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Abstract. The past decade has seen major advances in deep learning
models that are trained to predict a supervised label. However, estimat-
ing the uncertainty for a predicted value might provide great information
beyond the prediction itself. To address this goal, using a probabilistic
loss was proven efficient for aleatoric uncertainty, which aims at captur-
ing noise originating from the observations. For multidimensional pre-
dictions, this estimated noise is generally a multivariate normal variable,
characterized by a mean value and covariance matrix. While most of lit-
erature have focused on isotropic uncertainty, with diagonal covariance
matrix, estimating full covariance brings additional information, such as
the noise orientation in the output space.
We propose in this paper a specific decomposition of the covariance ma-
trix that can be efficiently estimated by the neural network. From our
experimental comparison to the existing approaches, our model offers
the best trade-off between uncertainty orientation likeliness, model ac-
curacy and computation costs. Our industrial application is skin color
estimation based on a selfie picture, which is at the core of an online
make-up assistant but is a sensitive topic due to ethics and fairness con-
siderations. Thanks to oriented uncertainty, we can reduce this risk by
detecting uncertain cases and proposing a simplified color correction bar,
thus making user experience more robust and inclusive.

1 Introduction

Even if they are still likely to make wrong predictions, Deep Learning models
are now state of the art for many problems [28]. More and more industrial ap-
plications are now based on such models, such as face verification for security
by [43], autonomous driving by [39], or cancer detection by [6], with a certain
degree of risk in case of wrong prediction. The risk can be also in terms of fi-
nancial costs, for instance when [36] estimate construction prices or when [38]
predicts user retention. Cosmetics and Beauty Tech industries also suffers from
imperfect deep learning models, which provide mass personalization via smart-
phone applications [1, 20]. Within this context, we currently develop a model
that estimates facial skin color from selfie pictures taken in the wild. This model
is the core diagnosis for an online make-up assistant service, which for instance
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recommends foundation shades to the user. Such application highly suffers from
model errors, since a poor estimation may lead to a degraded personalization
and a disappointed customer. Moreover, the skin color is an ethically sensitive
feature to predict, because it is linked to the ethnicity. Such a model is thus at
the core of AI fairness and inclusivity issue, as explained by [17]. The risk is very
high for the provider of such service, both legally and for brand reputation.

These models being trained to minimize on average the errors on samples
(e.g, MSE, cross-entropy, ...), errors are always likely to occur, even for an ideal
training with no overfitting. This is true for training samples but even more
for unseen data in-the-wild. Among the possible causes to such errors, a good
part find roots during the training of the model. For instance, the quality of the
training data-set can explain noisy predictions, typically when the coverage is
not good enough and there are underrepresented zones in the train data. Having
such zones is difficult to fully avoid, but may lead to fairness and ethic issues, for
instance when these zones relate to ethnicity. Besides, some ground-truth labels
can be imperfect, due to wrong manual annotation or noisy measurement device,
so that the model might learn to reproduce this noise. The model capacity can
also limit its capability to learn enough patterns on the training data-set. Last,
some prediction errors find their only cause at inference time, typically because
of poor input quality. For instance, in the case of pictures, estimation can be
impacted by bad lighting conditions, blurry picture or improper framing.

Since it is impossible or very costly to avoid such errors, we would like to
spot potentially wrong predictions by estimating their uncertainties. Modeling
this uncertainty would provide tools to reduce or at least control the risks asso-
ciated with high errors, for example by requesting a human validation in uncer-
tain cases. Such validation would improve the overall user experience and make
it more robust, fair and inclusive. For neural networks, the most common ap-
proaches for uncertainty modeling are aleatoric and epistemic, as explained by
[23]. In practice, epistemic uncertainty relies on sampling multiple predictions
by leveraging dropout randomness, while for aleatoric uncertainty, the model
learns to predict from the input patterns a distribution of the prediction. We
focus in this paper on the second approach, since [23] found it to be more rele-
vant for real-time applications and large datasets with few outliers. Ideally, such
uncertainty shall express the orientation in which the ground truth stands from
the actual prediction, thus reducing the cost of manual labelling [41]. In the case
of a smartphone application, such orientation enables the user to easily refine a
poor prediction. More generally, in the context of Active Learning [14] or Active
Acquisition [47], uncertainty’s orientation helps to better target additional data
annotation or acquisition.

