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Abstract. As an extension of visual detection tasks, scene graph gen-
eration (SGG) has drawn increasing attention with the achievement of
complex image understanding. However, it still faces two challenges: one
is the distinguishing of objects with high visual similarity, the other is
the discriminating of relationships with long-tailed bias. In this paper, we
propose a Continuous Self-Study model (CSS) with self-knowledge distil-
lation and spatial augmentation to refine the detection of hard samples.
We design a long-term memory structure for CSS to learn its own behav-
ior with the context feature, which can perceive the hard sample of itself
and focus more on similar targets in different scenes. Meanwhile, a fine-
grained relative position encoding method is adopted to augment spatial
features and supplement relationship information. On the Visual Genome
benchmark, experiments show that the proposed CSS achieves obvious
improvements over the previous state-of-the-art methods. Our code is
available at https://github.com/LINYE1998/Continuous_Self_Study.

1 Introduction

Scene graph [1,2] structure is a medium bridging the image and the text [3,4].
It is comprised by the detection of a list of (subject-predicate-object) triplets [5]
to describe the objects and their relationships in an image. With feature aug-
mentation by the extraction of context information [1,6,7] and the introduction
of external semantic knowledge [8,9,10], it can not only improve the accuracy
of classification in upstream tasks, such as object detection [11] and visual rela-
tionship detection [12,13,10], but also provide a more comprehensive and specific
structure for its downstream visual understanding tasks [14,15], including image
retrieval [16], visual question answering [17,18] and image captioning [19], thus
has been drawing increasing attention.

To generate high-quality scene graphs, multifarious scene graph generation
(SGG) methods [1,2,6,20,21] have been proposed to optimize the prediction
of objects and relations. It can be mainly classified as the traditional SGG
types [1,6] and the unbiased SGG types [20,22]. Both approaches refine the
targets by passing visual or semantic messages with the extraction of context
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3 The results from a state of the art model I The results from the proposed CSS model
[ woman|
[ woman|

(a) The object with high visual similarity (b) The relationship with long-tailed bias

Fig. 1. Examples of the two challenges for SGG task. (1) The distinguish of the unclear
target, e.g., the object dog is predicted as sheep wrongly in (a). (2) The discriminating
of the long-tailed relationship, e.g., the holding is misclassified as eating in (b), due to
the common sense bias [2] from (woman-eating-food).

information [1,7]. Differently, the first types focus on a better feature extrac-
tion network [2,23,24] to mine useful information from more perspectives, while
the second types concentrate on the debiasing work [20,21,25] to recall more
semantic relationships [2] and obtain a more balancing result for the applica-
tion of downstream tasks [20]. Although the previous methods have promising
improvement in performance, most of them suffer from the limitations of exist-
ing SGG datasets [26]: the inadequate training data with hard sample, and the
unbalanced distribution of the long-tailed relation.

The atypical objects with high visual similarity are always hard to be distin-
guished. For example, in the red box in Fig. 1(a), the dog is identified as sheep
by a state-of-the-art model. While the dog is ambiguous and difficult to be dis-
tinguished, it’s easy to recognize it by inference with the context information. To
extract the scene information from the image, numerous researchers [2,6,7,10,27]
struggle for better feature extraction networks [20]. However, it’s still difficult
to understand the scene and focus on the hard samples under dozens of pre-
dicted objects and biased relation of square growth. For human beings, how do
we think when observing objects that are difficult to distinguish? Focusing on
the unclear targets, we usually realize that we are confused and list several alter-
native possibilities, and then make the judgment in combination with the scene
information. Inspired by the recent knowledge distillation work [28,29,30,31] , we
want to enable the network to perceive the hard samples of itself and distinguish
them with the supplement of scene context information.

