a series of net-
works represented by PointNet [5] and PointNet++ [6] that directly processes
point clouds are proposed and gradually serve as the backbone of 3D object
detectors. PointRCNN [43] introduces a two-stage object detection method that
generates 3D proposals directly from the raw point cloud. PV-RCNN [44] com-
bines the advantages of both PointNet++ and voxel-based methods. VoteNet
[7] introduces deep hough voting to design an end-to-end 3D object detector,
and subsequently derives a series of methods. MLCVNet [8] and HGNet[45] use
attention mechanism and hierarchical graph network, respectively, to boost the
detection performance. To address the issues of outlier points on detection per-
formance, H3DNet [9] and BRNet [10] introduce hybrid geometric primitives
and back-tracing representative points strategy to generate more robust results,
respectively. DisARM [46] designs a displacement aware relation module to cap-
ture the contextual relationships between carefully selected anchor. In contrast
to these methods, we focus on feature learning backbone in 3D object detection.
We show that our ReAGFormer can serve as the point feature learning backbone
for most of the above methods.

2.3 Transformers in Computer Vision

Transformer [12] has been successfully applied to computer vision and has seen
encouraging results in such tasks as image classification [13, 47], detection [14,
48] and segmentation [49, 50]. Transformer is inherently permutation invariant
and therefore also well suited for point cloud data. PCT [17] and PT [18] con-
struct transformer on point clouds for classification and segmentation. Stratified
Transformer [51] proposes a stratified transformer architecture to capture long-
range contexts for point cloud segmentation. DCP [52] is the first method to
introduce transformer to the point cloud registration task. In point cloud video
understanding, P4Transformer [53] introduces point 4D convolution and trans-
former to embed local features and capture information about the entire video.
Transformer also shows great potential for low-level tasks in point clouds, such
as point cloud upsampling [54], denoising [55] and completion [56]. Transformer
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Fig. 2. The architecture of our ReAGFormer backbone for 3D object detection. ReAG-
Former has four downsampling stages. The first stage is a set abstraction layer [6], and
all other stages consist of group embedding and ReAGF Transformer block. The up-
sampling stage is a feature propagation layer with multi-scale connection.

is also used for 3D object detection such as Pointformer [19], Group-Free [11]
and 3DETR [57]. These methods have seen great progress, however, they neglect
the perturbation of the local point set feature space caused by the sparsity and
irregularity of point clouds, while still using simple symmetric functions to ag-
gregate point set features. In contrast, we propose a reaggregation Transformer
block with affine group features that can alleviate the perturbation of the feature
space, while reaggregating the point set features with the learned attention to
boost the symmetric function.

3 Proposed Method

In this work, we proposed ReAGFormer, a reaggregation Transformer backbone
with affine group features for point feature learning in 3D object detection. As
shown in Fig. 2, the proposed ReAGFormer involves four stages of downsampling
to generate point sets with different resolutions, and an upsampling stage to re-
cover the number of points. Each downsampling stage involves two main compo-
nents: group embedding and reaggregation Transformer block with affine group
features (ReAGF Transformer block). The group embedding is used to generate
the suitable input for the Transformer block. In the ReAGF Transformer block,
we introduce affine self-attention (ASA) to apply an affine transformation on
the group feature space, while modeling the dependencies between points. For
group aggregation point features generated by symmetric functions (e.g. max),
we introduce reaggregation cross-attention (RCA) to boost the efficiency of sym-
metric function aggregation by reaggregating group features using the captured
dependencies. Moreover, we also utilize feature propagation layers [6] with multi-
scale connections in the upsampling stage to reduce the information loss due to
point sampling and interpolation. In this section, we describe each part in detail.
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Fig. 3. A comparison between self-attention and our affine self-attention. By a simple
affine transformation, we align the feature spaces of different groups and therefore
better capture the dependencies between points within a group.

3.1 Group Embedding

The way in which the point cloud data is fed into the ReAGF Transformer block
is vital to the overall architecture. To efficiently capture the fine-grained spatial
geometric features of the point cloud scene and obtain the flexible receptive fields,
we follow the sampling and grouping strategy in PointNet++ [6] to generate local
point sets.