To accurately estimate this oriented uncertainty in real-time, we propose a
parameterization of a full covariance matrix. When compared to the state-of-the-
art uncertainty methods, it offers the best trade-off between performance, color
accuracy and uncertainty orientation. We propose in this paper the following
contributions. First, we present an uncertainty model based on a specific de-
composition of the covariance matrix efficiently predictable by a neural network.
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Second, we propose to extract relevant information from this covariance, such
as the uncertainty magnitude and orientation. Last, we performed experiments
on the task of in-the-wild skin color estimation from selfie pictures, with several
applications of uncertainty for the scenario of online make-up assistant.

2 Related work

Errors detection in Machine Learning Detecting and understanding errors
has long been a hot topic for machine learning, partly due to the cost or risk
induced by wrong predictions [21]. For error detection in classification, proba-
bilistic models are natively providing a probability that indicates how sure the
model is for the predicted class, as [13] described. Similarly, Gaussian Processes
are popular for regression problems and natively provide a variance for each pre-
diction, as depicted by [45]. On the other hand, non-probabilistic classification
models only predict raw scores, which take values of any magnitude and are thus
hard to interpret for error detection. This score can however be converted to a
probability, as [34] proposed for binary Support Vector Machines classifier, that
was extended for multi-class models by [46]. [30] proposes a posterior probability
estimation for the best outcome of a ranking system, with industrial applications
in Natural Language Processing. These approaches all rely on a cross-validation
performed during the training, in order to calibrate the scores conversion on
unseen samples. Despite their efficacy, these posterior probability estimations
remain conversion of scores in a discrete output space - classes, recommendation
objects - and do not apply to regression tasks.

Uncertainty in Deep Learning More recently, [28] described how Deep
Learning introduced models with higher representation capabilities, which can
be leveraged to estimate an uncertainty of the prediction. As [14] explains, a first
approach is to consider the model as Bayesian, whose weights follow a random
distribution obtained after the training. This uncertainty is denoted epistemic,
as by [22, 8]. In practice, [15] proposed to approximate it with one model by
performing multiple predictions with stochastic drop-out, without changing the
training procedure. Given an input, it simulates thus a Monte Carlo sampling
among the possible models induced by dropout. This iteration leads to much
higher inference time, that [35] proposes to reduce by approximating the sam-
pling with analytical formulas, starting from dropout underlying Bernoulli dis-
tribution. They get thus reduced run times, while results tend to be similar to
slightly worse than with sampling. [8] describes another approach denoted as
aleatoric uncertainty, where the model learns to predict the uncertainty from
the input. To do so, the model is trained to predict a probability distribution
instead of the ground truth only, as formalized by [22]. In practice, this distribu-
tion is generally Gaussian, which captures the most likely output value and the
covariance around it. According to [23], aleatoric is more relevant than epistemic
in the case of large datasets as well as real-time applications.
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Oriented Aleatoric Uncertainty Methods While previous cited approaches
focused on a single-valued aleatoric uncertainty, [33] and [10] proposed to predict
the full covariance matrix using Cholesky decomposition, proposed by [5]. The
matrix is built as L̂T L̂ where L̂ is predicted as a lower triangular matrix with
positive elements in its diagonal. However, they do not extract nor leverage
any orientation information induced by the covariance, that we focus on in this
paper. One reason is that their output spaces are high dimensional, where the
orientation is hard to interpret and exploit. In 3D space, [37] obtained promising
results by combining aleatoric uncertainty and Kalman filter for tracking object
location in a video. However, the covariance decomposition they propose for pure
aleatoric uncertainty model is only valid for 2 dimensional output space. They
only rely on their final activation functions to reduce risk of non-positive definite
matrix, which would not work on any data-set. More recently, [29] proposes a
full rank aleatoric uncertainty to visualize detected keypoints areas in the 2D
image. This interesting usage of uncertainty is limited to 2D in practice since
each keypoint has its own uncertainty area.