Meanwhile, the recent research focuses on the debiasing work to balance
the results from long-tailed bias. However, with the increase of the mean recall
(mR@K) [23] among each predicate, most of the debiasing methods cause an
unacceptable decline in Recall (RQK). As illustrated in Fig. 2, the unbiased SGG
approaches choose a preference for the relationships with similar semantics, but
finitely to predict them more accurately. It means that the upper limit of the
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(a) eating (c) eating —> behind (b) eating — holding (b) eating —> under

Fig. 2. Four typical cases of the long-tailed bias. With the subject human and the ob-
ject food, different relations are more likely to be predicted as eating. By supplementing
the relative position information, the relationship can be predicted correctly, e.g., from
eating to behind in (b), holding in (c), and under in (d).

predicates’ prediction is limited by the information the neural networks extract.
Hence, the unbiased SGG methods still need to optimize the feature extraction
networks for more useful information. A large proportion of predicates have a
high correlation with the spatial relations between their objects. Therefore, Both
SGG types [2,12,20,22,25] and much more visual detection tasks [32,33] adopt
position encoding to extract spatial information. The common position encoding
cuts the image averagely into a set resolution and encodes each object separately.
Nevertheless, it cannot extract the relative position information explicitly, while
the relative position can provide more details between the object pairs. Besides,
for small objects, it’s hard to extract accurate spatial information. This motivates
us to augment the spatial feature with fine-grained encoding.

Hence, for the distinguishing of objects with high visual similarity, we pro-
posed a novel self-distillation method: Continuous Self-Study (CSS) for SGG
model to learn from its own behavior with a real-time updated long-term mem-
ory structure. Focusing on the hard sample, CSS transfers the detection task
from the prediction of objects to the distinguishing of similar targets. Moreover,
for the discriminating of relationships with long-tailed bias, we propose a spatial
augmentation (SA) of the relative position to improve the spatial information
from ambiguous and directionless to accurate and directional.

Our contributions can be summarized as follows:

e A Continuous Self-Study method for SGG models is proposed to learn self-
behavior, so as to obtain better visual understanding and distinguish similar
targets in complex scenes.

e A spatial augmentation method is designed for visual relation detection to
effectively improve the recall (RQK) and mean recall (mRQK) among each
predicate in unbiased SGG field.

e Experiments on the benchmark dataset show that our approach can improve
on the state-of-the-art baseline.
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2 Related Work

Scene Graph Generation. Scene graph [1,2] is a mid-connection [3,4,16] of
visual domain and semantic domain, which drawn increasing attention with its
refinement of visual detection tasks [5,11,12,13,34] and its potential value in sev-
eral downstream visual reasoning [17,18,19,35,36,37] and visual understanding
tasks [14,15]. The development of scene graph generation task can be divided
into two stages. In the first stage, various methods [1,6,8,13,23,27,38,39,40] are
proposed to explore multiple ways of the extraction of the feature. With the
supplement of context feature [1,2,6,7] and the introduction of external language
information [3,8,9,10], these methods access promising improvement of function
and performance. However, This scene graph generation is far from practical,
due to the biased SGG problem [3,20] with the long-tailed dataset.

In the second stage, multiple approaches are proposed to generate unbiased
scene graph. Zellers et al. [2] firstly pointed out the bias problem of SGG and the
followers [9,23,26] proposed the unbiased metric to evaluate SG with increased
attention on tail relationships. Tang et al. [20] draw the counterfactual causality
from the trained graph to infer the effect from the bias. Yu et al. [22] proposed
a cognition tree loss to make the tail classes receive more attention in a coarse-
to-fine mode. Guo et al. [21] tackled the bias problem with semantic adjustment
and balanced predicate learning. Chiou et al. [25] used a dynamic label frequency
estimation to balance the head and the tail data. However, the recent approaches
struggle for the identification of tail predicates and focus on the promotion of
the mean recall. With the improvement of mR@QK, the recall of the head data
got a severe drop, which made the SGG still far from practical.

Knowledge Distillation. Knowledge distillation [41,42,43,44,45] is a method
of extraction, generalization, and transmission of knowledge. By transferring the
knowledge [42,43,44,46,47] of a complex pre-trained teacher network [42,43,46],
a simple student network [29,31,41,48,49] can be trained effectively with the
pseudo labels. To address the problem of confirmation bias [50] in pseudo-
labeling, Pham et al. [51] trained the teacher along with the student and cor-
rected the bias with the feedback of the student’s performance. However, these
traditional methods depended on a well-trained teacher network [28]. Several
self-knowledge distillation methods [52,53,54,30,55] are proposed to reduce the
necessity of training a large network. Nevertheless, because of the square growth
relation [7] with the targets, it’s still hard for SGG model to overcome the limited
computing [28,41,56,57] which inversely optimizes the detection of hard samples.
To this end, we distill the knowledge from the network with a memory structure
that enables the network to study from its own behavior.