Specifically, we use farthest point sampling (FPS) to sample N
′
points from

the input point cloud P = {xi}Ni=1. Taking each sampling point as the centroid,

a ball query is used to generate N
′
groups according to the specified radius

r, in which each group contains k points. Groups are denoted as {Gi}N
′

i=1 and
feature learning is performed on groups using the shared MLP layer to extract

group features F = {Fi ∈ Rk×C}N
′

i=1, where C is the feature dimension of each
point in the group. The group features F is served as the input sequence for the
subsequent Transformer block.

3.2 Reaggregation Transformer Block with Affine Group Features

Affine Self-attention (ASA). To extract the dependencies between each
intra-group point, we resort to Transformer and self-attention [12]. However,
the feature space of each group consisting of intra-group point features may be
unaligned due to the sparsity and irregularity of point clouds, as well as the
variety of structures within each group, which may lead to perturbations in the
group feature space. We argue that the perturbation in the feature space can
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limit the modeling of the relationship between points. To alleviate the above
problem, we propose the affine self-attention (ASA).

Specifically, we project the group features F = {Fi ∈ Rk×C}N
′

i=1 generated
by the group embedding to query (Q), key (K) and value (V ) as the input for
the attention calculation. Different from the self-attention, as shown in Fig. 3,
to alleviate the perturbation of the group feature space, we apply the affine
transformation to the group features that are used to generate key and value,
and then perform linear projection and shared self-attention, formulated as:

hs = softmax(
(W s

q F )(W s
k ·AT(F ))T
√
d

)(W s
v ·AT(F )) , (1)

ASA(F ) = [h0, h1, ..., hs]Wo , (2)

where W s
q , W

s
k and W s

v are the projection parameters that generate Q, K and
V . s denotes the s-th head. Wo is the projection matrix used to generate the
output. [·] is the concatenation and d is the feature dimension of the s-th head.
AT is the affine transformation.

For affine transformation (AT) module, inspired by [58], we utilize a simple

transformation method. Specifically, for the group feature F = {Fi ∈ Rk×C}N
′

i=1

generated by the group embedding, we formulate the following operation:

F̂i = δ(
Fi − fi
σ + ϵ

), σ =

√√√√ 1

N ′ × k × C

N ′∑
i=1

k∑
j=1

(Fi − fi)
2
, (3)

F̂ = {F̂i}N
′

i=1 = AT(F ) , (4)

where Fi = {fj ∈ RC}kj=1 is the point features of the i-th group. fi ∈ RC is

centroid feature of the i-th group and δ(·) is shared MLP. F̂ denotes the group
feature after affine transformation and ϵ is set to 1e-5 to ensure the correctness
of the calculation.

Reaggregation Cross-attention (RCA). Although the simple symmetric
function (e.g. max) can satisfy the permutation invariance of the point cloud,
it cannot utilize dependencies between points to aggregate the local point set
features, which limits the representation of the model. To alleviate this issue, we
propose the reaggregation cross-attention. Specifically, for the group features F
extracted by ASA, we first apply a symmetric function to aggregate the point fea-
tures of each group, and then perform cross-attention on the aggregated features
and their corresponding intra-group point features, which can be formulated as:

hs = softmax(
(W s

q ·MAX(F ))(W s
kF )T

√
d

)(W s
vF ) , (5)

RCA(MAX(F ), F ) = [h0, h1, ..., hs]Wo , (6)

where W s
q , W

s
k , W

s
v , Wo, d and [·] have the same meaning as Eq. (1) and Eq. (2).

MAX denotes the symmetric function and we use the max-pooling.
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Based on ASA and RCA, the reaggregation Transformer block with affine
group features (ReAGF Transformer block) can be summarized as:

ẑl−1 = LN(ASA(F l−1) + F l−1) ,

zl−1 = LN(MLP(ẑl−1) + ẑl−1) ,

ẑl = LN(RCA(MAX(zl−1), zl−1) +MAX(zl−1)) ,

F l = LN(MLP(ẑl) + ẑl) +MAX(zl−1) ,

(7)

where ASA and RCA are affine self-attention and reaggregation cross-attention,
respectively. F l and z denote the output group features of stage l and temporary
variables, respectively. LN denotes layer normalization.