3 Problem

3.1 Color Estimation: a Continuous 3D Output

We consider as our real world use-case the problem of skin color estimation
from a selfie picture. In this scenario, the user takes a natural picture, from
any smartphone and under unknown lighting condition. This picture’s pixels are
represented in standard RGB, the output color space for most smartphones. We
want to estimate the user’s skin color as a real color measured by a device, and
not a self-declared skin type nor a-posteriori manual annotation. To do so, we
consider the skin color measured by a spectrocolorimeter, whose spectrum is
converted into the L*a*b* color space as defined by the CIE (Commission Inter-
nationale de l’Eclairage), as done by [44]. Compared to the hardware-oriented
standard RGB space, this 3 dimensional space is built so that the Euclidean
distance between two colors approaches the human perceived difference. The
ground truth y is thus represented as 3 continuous values, and the mean squared
error LMSE approximates the perceived difference between colors y and ŷ:

y = (L∗, a∗, b∗)T ∈ R3, LMSE(y, ŷ) = ∥y − ŷ∥2 (1)

where ŷ is the model prediction for input picture x and ∥.∥ denotes the L2 norm.
Color and skin tone can be efficiently estimated by regression Convolutional

Neural Network, as done by [3, 7, 31, 27, 26]. Beyond predicting y, we focus in
this paper in estimating the oriented uncertainty, as described in the next part.

3.2 Oriented Uncertainty

Following the prediction space described above, we now discuss what form of
uncertainty could be predicted. The simplest form would be a simple real value
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estimating the magnitude of the prediction error, measuring thus our level of
uncertainty. This enables to apply a threshold on this estimated value for filtering
unsure cases and has been widely studied in literature (see Section 2). However,
for the case of multi-dimensional predictions, a single-value uncertainty treats
each output dimension equally, in an isotropic manner. We focus instead on a full
rank uncertainty, which is oriented since it expresses the most likely orientation
of prediction errors.

Fig. 1. Pipeline for our color estimation use-case, where the uncertainty is used for
filtering uncertain predictions and defining 1-D color bar correction.

The epistemic uncertainty can also provide orientation information, by pro-
viding points cloud in the prediction space (see Section 2). However, we focus in
this paper on aleatoric uncertainty, for the following reasons. First, [23] advised
it for large datasets, and when there is a need for real-time application. Second,
epistemic uncertainty is mostly advised for detecting inputs out of training data
distribution, because model presents higher variability for such data. This ap-
pears useless in the case of selfie pictures as input, since face detectors (as the
one of [24]) easily ensure to detect outliers before feeding the neural network. In
the following, we detail how our model estimates oriented aleatoric uncertainty.

4 Model

4.1 Aleatoric Uncertainty Principle

The aleatoric uncertainty approach is to consider that the model no longer pre-
dicts a single value ŷ but instead a distribution of random value. In practice, we
assume this distribution to be a multivariate normal law, meaning y ∼ N (µ̂, Σ̂)
where µ̂ and Σ̂ are typically estimated by a neural network from the input. The
loss to be optimized by our model then relates to the likelihood of the ground
truth y with respect to this distribution, written pµ̂,Σ̂(y). For a multi-dimensional
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output space, y ∈ Rd, µ̂ ∈ Rd, Σ̂ ∈ Rd×d, and the likelihood is written:

pµ̂,Σ̂(y) =
1

(2π)d/2|Σ̂|1/2
e−

1
2 (y−µ̂)T Σ̂−1(y−µ̂) (2)

where |Σ̂| is the determinant of matrix Σ̂. Practically we minimize an affine
transformation of the log-likelihood log(pµ̂,Σ̂(y)), discarding the constant terms:

Lp(y, µ̂, Σ̂) = (y − µ̂)
T
Σ̂−1 (y − µ̂) + log

(
|Σ̂|

)
(3)

This loss is similar to the MSE (Equation 1) where the model still learns to
predict the most likely value µ̂, which is equivalent to ŷ. Besides, it learns to
predict a matrix Σ̂ that represents a rich form of uncertainty.

A straightforward choice for covariance Σ̂ is to consider isotropic noise, like
in [23]. In this case, Σ̂ = σ̂2Id, where σ̂ ∈ R+ is the estimated standard de-
viation in every direction of the output space. This corresponds to assuming
yj ∼ N (µ̂j , σ̂

2) ∀j = 1..d and only provides information on uncertainty magni-
tude. In the following, we focus on a richer representation of Σ̂.