3 Methodology

As illustrated in Fig. 3, the CSS model consists of two parts: (1) the Self-Study
module (SS) for object refinement. It retains its behavior information in a real-
time updated memory Memorandum. The hard samples are perceived by dis-
tilling the knowledge from Memorandum and combining it with the detected
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Fig. 3. Overview of the proposed Continuous Self-Study model. For the input image,
the proposals are generated by a detector. With the object refinement by the self-study
module, the hard sample jacket which is predicted wrongly by the detector can be
refined to coat correctly. Then the relationship prediction is optimized with the spatial
augmentation module. The output scene graph is generated with the combination of
the predicted pair-wise objects and their detected relationships.

results. Then the hard samples are focused on to distinguished and refined with
the supplement of the scene context. (2) the spatial augmentation module for
relationship optimization. It embeds the spatial feature of the relative position
through a fine-grained encoding with an explicit spatial constraint, which dis-
tinguishes the bidirectional relationships.

The input of the CSS are proposals generated by a detector. In order to
describe better, the following definitions are given. For an input image I, We
use a pre-trained Faster RCNN [58] as an underlying detector [2] to predict a set
of region proposals B = {b;} and their corresponding detected object O = {0;}.
The proposal b; € R* is represented by a bounding box b; = [x;, y;, w;, h;], where
(x4,y;) are the coordinates of the box’s top left corner, w; and h; are the width
and height of the bounding box respectively. Meanwhile, the detector extracts a
set of visual feature vector V' = {v; } for each proposal b;. With the feature vector,
the Roi Box Head outputs a set of predicted vector L = {L;} which represents
the per-class confidence distribution. In addition, the C' = {¢;},i € {1, ..., R.} is
the category set of the object, where R, is the dimension.

3.1 Self-Study Module

Memorandum. We design a long-term memory structure, Memorandum, for
CSS to retain its behavior information. The Memorandum M € RFexFe ig 5
square matrix represented by a set of memory vectors M = {m;.}, where m,.
is the memory of the object class ¢; € R, which records the CSS’s historical

455



6 Y. Lv et al.

predicted behavior. More specifically, the scalar m;; represents the conditional
probability P(gt = ¢;j|pred = ¢;) that the detector predicts the object as ¢; while
its ground truth is ¢;, as illustrated in Fig. 3.

Intuitively, for a well-trained class ¢,, of CSS model, the memory vector my,,.
will just activate at node my,,, with the rest of inactive nodes of m,,.. On the
contrary, for the indistinguishable classes, the memory vector will activate at
pairwise even more nodes. Hence, the Memorandum structure can be regarded
as a summary note organized by the CSS itself.

The CSS is trained with a two-stage strategy to avoid the difficulty of con-
vergence caused by error accumulation at the beginning of training. In the first
stage, the SGG network is trained without Memorandum until the network
achieves the performance of the baseline. In the second stage, we initialize a
heatmap H € REcXEc with the statistical matrix Sy = {s;;} € RFc*Ec where
si; is the statistical quantity of the ¢; predicted by CSS with the ground truth of
¢;. Then, the heatmap is updated with the new statistics S; each iteration, where
S; is the i-th statistical matrix of its iteration similar to Sy. Considering that
the relevance between the current and historical state of the heatmap on CSS
decreases over time, the historical data of each iteration is attenuated during the
training process with the variant formula of Newton’s law of cooling [59]:

T(t) = T(0)e=" (1)

where T'(0) and T'(t) are the temperature of time 0 and t respectively, and « is
the attenuation factor. Eq. 1 can be regarded as a cooling process for an impulse
response, which is widely used to calculate the heat of events in today’s social
network [60]. By summing the impulse responses after each iteration of training,
the heatmap H at moment ¢ can be calculated with Eq. 2:

t

H(t) =Y Se =) (2)