Normalized Relative Positional Encoding. The positional encoding has a
vital role in the Transformer. Since the coordinates of points naturally express
positional information, such methods of applying transformer on point clouds as
PCT [17] do not use positional encoding. However, we find that adding positional
encoding helps to improve detection performance. We argue that the reason
is that the detection task requires explicit position information to help with
object localization. In this work, we use learnable normalized relative positional
encoding. Specifically, we compute the normalized relative position between each
intra-group point and the corresponding centroid, then we map it to the group
feature dimension by shared MLP layer, which can be formulated as:

NRPE = MLP(
Pi − pi

r
) , (8)

where Pi = {pj ∈ R3}kj=1 denotes the point coordinates of the i-th group. pi ∈ R3

is the centroid coordinates of the i-th group. NRPE is the relative positional
encoding and r indicates the radius of the ball query in the group embedding. The
positional encoding is added to the input F l−1 before performing the attention
calculation shown in Eq. (7).

Feature Connection Bridge. The computational process of group embedding
and ReAGF Transformer block have a large difference, so their output features
may have semantic gap. To connect these two modules more naturally, inspired
by [59], we use a simple bridge module, as shown in Fig. 2. Specifically, we use
linear projection and normalization between the group embedding and ReAGF
Transformer block to eliminate their semantic gap.

3.3 Feature Propagation Layer with Multi-scale Connection

Previous methods [7, 8, 10, 11] often utilize hierarchical feature propagation lay-
ers [6] for upsampling of points. Point sampling in the group embedding and
interpolation in the feature propagation layer inevitably suffer from informa-
tion loss. To alleviate the above limitations, inspired by [60, 61], we introduce a
multi-scale connection based on the feature propagation layer, as shown in the
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Fig. 4. Upsampling stage consisting of feature propagation (FP) layer with multi-scale
connection. F l denotes output group features of downsampling stage l. N is the number
of points and C is the point feature dimension.

Fig. 4. Specifically, in the upsampling stage, we perform point interpolation and
feature mapping on the input point features of each layer using the feature prop-
agation layer. The output of all previous layers is concatenated to the output
of the current layer, and the concatenated features are served as input to the
subsequent layer. Moreover, we fuse the features from the downsampling on the
skip connection and concatenate them to the corresponding upsampling layer.

4 Experiments

4.1 Datasets and Evaluation Metrics

We validate our approach using two large-scale indoor scene datasets: SUN RGB-
D [21] and ScanNet V2 [20]. SUN RGB-D is a 3D scene understanding dataset
with 10,335 monocular RGB-D images and oriented 3D bounding box annota-
tions for 37 categories. We follow VoteNet [7] and divide ∼5K samples for train-
ing, while using 10 common categories for evaluation. ScanNet V2 is a large-scale
3D reconstructed indoor dataset consisting of 1513 scenes, containing 18 cate-
gories of axis-aligned 3D bounding box annotations, and point clouds obtained
from reconstructed mesh. Following the setup of VoteNet, we use about 1.2K
training samples. For both datasets, we follow a standard evaluation protocol
[7], which is mean Average Precision (mAP) with IoU thresholds of 0.25 and 0.5.

4.2 Implementation Details

We apply our ReAGFormer on three state-of-the-art models (i.e. VoteNet [7],
BRNet [10], and Group-Free [11]) by replacing the backbone of these mod-
els with our ReAGFormer, and the replaced models are named as ReAGF-
VoteNet, ReAGF-BRNet, and ReAGF-Group-Free, respectively. The number of
input points and the data augmentation follow the corresponding baseline [7, 10,
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Table 1. Performance comparison by applying our backbone to state-of-the-art models
on SUN RGB-D and ScanNet V2. VoteNet∗ denotes that the result is implemented in
MMDetection3D [63], which has better results than the original paper [7]. For Group-
Free, we reports the results for 6-layer decoder and 256 object candidates.