4.2 Covariance for Oriented Uncertainty

To capture the uncertainty in any direction, we need to estimate the covariance
matrix Σ̂ as a symmetric positive definite matrix (SPD), meaning it verifies:

Σ̂T = Σ̂ and vT Σ̂v > 0 ∀v ̸= 0⃗ ∈ Rd

While the symmetry of Σ̂T can be easily ensured by construction, the positive
semi-definiteness property is not straightforward to satisfy when Σ̂ is the output
of an uncontrolled neural network. To build Σ̂, [33] and [10] propose to use
Cholesky decomposition or equivalently LDL decomposition Σ̂ = L̂D̂L̂T , where
L̂ is a lower unit triangular matrix and D̂ a diagonal matrix (as formalized by
[19]). The independent components D̂i,i > 0 and L̂i,j (i < j) are produced by
a regression layer. However, we propose not to use such decomposition. Indeed,
we observed an difficult optimization of such model, and poor results for the
main prediction task. We explain this phenomenon by the intuition that L̂i,j ,
are low lever features in the sense that they are hard to interpret, contrary to
standard deviations σ̂j for instance. Our main proof remains experimental and
further theoretical explanation goes beyond the scope of this paper.

4.3 Euler Angles Decomposition

To build Σ̂, we instead rely on the following decomposition of SPD:

Σ̂ = ÛD̂ÛT with D̂ = Diag(σ̂2
1 , . . . , σ̂

2
d)

where Û ∈ Rd×d is a unitary matrix with columns being eigenvectors of Σ̂ and
σ̂2
1 , . . . , σ̂2

d ∈ R+ are the corresponding eigenvalues. Each eigenvector Ûj ∈ Rd
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is an uncertainty orientation associated with a standard deviation σj , so that Σ̂
geometrically corresponds ellipsoidal level sets of the distribution.

To simplify the notations and place ourselves in the color output space, we
now consider the 3D space for y (d = 3). We propose to express Û as the
multiplication of the rotation matrices around each canonical axis [42]:

Û = Ry1(θ̂1)Ry2(θ̂2)Ry3(θ̂3) ∈ R3×3

where Ryj
(θ̂j) are the rotation matrices around axis yj and θ̂1, θ̂2, θ̂3 ∈ [−π/4, π/4]

are the rotation angles respectively around y1, y2 and y3 axes, also named Euler
angles (see appendix for explicit matrices expressions). This choice of representa-
tion enables the model to predict high-level interpretable features, meaning the
Euler angles θ̂i. Euler angles representation usually suffer from periodicity and
discontinuity problems, as [9] points out. However, in our problem of covariance
matrix Σ̂ construction, we can enforce a narrow range for the θ̂i . Indeed, hav-
ing θ̂i ∈ [−π/4, π/4] ensures that Σ̂ covers the whole SPD space, while keeping
each σ̂i closely associated to the canonical axe yi, thus easing the optimiza-
tion. Without such boundaries, one notes that θ̂ = (π/2, 0, 0), σ̂ = (1, 1, 2) and
θ̂ = (0, 0, 0), σ̂ = (1, 2, 1) would give the same Σ̂, which makes optimization
difficult since σ̂i values are shifted. While we focus on the 3 dimensional case,
this parameterization could be extended to higher dimensions [40].

In practice, to compute the loss of Equation 3 we build |Σ̂| and Σ̂−1 as:

|Σ̂| =
d∏

j=1

σ̂2
j , Σ̂−1 = ÛDiag(σ̂−2

1 , . . . , σ̂−2
d )ÛT

which are differentiable, so that the loss is minimizable by gradient descent.
To enforce the boundaries on each θ̂i, we preferred not to use strict clipping

of neurons values. Indeed, doing so was leading to numerical issues with van-
ishing gradient for the θ̂i regressions. Instead, we let θ̂i as raw outputs of linear
regressions, and included a penalization term in the loss:

Lθ(θ̂) = λθ

d∑
j=1

max(0, θ̂i−π/4) + max(0,−θ̂i−π/4) (4)

where λθ > 0 is a hyperparameter. This penalization corresponds to soft bound-
ary constraints, meaning θ̂i can take values beyond π/4 or below −π/4, but then
the loss is increased. The total loss function takes the form:

L(y, µ̂, Σ̂, θ̂) = Lp(y, µ̂, Σ̂) + Lθ(θ̂)

4.4 Oriented Uncertainty Benefits

We now propose to extract information from the matrix Σ̂ predicted on a new
picture. First, we can interpret an uncertainty magnitude. In case of isotropic
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uncertainty Σ̂ = σ̂2Id, the magnitude is directly given by σ̂. [14] showed that by
applying a threshold on σ̂, we filter out the most unsure cases. We extend this
to oriented uncertainty by considering the determinant of the covariance matrix:

|Σ̂| =
∏
j

σ̂2
j ∈ R (5)

We can also extract the most likely orientation of y with respect to predicted ŷ:

v̂ = Ûj∗ ∈ Rd where j∗ = argmax
j

σ̂j (6)

which is of norm 1. One notes that error is equally likely to stand in the orien-
tation v̂ and −v̂ due to the symmetry of the normal distribution.