=0

With the increasing decay over time, the H(¢) can reflect the behavior of
CSS with an appropriate cycle, which addresses the accumulation of too much
historical behavior. To simplify the calculating process of H(t), Eq. 2 can be
further converted by making a difference between H(t + 1) and H (t):

t+1 t
H(t+1)— H(t) =Y _ Sie =0 )" gemalt=i (3)
i=0 i=0
which can be simplified as:
H(t+1) = e"“H(t) + St (4)

Eq. 4 will be derived in detail in the supplementary materials. The heatmap
can be updated iteratively only through the statement of the last moment and
the statistical matrix of current moment by Eq. 4. Then the Memorandum can
be calculated with H:

M; = LineNorm(H (7)) (5)
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where LineNorm is a function that normalizes each row of H separately. By
repeatedly distilling and updating knowledge from Memorandum, CSS can con-
tinuously study from its own behavior and finally get a well-trained network
with an ideal Memorandum, which is a dynamic balanced diagonal matrix.
Knowledge Distillation. This subsection is to perceive and refine the hard
samples with the behavior information distilling from the Memorandum and the
supplement of the scene information. As illustrated in Fig. 3, each object O;
can be predicted with a pre-labeled ¢; by getting the maximum value of the
confidence vector /;. The memory m,,.is drawn out from the Memorandum with
the pre-predicted c¢;.Then we use a perceiving layer to get the focus feature d;
which focus on the hard sample:

di = @1 (ll O] mci) + thv)g (mcl) (6)

where ¢, and @, are multi-layer perceptron, « is a balance hyperparameter,
and ® denotes the element-wise product. The focus feature can be regarded as a
confusion vector with the confusion degree of each class. For the confidence vector
l; and the drawn-out memory m,, with only one activate node, the confusion
degree will be very low for all nodes of d; so that the CSS can decrease the
correction with the scene feature for o;,. On the contrary, if I; or m., has two or
more activate nodes, the confusion degree will be high between the class relative
to the activate nodes, which will increase the refinement with the scene attention
feature F' = {f;}.

As shown in the bottom of Fig. 3, the scene attention feature is extracted

with the scene encoder network. In this work, we embed and normalize the [;
first, and then we use N transformer-based Encoder which connected end to end
to adaptively gather contextual information for a certain object. The f; can be
regarded as an inference that predicts the probability distribution of ¢; type
object under a certain scenario.
Object Refinement. The objects are refined with the combination and fusion
of the focus feature and the scene attention feature. To avoid the deviation
from the image, the refinement needs to be constraint with the original visual
information. Through the supplement of the original confidence distribution I,
the predicted label of the object is refined by:

I = softmax(l; + B¥(f; ©® d;)) (7)

where I} is the confidence distribution of the object after the refinement, § is a
balance hyperparameter, and ¥ is a projection function. We denote S¥(f; © d;)
as [ with the statistical of the refined predicts, This Self-Study structure refine
the distribution of classification probability by:

P(L') = P(L|V) + P(L|D, Oy, ...,On) - P(D|L, M) (8)

where L = [; is the refinement of the object, L’ = {I/} is the final output
prediction distribution, and D = d; is the focus feature set. Eq. 8 embodies
the essence of the self-study method. P(D|L, M) is the knowledge distilled from
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Fig. 4. The fine-grained encoding of the relative position. For the pairwise targets, the
subject box is divided equally into nine parts. The whole image can be divided into
twenty-five little boxes with the split lines obtained in the previous step. Then these
boxes are encoded into a matrix, and the boxes which intersect with the object box
are encoded as one. Finally, The matrixes are reshaped as a vector.

the CSS. For hard samples with high P(D|L, M), CSS will focus more on scene
context between the confusion classes with less attention from visual features.
It is a positive feedback process to continuous self-study because the network
will be refined by learning of the Memorandum, while the Memorandum will
transform to a better distribution with the better performance of CSS.