Method
SUN RGB-D ScanNet V2

mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

VoteNet∗ [7] 59.1 35.8 62.9 39.9
+Ours (ReAGF-VoteNet) 62.3(↑3.2) 40.7(↑4.9) 66.1(↑3.2) 45.4(↑5.5)

BRNet [10] 61.1 43.7 66.1 50.9
+Ours (ReAGF-BRNet) 61.5(↑0.4) 44.8(↑1.1) 67.4(↑1.3) 52.2(↑1.3)

Group-Free [11] 63.0 45.2 67.3 48.9
+Ours (ReAGF-Group-Free) 62.9(↓0.1) 45.7(↑0.5) 67.1(↓0.2) 50.0(↑1.1)

11]. Our model is divided into four stages in the downsampling part. Except for
stage 1, each stage contains a group embedding and a reaggregation Transformer
block with affine group features. Note that we use the standard set abstraction
layer [6] in stage 1, because using transformer in the early stages does not help
the results. We argue that the point feature extraction is not complete in the
shallower layers, and thus the dependencies between points cannot be built ef-
fectively. For the upsampling stage, we use 2 feature propagation layers with
multi-scale connections. The ball query radius of the group embedding is set
to {0.2, 0.4, 0.8, 1.2} and the number of sampling points is {2048, 1024, 512,
256}. The upsampling stage interpolates the points to {512, 1024}. The feature
dimension of the points generated by the backbone is set to 288. For ASA and
RCA, the number of head is set to 8, and a dropout of 0.1 is used. The initial
learning rate of the Transformer block is 1/20 of the other parts, and the model
is optimized with the AdamW optimizer [62]. More implementation details are
described in the supplementary material.

4.3 Evaluation Results

Evaluation on Different State-of-the-art Models. We apply our pro-
posed ReAGFormer on three existing state-of-the-art models: VoteNet [7], BR-
Net [10] and Group-Free [11]. We replace the backbone of these three methods
with our proposed ReAGFormer and evaluate them on SUN RGB-D and Scan-
Net V2 datasets, and the results are shown in Table 1. Our proposed ReAG-
Former enables all three methods to achieve performance improvements. In
particular, ReAGF-VoteNet gets 4.9% and 5.5% improvement on mAP@0.5 on
both datasets. Similarly, ReAGF-BRNet outperforms BRNet with gains of 1.1%
mAP@0.5 and 1.3% mAP@0.5 on SUN RGB-D and ScanNet V2, respectively.
For both datasets, ReAGF-Group-Free also achieves improvement of 0.5% and
1.1% on mAP@0.5, respectively. Note that by applying our approach to the base-
line model, the performance improvement on the more challenging mAP@0.5 is
better than mAP@0.25, which demonstrates that our ReAGFormer adequately
models the interaction between points and improves object localization accuracy.
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Table 2. Performance comparison on SUN RGB-D (left) and ScanNet V2 (right).
VoteNet∗ indicates that the resulting implementation is based on the MMDetec-
tion3D [63] toolbox, which has better results than the original paper [7]. 4×PointNet++
denotes 4 individual PointNet++. - indicates that the corresponding method does not
report results under this condition or dataset. For Group-Free, we report the results
for 6-layer decoder and 256 object candidates.

SUN RGB-D backbone mAP@0.25 mAP@0.5

VoteNet∗ [7] PointNet++ 59.1 35.8
MLCVNet [8] PointNet++ 59.8 -
HGNet [45] GU-Net 61.6 -
SPOT [64] PointNet++ 60.4 36.3

H3DNet 1BB [9] PointNet++ - -
H3DNet 4BB [9] 4×PointNet++ 60.1 39.0

Pointformer+VoteNet [19] Pointformer 61.1 36.6
3DETR [57] PointNet++ 59.1 32.7
BRNet [10] PointNet++ 61.1 43.7

Group-Free [11] PointNet++ 63.0 45.2
CaVo [65] U-Net 61.3 44.3

DisARM+VoteNet [46] PointNet++ 61.5 41.3
DisARM+Group-Free [46] PointNet++ - -

ReAGF-VoteNet (Ours) ReAGFormer (Ours) 62.3 40.7
ReAGF-BRNet (Ours) ReAGFormer (Ours) 61.5 44.8