4.5 Probabilities Re-Scaling for Models Comparison

We now describe an optional step in the training, that do not serve the general
purpose of the model and has no impact on |Σ̂| and v̂ computation. We use it
to get unbiased likelihood in order to compare models in our experiments.

When looking at pµ̂,Σ̂(y) values (Equation 2) on the test samples during
the optimization process, we observed that uncertainty models tend to show
overconfidence, meaning they predict Σ̂ with lower volume through the epochs.
This phenomenon of overconfidence of neural network has regularly be observed
[4], for instance with probabilities inferred after softmax always close to 0% or
100% (see Figure 8 in Appendix for an illustration). To avoid this, we propose
to multiply every predicted covariance Σ̂ by a unique factor β ∈ R+, in order
to adapt the magnitudes of the distributions N (µ̂, Σ̂) while keeping their shape
and orientation. Such factor does not change the relative order between the
magnitudes |Σ̂| among samples, typically when filtering most uncertain cases.
We propose to consider these optimal β∗ value as:

β∗ = argmaxβ

1

N

N∑
i

log
(
pµ̂i,βΣ̂i

(yi)
)

(7)

where the sum covers a subpart of the train data, while we estimate all µ̂i and
Σ̂i by a model trained on the remaining of the train data. This sub-training
is necessary for computing pµ̂i,βΣ̂i

(yi) from unbiased inputs. Such re-scaling is
similar to scores conversion for probabilistic SVM [34], where a cross-validation is
performed on the training data to learn the conversion. Due to the computation
costs, we preferred to split the training data into 2 equal parts reflecting the
validation strategy such as group-out or stratification. We can then re-scale the
estimated covariances as β∗Σ̂ when computing metrics and comparing models.

5 Experiments

5.1 Dataset

Our dataset is composed of various selfie pictures taken by different people with
their own smartphone in indoor and outdoor environments. Besides, they had
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their skin color measured in a controlled environment using a spectrophotometer
under a specific protocol to reduce measurement noise. In order to face real-
world skins diversity and include various race groups, we performed several ac-
quisitions in different countries (see Table 1). For standardization purpose, we
pre-processed all pictures by detecting facial landmarks using the face detector
of [24] and then placing eyes in a standardized location. Resulting images are
thus centered on the face and resized to 128 × 128. This pre-processing step is
identically done at inference time in our real-world application (see Figure 1).

5.2 Evaluation and Implementation Details

To compute all results of this sections, we performed a 5-fold cross validation
on our dataset, and evaluated the predictions on the successive test folds. To
avoid biased predictions, each volunteer pictures are grouped in the same fold.
Furthermore, we stratified the folds with respect to y1 value, that corresponds
to L∗ in the color space, that can be interpreted as skin intensity.

Using this process, we compared the following models:

– Regression w/o Uncertainty: pure regression CNN (Section 3.1, [27])
– Aleatoric Isotropic: aleatoric single-valued uncertainty, as proposed by [23]
– Aleatoric (Cholesky): the aleatoric uncertainty model using Cholesky decom-

position, as proposed by [10]
– Epistemic via Dropout: epistemic uncertainty model proposed by [15] for

100 sampled predictions
– Epistemic Sampling-free: epistemic uncertainty model with direct covariance

estimation proposed by [35]
– Aleatoric (Ours): the uncertainty model described in Section 4.3

For each model, we used the same architecture for the convolutional network, 4
convolutions blocks with skip connections followed by a dropout layer (similar
to ResNet [18]). Only the loss and final dense layers have different architecture
between models. We used ReLu activations except for oriented uncertainty in
which θ̂j are linear output of regression. The corresponding soft constraint term
(Equation 4) is scaled by λθ = 10. For aleatoric uncertainty models, the lower
bound for σ̂j is set as 10−2 to avoid numerical overflow. Contrary to [23], we
prefer our model to directly estimate σ̂j instead of log(σ̂j), for avoiding weights
updates to produce too high variation on σ̂j . For all models, we used the opti-
mization procedure of [25] on batches of size 16 and a learning rate 10−4 during
400 epochs. We implemented our networks and layers using TensorFlow [2].

Table 1. Description of the data used for our experiments. The full data-set is still
under collection and will cover more countries.