3.2 Spatial Augmentation Module

To enhance the spatial constraint for the prediction of relations, we augment
the relation feature with a fine-grained relative position spatial encoding. For
better description, we use bs and b, to distinguish the bounding box of subject
and object. As illustrated Fig. 4, for each triplet (subject -predicate-object), by =
[,y,w, h] is divided equally into nine little boxes. Then, bs is expanded into a
larger box b,, which obtained the whole view on the image I. With the nine
boxes inside by and sixteen boxes outside b, the image I can be divided into
twenty-five region b, = {z;;}, where z;; can be represented by:

Zij = [xijayijawij7hij]7 Zv.] 207"'a4 (9)
where x;5, w;; can be further represented as:

i = {0’ 7=0 (10)

z—(1—j)sw, j=1,..4

T, 1=
wij = sw, i=1,2,3 (11)

wy—r—w, =4
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where wy is the width of the image. Meanwhile, y;;, h;; can be calculated
in the same way with Eq. 10 and Eq. 11 respectively. The set @ is defined as
the region within the bounding box b, and b, is defined as the bounding box of
the triplet’s object. The spatial embedding of (bs,bo) is encoded by a boolean
matrix H = {h;;}:
hij = {0’ @, NQzyy =2 . i,j=0,...4 (12)
17 Qbo N QZij 7é )

where h;; represents the existence of intersection of b, with z;;. This encoding
method can not only describe all possible spatial relationships in a consistent
way but also make a distinction between (subject, object) and (object, subject).
Then, H is reshaped to a vector s € R?®. The spatial feature is extracted from
s with a fully connected layer and then fuse with the conventional encoding
feature.

3.3 Scene Graph Generation

A scene graph consists of the class labels with the locations of individual objects
and the relationship between each pairwise object [9], which can be defined as :

G ={B,0,R} (13)

where B = {by,bs,...,b,} is a set of bounding boxes, O = {01,0s,...,0,} is
the set of class labels corresponding to B, which is refined in Sec. 3.1 with the
self-study method, R = {ro,—0,,700—04s s T0, -0, _, } 18 the set of relation
between O; and O; with n(n — 1) elements. The relationships R is predicted
with a Roi Relation Head. In this paper, we use MOTIFS [2], as the Roi Relation
Head, and debias the predict of the relation R with TDE [20]. Finally, the triplet
list is ranked with the comprehensive confidence score of the object and the
predicate. The scene graph is generated with the combination of the detected
pairwise objects and their predicted relationships, and finally ordered by its joint

probability P(O;)P(Ro,-0,)P(O;).

4 Experiment

4.1 Experimental Settings

Datasets. Following the recent works [9,20,2] in SGG, we trained and evaluated
our model on the Visual Genome (VG) [26] dataset. It consists of 108k images
with 75k object categories and 37k predicate classes. Since 92% predicate classes
have no more than 10 samples, we followed previous works [1] and adopted a
widely used VG split, containing the 150 most frequent object categories with
50 predicate classes. Meanwhile, the VG dataset is split into a training set (70%)
and a test set (30%) with a validation set (5k) sampled from the training set for
parameter tuning.
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Table 1. The SGG performances of Relationship Retrieval on mean Recall@K [9,23],
and the CSS is our proposed model.

Predicate Classification Scene Graph Classification Scene Graph Detection

Model Method mR@20 mR@50 mR@100 | mR@20 mR@50 mR@100 |mR@20 mR@50 mR@100
IMP+ [1,9] - - 9.8 10.5 - 5.8 6.0 - 3.8 4.8
FREQ [23,2] - 8.3 13.0 16.0 5.1 7.2 8.5 4.5 6.1 7.1
KERN [9] - - 17.7 19.2 - 9.4 10.0 - 6.4 7.3
PA [61] - 15.2 19.2 20.9 8.7 10.9 11.6 5.7 7.7 8.8
GPS-Net [62] - 174 21.3 22.8 10.0 11.8 12.6 6.9 8.7 9.8
GB-Net-3 [63] - - 22.1 24.0 - 12.7 13.4 - 7.1 8.5
VTranseB [24] baseline 11.6 14.7 15.8 6.7 8.2 8.7 3.7 5.0 6.0
TDE [24] 189 25.3 28.4 9.8 13.1 14.7 6.0 8.2 10.2
baseline 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
Focal 10.9 13.9 15.0 6.3 7.7 8.3 3.9 5.3 6.6