ReAGF-Group-Free (Ours) ReAGFormer (Ours) 62.9 45.7

ScanNet V2 backbone mAP@0.25 mAP@0.5

VoteNet∗ [7] PointNet++ 62.9 39.9
MLCVNet [8] PointNet++ 64.7 42.1
HGNet [45] GU-Net 61.3 34.4
SPOT [64] PointNet++ 59.8 40.4

H3DNet 1BB [9] PointNet++ 64.4 43.4
H3DNet 4BB [9] 4×PointNet++ 67.2 48.1

Pointformer+VoteNet [19] Pointformer 64.1 42.6
3DETR [57] PointNet++ 65.0 47.0
BRNet [10] PointNet++ 66.1 50.9

Group-Free [11] PointNet++ 67.3 48.9
CaVo[65] U-Net - -

DisARM+VoteNet [46] PointNet++ 66.1 49.7
DisARM+Group-Free [46] PointNet++ 67.0 50.7

ReAGF-VoteNet (Ours) ReAGFormer (Ours) 66.1 45.4
ReAGF-BRNet (Ours) ReAGFormer (Ours) 67.4 52.2

ReAGF-Group-Free (Ours) ReAGFormer (Ours) 67.1 50.0

Table 3. Ablation study on ASA and RCA of the ReAGF Transformer block. If ASA
and RCA are not used, each layer well be a standard set abstraction layer [6].

ASA RCA mAP@0.25 mAP@0.5

- - 64.1 42.6
✓ - 65.0 45.2
- ✓ 66.0 44.9
✓ ✓ 66.1 45.4

Comparisons with the State-of-the-art Methods. In order to verify the ef-
fectiveness of our proposed ReAGFormer, we compare ReAGF-VoteNet, ReAGF-
BRNet and ReAGF-Group-Free with previous state-of-the-art methods on SUN
RGB-D and ScanNet V2 datasets. Table 2 shows the comparison results. By re-
placing the original backbone with our ReAGFormer, VoteNet achieves compet-
itive results on both datasets. For ScanNet V2, ReAGF-BRNet achieves 67.4%
on mAP@0.25 and 52.2% on mAP@0.5, which outperforms all previous state-
of-the-art methods. On the SUN RGB-D dataset, ReAGF-Group-Free achieves
62.9% on mAP@0.25 and 45.7% on mAP@0.5, which is better than previous
state-of-the-art methods on the more challenging mAP@0.5.

4.4 Ablation Study

In this section, we conduct ablation experiments to verify the effectiveness of
each module. If not specified, the models used in all experiments are trained on
ReAGF-VoteNet, and evaluated on ScanNet V2 validation set.

ReAGF Transformer Block. We investigate the effects of the ReAGF Trans-
former block consisting of ASA and RCA, and the results are summarized in
Table 3. If the ReAGF Transformer block consisting of ASA and RCA is not
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Fig. 5. Qualitative comparison results of 3D object detection on ScanNet V2. ReAGF-
VoteNet, ReAGF-BRNet and ReAGF-Group-Free denote the replacement of the base-
line original backbone with our ReAGFormer. With the help of ReAGFormer, VoteNet
and BRNet achieve more reliable results (orange circles, blue circles and purple circles).
Objects with similar shapes (e.g. Table and Desk, Bookshelf and Door) can be easily
confused, but our method can alleviate such problem (yellow circles). Color is used for
better illustration purpose, and it is not used in the experiment. (Best viewed in color.)

Table 4. Ablation study on affine transformation of the ASA. If the affine transfor-
mation as shown in Eq. (4) is not used, ASA will be the standard self-attention [12].

Downsampling method Affine transformation mAP@0.25 mAP@0.5

Set abstraction layer
- 64.1 42.6
✓ 64.6 43.7

ReAGF transformer block
- 65.9 44.5
✓ 66.1 45.4

used, each layer will be a standard set abstraction layer [6]. We can observe
that by applying ASA and RCA separately, performance is improved by 2.6%
and 2.3% on mAP@0.5, respectively. If both ASA and RCA are used, we can
achieve the best performance improvement. Table 4 ablates the affine transfor-
mation (AT) module in the ASA. The best result is achieved using our complete
ReAGF transformer block, and our AT also improves the performance of the set
abstraction layer, which demonstrates the effectiveness of our AT module.