Country China France India Japan USA Total
# People 53 249 22 32 832 1188

# Pictures 936 3967 368 144 10713 16128

9
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5.3 Metrics for Regression and Uncertainty

In order to evaluate the core regression task, for each sample of the test folds we
computed the ∆E∗ [44] between the prediction and the ground-truth y:

∆E∗ = ∥µ̂− y∥ (8)

where µ̂ is replaced by ŷ for the regression model.
For uncertainty models, we evaluated the quality of predicted distributions

N (µ̂, Σ̂) when compared to the ground truth y. For epistemic uncertainty via
dropout, we considered a normal distribution of covariance Σ̂ computed from
sampled predictions. For each model, we computed the scaling factor β∗ (Equa-
tion 7, Section 4.5) and considered the average likelihood after scaling:

⟨p∗β⟩ =
1

N

N∑
i

pµ̂i,β∗Σ̂i
(yi), ⟨log(p∗β)⟩ =

1

N

N∑
i

log
(
pµ̂i,β∗Σ̂i

(yi)
)

(9)

For orientation-aware models, we computed the angle error α between the
orientation v̂ (Equation 6) and the actual ground truth y orientation from ŷ:

α = cos−1

(
v̂.

(y − µ̂)

∥y − µ̂∥

)
To assess the quality of estimated errors distributions, we also considered the

probability of having an error ∆E below a certain threshold E:

Pµ̂,Σ̂(∥µ̂− y∥ < E) =

∫∫∫
∥e∥2<E2

pµ̂,Σ̂(µ̂+ e) d3e (10)

where the integral does not depend on µ̂ (see equation 2). This quantity differs
from |Σ̂| by having a clear probabilistic interpretation, but is slower to compute.
We compared these numerically computed values on test samples to the actual

Table 2. Comparisons of the models. For each metrics, ↑ indicates when higher is
better, and ↓ indicates when lower is better. For accuracy metrics, best result is high-
lighted in italics bold while second best is in bold.

Performance Regression task Uncertainty Metrics
Model Inference µ̂ accuracy Likelihood ROC-AUC Angle

time (ms) ↓ ⟨∆E∗⟩↓ vs baseline ↓ ⟨log (pβ∗)⟩ ↑ ∆E < 1 ↑ ⟨α⟩ ↓
No uncertainty 68.1± 6.1 3.54 baseline - - -
Aleat. isotropic 70.2± 7.3 3.59 +1.5% −7.86 58.47 -
Aleat. Cholesky 73.2± 4.2 4.49 +26.8% −7.02 62.74 36.85◦

Epist. w dropout 7820± 19 3.54 +0% −9.07 58.15 40.88◦

Epist sample-free 81.2± 5.3 3.54 +0% −9.08 57.70 41.55◦

Aleat. (ours) 71.4± 4.7 3.65 +3.1% −7.33 59.09 39.43◦

10
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Fig. 2. ∆E with respect to recall for samples with |Σ̂| below a threshold (Equation 5).
For plain curves, successive thresholds are applied on samples |Σ̂| values, for dashed
curves on Pµ̂,Σ̂(∥µ̂ − y∥ < E) values. On top, indicative |Σ̂| values for our model are
shown. Points with recall below 5%, noiser, are omitted.

realization of ∥µ̂ − y∥ < E to get the ROC-AUC [11]. We choose as threshold
E = 1 which corresponds to human perception of color dissimilarities [44].

Table 2 shows the computed metrics. As expected, the color estimation accu-
racy is unchanged for epistemic uncertainty models. The difference is very little
for our model, while the Cholesky uncertainty shows 26% higher average error.
According to our intuition described in Section 4.1, this degradation seems to
be due to the complex optimization process, since Σ̂ representation relies on low
level features (see Figure 7 in Appendix for an illustration). Besides, estimated
distributions appears better for the Cholesky, while second best metrics are for
our oriented uncertainty model. Using our model, the angle error is reduced by 2◦

compared to the sampling-free epistemic, and the log-likelihood is significantly
higher. Compared to other models, our method gives thus the best trade-off with
maintained accuracy, fast computation and accurate uncertainty distribution.