Reweight 16.0  20.0 21.9 8.4 10.1 10.9 6.5 8.4 9.8
Resample 14.7 18.5 20.0 9.1 11.0 11.8 5.9 8.2 9.7
Lu+cKD [64]| 14.4 18.5 20.2 8.7 10.7 11.4 5.8 8.1 9.6

MOTIFS [2
2 CogTree [22] | 20.9 26.4 29.0 12.1 14.9 16.1 7.9 10.4 11.8

TDE [20] 18.5 24.9 28.3 11.1 13.9 15.2 5.8 8.2 9.8
TDE-CSS 20.0 26.1 28.5 11.8 14.8 16.2 6.7 8.9 10.8

DLFE [25] 22.1 26.9 28.8 12.8 15.2 15.9 8.6 11.7 13.8
DLFE-CSS | 23.9 28.8 30.7 13.6 16.0 16.9 8.7 12.0 14.1

baseline 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
Reweight 16.3 19.4 20.4 10.6 12.5 13.1 6.6 8.7 10.1
Lu+cKD [64]| 14.4 18.4 20.0 9.7 12.4 13.1 5.7 7.7 9.1
CogTree [22] | 22.0 27.6 29.7 15.4 18.8 19.9 7.8 10.4 12.1

EBM [65] 14.2 18.2 19.8 10.4 12.5 13.5 5.7 7.7 9.1

VCTree [23
ree 23] ppMicss | 171 2008 22.3 | 109 13.0 141 | 6.0 7.1 9.7

TDE [20] 184 254 28.7 8.9 12.2 14.0 6.9 9.3 11.1
TDE-CSS 19.4 25.9 294 9.2 12.9 14.9 7.1 9.6 11.8

DLFE [25] 20.8 25.3 27.1 15.8 18.9 20.0 8.6 11.8 13.8
DLFE-CSS | 23.7 28.6 30.5 16.0 18.9 20.4 8.7 11.9 14.0

Task and Evaluation. We followed the previous work [2] to divide the SGG
task into three sub-tasks: (1) Predicate Classification (PredCls) which takes the
ground truth bounding boxes with its object labels for relation prediction; (2)
Scene Graph Classification (SGCls) which takes ground-truth bounding boxes
to predict the object label and the relation between the pairwise objects. (3)
Scene Graph Detection (SGDet) which detects scene graph from scratch. The
metric of the traditional SGG task is Recall@K (R@K), which is the fraction
of ground-truth targets that are recalled correctly in top K predictions [12].
Due to the long-tailed bias, the good performance on RQK caters to "head”
predicates, e.g. on [20]. The metric of the recent unbiased SGG task is mean
Recall@K(mR@K) [9,23], which retrieves each class of relation separately and
averages RQK for each relation. The good performance on mRQK achieves more
balanced results among different predicates.

Model Configuration. In this paper, we evaluated our method with the roi
relation head based on two classic baselines: MotifNet [2] and VCTree [23]. The
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Table 2. The results of Relationship Retrieval on Recall@K, , and the CSS is our
proposed model. The Motifs-TDE and VCTree-TDE are traditional SGG approaches,
and the others are the unbiased SGG approaches.

Predicate Classification Scene Graph Classification Scene Graph Detection

Model| R@20 R@50 R@100{ R@20 R@50 R@100 | R@20 R@50 R@100

IMP+ [1,9]| 52.7 59.3 61.3 31.7 34.6 35.4 14.6 20.7 24.5

FREQ [23,2]| 53.6 60.6 62.2 29.3 32.3 32.9 20.1 26.2 30.1

KERN [9] - 65.8 67.6 - 36.7 37.4 - 27.1 29.8

VTransE [24]| 59.0 65.7 67.6 35.4 38.6 39.4 23.0 29.7 34.3
Motifs-TDE [20,2]| 38.7 50.8 55.8 21.8 27.2 29.5 12.4 16.9 20.3
VCTree-TDE [20,23]| 39.1 49.9 54.5 22.8 28.8 31.2 14.3 19.6 23.3

MOTIFS [2]| 58.5 65.2 67.1 32.9 35.8 36.5 21.4 27.2 30.3
MOTIFS-CSS| 59.5 66.1 67.9 35.9 39.1 39.9 25.2 32.3 37.2

VCTree [23]| 60.1 66.4 68.1 35.2 38.1 38.8 22.0 27.9 31.3
VCTree-CSS| 61.6 66.9 68.5 41.6 45.6 46.6 24.5 31.4 36.0

Table 3. Ablation studies of individual components of our method. The baseline model
mentioned below is Motifs-TDE unless otherwise indicated.