Positional Encoding. To investigate whether positional encoding is effective
and normalized relative positional encoding is better, we conduct comparison
without positional encoding and with absolute or normalized relative positional
encoding. As shown in Table 5, using normalized relative positional encoding
brings 2.1% mAP@0.25 improvement and 0.4% mAP@0.5 improvement com-
pared to not using positional encoding. We argue that the reason is that the
detection task requires explicit position information to help object localization.
We also find that normalized relative positional encoding outperforms absolute
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Fig. 6. Qualitative results of 3D object detection on SUN RGB-D. Our method gener-
ates more reasonable boxes (see black arrows) and can distinguish between objects with
similar shapes (see blue arrows). Moreover, our method can even detect objects that
are not annotated in ground truth (see red arrows). Images and colors are only used
for better illustration, and they are not used in our network. (Best viewed in color.)

Table 5. Ablation study on the effectiveness of positional encoding and performance
of different positional encoding.

Positonal encoding mAP@0.25 mAP@0.5

None 64.0 45.0
Absolute 64.8 43.9

Normalized relative 66.1 45.4

positional encoding, and even the network without positional encoding is 1.1%
better than that using absolute positional encoding on mAP@0.5.

Feature Connection Bridge. In Table 6, we compare the impact of with
and without features connection bridge on the 3D object detection performance.
With the feature connection bridge, we eliminate the semantic gap between the
group embedding and ReAGF Transformer block, thus achieving the improve-
ment of 0.5% on mAP@0.25 and 0.9% on mAP@0.5.

Multi-scale Connection. We investigate the effect of multi-scale connection
by replacing it with cascade connection [66, 67] and residual connection [61], and
the results are summarized in Table 7. We can see that multi-scale connection
achieves the best results compared to the other methods. This demonstrates that
multi-scale connection can more fully aggregate multi-scale contextual informa-
tion and reduce information loss caused by point sampling and interpolation.

4.5 Qualitative Results and Discussion

Fig. 5 illustrates the qualitative comparison of the results on ScanNet V2. These
results show that applying our ReAGFormer to the baseline achieves more reli-
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Table 6. Ablation study on the feature connection bridge.

Feature connection bridge mAP@0.25 mAP@0.5

- 65.6 44.5
✓ 66.1 45.4

Table 7. Ablation study on the different connection methods for feature propagation
layer.

Connection method mAP@0.25 mAP@0.5

Cascade 65.2 44.9
Residual 65.0 44.3

Multi-scale 66.1 45.4

able results. Specifically, ReAGF-VoteNet, ReAGF-BRNet and ReAGF-Group-
Free can detect more reasonable and accurate results (orange circles, blue circles
and purple circles), despite the challenges of cluttered scenes or fewer points. In
addition, our method achieves better results for similarly shaped objects (yellow
circles). For example, the desk in the second row of the scene is treated as a
table by VoteNet [7] in Fig. 5, but ReAGF-VoteNet successfully detects a desk.

Fig. 6 visualizes the qualitative results on SUN RGB-D scenes. Our model
generate more reasonable boxes even in cluttered and occluded scenes (see black
arrows). In addition, our method can also better distinguish between similarly
shaped objects on SUN RGB-D. For example, in the first row of Fig. 6, we suc-
cessfully solve the problem of different categories generated by the same object
(see blue arrows). In the second row, we can detect the table and the desk cor-
rectly (see blue arrows). Besides, our method can even detect objects that are
not annotated in the ground truth (see red arrows).

5 Conclusion

In this paper, we present ReAGFormer, a reaggregation Transformer backbone
with affine group features for 3D object detection. We introduce affine self-
attention to align different groups of feature spaces while modeling the depen-
dencies between points. To improve the efficiency of feature aggregation, we uti-
lize reaggregation cross-attention to reaggregate group features based on learned
attention. Moreover, we also introduce a multi-scale connection in the feature
propagation layer to reduce the information loss caused by point sampling and
interpolation. We apply our ReAGFormer to existing state-of-the-art detectors
and achieve significant performance improvements on the main benchmarks. Ex-
periments demonstrate the effectiveness and generalization of our method.
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