5.4 Uncertainty for Samples Selection

A first benefit of uncertainty-aware models is to detect samples whose error ∆E
is likely to be high by applying a threshold on predicted |Σ̂| (Equation 5). In our
pipeline shown in Figure 1, this conditions the manual color correction step for
the uncertain cases. In order to evaluate how efficient this condition is, we applied
for each model successive thresholds on test samples |Σ̂|. In practice, for every
threshold T we compute the recall for selected samples as 1

N

∑N
i
1l(|Σ̂i| < T ) ,

where 1l denotes the indicator function and Σ̂i is the i-th test sample estimated
covariance. The average ∆E error is similarly computed for samples verifying
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|Σ̂| = 199.1 |Σ̂| = 207.8

|Σ̂| = 899.3 |Σ̂| = 1471.1

Fig. 3. Pictures with lowest
|Σ̂| value (top) and highest
|Σ̂| value (bottom) from same
person (/16 pictures).

Input
Picture

True color

Dropout
Sample-free

Cholesky
Ours

Fig. 4. Examples of input pictures with the 1D correc-
tion color bars estimated by each uncertainty model.
The bar from Cholesky model suffers from the higher
error of the estimated µ̂.

|Σ̂i| < T . Plain curves in Figure 2 show both quantities when computed for
every threshold T values. This is similar to a precision-recall curves for binary
classification, as described by [12], that we extend to regression tasks using
estimated |Σ̂| (as done by [30, 16]). Equivalently, we computed the dashed line
curves by selecting samples verifying Pµ̂,Σ̂(∥µ̂−y∥ < E) > T . Selection based on
this second quantity requires heavier computation (Equation 10 versus Equation
5) and is thus not convenient for real-time application.

We see in Figure 2 that most curves are very close for all models, except for
the Cholesky model. The accuracy error for Cholesky uncertainty is indeed much
higher under all thresholds, which was expected from overall accuracy (Table 2).
Besides, we see that for the most certain test samples (for recall ≤ 20%), our
model indeed selects the samples with actual lowest errors. Last, dashed and
plain curves are hard to distinguish, which means that thresholding on |Σ̂| is a
good approximation for thresholding on Pµ̂,Σ̂(∥µ̂− y∥ < E).

For a given person, we also looked at rejected and valid pictures based on the
|Σ̂| criteria (see Figure 3). In general, uncertainty is higher when lighting condi-
tions are bad, such as yellow light, strong back light and shadowed face. These
patterns seems to be leveraged by the model for estimating the uncertainty, and
are indeed strongly impacting the skin color estimation task.

5.5 Color Control using Uncertainty Orientation

For our use case, another benefit of oriented uncertainty is to enable a better
user experience for manual color correction. This correction is requested for users
with |Σ̂| falling above the operational threshold. Requesting a non-expert user
to re-define a color in 3D is practically impossible. Based on the low angle error
α obtained, we propose to use the most likely orientation v̂ (Equation 6) as the

12
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Fig. 5. Predictions and uncertainties for all pictures of a given panelist. We see that
uncertainties are generally oriented towards the ground truth (in blue), and that further
predictions have higher uncertainty in the main axis (in red).

only degree of freedom for the color control. To confirm this intuition, Figure 5
shows an example of v̂ orientations estimated for all pictures of a single volunteer:
v̂ is generally oriented towards the real color. Figure 4 shows practical examples
of color bars. The bars are centered on estimated color µ̂, directed towards v̂.
The bar length was fixed at ∆E∗ = 5 in the color space, after discussion with
user experience experts in order to have a standard control bar expressiveness.

5.6 Uncertainty Orientation for Foundation Recommendation

We present here preliminary results that illustrate additional benefits of our
oriented uncertainty for online make-up assistant service. For the sub-set of our
data-set from acquisition in Japan (see Table 1), a make-up artist have assessed
the most suitable foundation shade chosen in a range of 25 shades. We also
measured the color f in L*a*b* space for each shade of the range, using same
spectrophotometer and comparable protocol than for the skin color. For each
participant, we note f∗ ∈ R3 the color of the best foundation shade chosen by
make-up artist. Based on our make-up knowledge, this best foundation should
be the closest from the skin tone, meaning the predicted µ̂ color should be close
from this best shade color f∗. Based on this, we computed for each picture
the difference between the estimated skin color and this foundation color and
as a ∆E∗

f∗ = ∥µ̂ − f∗∥2, as well as the probability distribution value pµ̂,Σ̂(f)

(Equation 2) for every shade color f of the range. Using those 25 values, we could
thus rank the shades in a scenario of product recommendation. For the regression
model, we similarly ranked the shades using ∆E∗ which can be considered the
best products recommendation when not using uncertainty. We display in Table
3 the average rank of the best foundation shade according to make-up artist, as
well as the average ∆E∗ and log(pµ̂,β∗Σ̂(f

∗)) values for this shade color:

⟨log(p∗β(f∗))⟩ = 1

N

N∑
i

log
(
pµ̂i,β∗Σ̂i

(fi
∗)
)
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Table 3. Metrics on Japan data for foundation recommendation using uncertainty
orientation. Reference is ideal foundation color (instead of panelist skintone for Table
2). Best result is highlighted in italics bold, second best in bold.