Predicate Classification Scene Graph Classification Scene Graph Detection
SS|SA|mR@20/R@20 mR@50/R@50 mR@20/R@20 mR@50/R@50|mR@20/R@20 mR@50/R@50
|- 185/387 249/508 | 11.1/221 139/ 27.2 5.8 / 12.4 8.2/ 16.9
v - -/ - -/ - 11.4 / 21.2 14.6 / 27.9 6.7 / 12.9 8.9 /175
-|v | 20.0/42.0 26.1/53.1 11.2 / 24.8 14.5 / 30.4 6.4 / 13.3 8.7 /18.4
V|V -/ - -/ - 11.8 / 26.2 14.8 / 31.7 6.4 / 12.9 8.9 / 18.6

fusion function for the relation head is set to sum in PredCls and SGDet, and
gate in SGCls. Other hyperparameters can be viewed in Model Zoo [66]. All
models share the same pre-trained detector and the same settings as well.

4.2 Implementation Details

Following the previous work [20], we used a pre-trained Faster R-CNN [58] with a
ResNeXt-101-FPN [67,68] and freeze the weights during the training process. For
SGCls and SGDet tasks, we first train the original SGG models with the source
domain recommended from the configuration for all tasks, including the learning
rate. The batch size is set to 12. Then we initialized the Memorandum with the
statistics of the results for its counterparts, respectively. The attenuation factor
a is set to 0.998 in this paper.

4.3 Experiment Results

We evaluated the CSS with the comparison of the conventional unbiased SGG
approaches and traditional SGG approaches. As illustrated in Tabs. 1 and 2, we
compared our performance with several state-of-the-art unbiased SGG methods:
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Table 4. The average precision (left) and the average recall (right) of the object
detection for the bounding boxes with different sizes.

Predicate Classification Scene Graph Detection
SS v v v v
SA v v v v
small |46.2/53.6 47.4/54.7 46.4/53.7 47.2/54.7 | 5.7/21.7 5.7/21.8 5.8/21.7 5.8/21.8
medium | 54.8/62.0 55.6/62.8 55.1/62.0 55.6/62.9 [11.9/32.3 11.9/32.3 11.9/32.3 11.9/32.3
large |53.1/60.7 53.9/61.4 53.2/60.7 54.0/61.5|17.9/35.4 17.9/35.6 17.9/35.4 17.9/35.6
all 56.6/64.2 57.4/64.9 56.8/64.2 57.4/64.9|12.9/34.4 13.0/34.5 12.9/34.4 13.0/34.5

W baseline W baseline
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(a) The average precision of the easy sample (b) The average precision of the hard sample

Fig. 5. The mean precision of the object between the easy and hard sample in the
SGClIs task. The results of objects with high precision are close between the baseline
and CSS, while CSS obtain an obvious improvement to the low-precision objects.

TDE [20], EBM [65] and DLFE [25] with mR@K, and the classic traditional
SGG model: Motifs [2] and Vctree [23] with RQK.

Object Retrieval. We accumulated the average precision and the average recall
of objects with different sizes by the COCO-API [69]. As illustrated in Tab. 4,
both the precision and the recall achieve promotion from the baseline with an
average of 1.4% and 1.5% relative gain in SGCls sub-task. However, the opti-
mization of both the precision and recall are under 0.5% in SGDet.
Relationship Retrieval (RR). The results are listed in Tabs. 1 and 2. The
CSS model improves on the baseline by an average of 4.6%, 4.5%, 9.3% relative
gain of mR@QK in each subtask respectively. Meanwhile, it is obvious that the
debiasing method causes an unacceptable decline in Recall, as shown with the
unbiased SGG model in Tab. 2. Moreover, the recall of each predicate is applied
in the supplementary materials. The CSS improves the RR with an average of
37.8% of the head predicates and 26.72% of the tail predicates, which can be
illustrated intuitively in Fig. 6.