Model ⟨∆E∗
f∗⟩ ⟨log(p∗β(f∗))⟩ Shade Rank

Regression 3.20 - 2.43th/25
Aleat. Isotropic 3.22 −7.63 2.54th/25
Aleat. Cholesky 4.34 −7.43 3.34th/25

Epist. w Dropout 3.20 −12.25 2.30th/25
Epist. Sample-Free 3.20 −11.27 2.82th/25

Aleat. Ours 3.37 −7.26 2.20 th/25

where scaling factor β∗ do not impact the products ranking but helps for models
comparison. We get the best rank for our model, even if the raw skin to founda-
tion distance ∆E∗

f∗ is higher than with some other models. We emphasize that
these results do not include any manual color correction as described in Section
5.5. Details for the products recommendation go beyond the scope of this paper.

6 Conclusion

In this paper, we proposed to estimate multivariate aleatoric uncertainty by us-
ing a different parameterization of the covariance matrix based on Euler angles.
We experimented our model on a real-world data-set, which addresses skin color
estimation from selfie pictures. This use-case is at the core of a make-up online
assistant but is very sensitive in terms of ethics and AI fairness. The uncertainty
estimation is an answer to reduce ethic risks, among other benefits it brings.
Our oriented uncertainty model showed a similar accuracy to pure regression
model, contrary to the model using Cholesky decomposition which got 26.8%
higher errors on the core diagnosis task. Furthermore, when comparing to other
approaches, our model obtained the best metrics about the estimated distribu-
tions, such as the angle error for the most likely error orientation. This shows
its ability to infer the scale and orientation of the actual prediction error.

The proposed model can be used for real-time color adjustment. Users with
uncertain predictions are requested to make manual correction via a simplified
UX with 1D color bar whose orientation is given by the uncertainty. Besides,
we experimented another benefit of our model in the case of foundation rec-
ommendation, where the orientation helps to recommend the best product. In
our future work, we will evaluate the benefits of the uncertainty bar for the end
user. To do so, we are currently conducting a study were panelist are asked to
correct their diagnosed skin tone using the uncertainty-aware color bar. Beyond,
we plan to use our uncertainty model as domain discriminator of a conditional
generative adversarial network [32], in order to less penalize generated pictures
whose predicted label lies in the most likely orientation of uncertainty.

14
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A Rotation Matrices

Ry1(θ̂1) =

1 0 0

0 cos θ̂1 − sin θ̂1
0 sin θ̂1 cos θ̂1


Ry2(θ̂2) =

 cos θ̂2 0 sin θ̂2
0 1 0

− sin θ̂2 0 cos θ̂1


Ry3(θ̂3) =

cos θ̂3 − sin θ̂3 0

sin θ̂3 cos θ̂1 0
0 0 1



B Neural Network Architecture

Fig. 6. Architecture for our neural network. The ResNet-16 is a simplified version of
convolution blocks of ResNet [18] and the same convolution architecture was used for
all compared models.

C Behavior during Training
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Fig. 7. Evolution of ∆E (Equation 8) through epochs of the 1st fold of our evaluation.
Our model learns slower compared to the pure regression model, but converges to the
same value on test fold. On the contrary, Cholesky uncertainty really starts optimiza-
tion at around 30 epochs, and saturates to high ∆E values for both train and test data.

Fig. 8. Evolution of log-likelihood loss L (Equation 3) through epochs of the 1st fold
of our evaluation. Similar overfitting behavior for L occurs for isotropic and our un-
certainty model, that is explained by the decreasing volume of covariance matrix |Σ|
to very low values during epochs. Besides, Cholesky model keeps a larger volume for
matrix Σ with no overfiting, but we interpret the higher values for L as a more difficult
gradient descent, which seems also visible from Table 1 and Figure 5. Those behaviors
motivates our re-scaling of Section 4.5 for comparing L between models.
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