Ablation Study. We considered the ablations of each module to investigate the
effectiveness of each part of the proposed CSS. The results of SS and CSS are
vacant in PredCls task because the label of the object has already been provided
as the input of this task, therefore there is no need for object refinement.
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Fig. 6. The recall of the relationships between baseline and CSS. It indicated that the
recall of the overall predicates is improved with CSS.

As illustrated in Table. 3, each module obtains an obvious promotion: over
the baseline, the SS and SA module achieves an average of 8.2% and 5.2%
respectively. Besides, we observed that the average precision and recall between
SS and CSS are close in Table. 4 which obtain an obvious improvement, while
the results of SA are almost consistent with the baseline. Moreover, the recall
of each predicate shows that the SS module improves the tail predicates with
an average of 40% without any optimization of the head predicates, while SA
promotes the RR with 19.3% of the head predicates and 32.6% of the hard ones.
In addition, we evaluated the influence of the granularity of the relative position
encoding in the scene augmentation module. The granularity is set to be 5 x 5,
8 x 8 and 13 x 13. The results are recorded in the supplementary materials, which
show limited promotion with the increase of the encoding granularity. However,
the increased cost of time and resources is unacceptable.

4.4 Quantitative Studies

Object Detection. As illustrated in Tab. 4, the SS module achieves promis-
ing improvement on object detection in SGCls, especially the targets with small
bounding boxes. However, the promotion is limited in the SGDet sub-task. Since
the scene information of complex image contains unexpected noise, the SS mod-
ule is struggle to refine objects with confounding factors. While the labeling
process selects the bounding box with human focus, it naturally mitigates the
scene noise in SGCls. With the denoising of the bounding box proposals, the SS
has great potential to optimize the objects in complex scenes in the future.

Visual Relation Detection. The RR results verify that CSS can refine the
SGG effectively with the promising promotion. The recall among each relation
shows that SA optimizes the prediction of the overall predicates, while SS focuses
more on the tail predicates. Combining the results of SS in Tabs. 3 and 4, it shows
that the prediction of the relationships is sensitive to the object, which enables
the SS module still work with limited refinement of the object detection. Further,
we can infer that the hard sample has a strong constraint on the tail predicates.
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Fig. 7. The visualization results of SG generated from MOTIFS-TDE [20] and CSS.

Scene Graph Generation. The improvement of both the RQK and mR@QK
illustrated the effectiveness of the CSS model. Moreover, we observed that the
CSS achieves the best performance in mRQK and RQK from different aspects. It
illustrates that the two modules have different preferences and the CSS balances
the results of the head and the tail predicates.

4.5 Visualization Results

For a more intuitive explanation, we generated several SGCls examples from
MOTIFS-TDE and Motifs-CSS. As illustrated in Fig. 7, the first row shows
the optimization of the unclear objects with small bounding boxes. The top
example of the first row also consistent with our analysis in Sec. 4.4 that the
relationships are sensitive with the objects. With the refinement of cat from dog,
the misclassified predicate on is also optimized with standing on correctly. The
second row shows examples of the debiasing work. We can observe the refinement
of both the head predicate riding and the tail predicate using, which can provide
richer information for the downstream tasks.

5 Conclusion

In this work, we introduced a Continuous Self-Study model (CSS) for scene graph
generation. By learning the self-behavior and combining the scene information,
the CSS improves the accuracy of identifying the ambiguous targets in complex
images. Meanwhile, with the fine-grained relative position encoding, the CSS
is able to discriminate the visual relationships with long-tailed bias effectively.
Since our proposed method achieves improvements of two basic tasks: object
detection and visual relationship detection, it will be helpful to improve the
performance in much more visual understanding tasks in the future.
Acknowledgement. This work was supported by the National Natural Science
Foundation of China (NSFC No.62076031).
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