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Abstract. Vehicle-to-Everything (V2X) network has enabled collabora-
tive perception in autonomous driving, which is a promising solution to
the fundamental defect of stand-alone intelligence including blind zones
and long-range perception. However, the lack of datasets has severely
blocked the development of collaborative perception algorithms. In this
work, we release DOLPHINS: Dataset for cOLlaborative Perception en-
abled Harmonious and INterconnected Self-driving, as a new simulated
large-scale various-scenario multi-view multi-modality autonomous driv-
ing dataset, which provides a ground-breaking benchmark platform for
interconnected autonomous driving. DOLPHINS outperforms current
datasets in six dimensions: temporally-aligned images and point clouds
from both vehicles and Road Side Units (RSUs) enabling both Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) based collaborative
perception; 6 typical scenarios with dynamic weather conditions make
the most various interconnected autonomous driving dataset; meticu-
lously selected viewpoints providing full coverage of the key areas and
every object; 42376 frames and 292549 objects, as well as the correspond-
ing 3D annotations, geo-positions, and calibrations, compose the largest
dataset for collaborative perception; Full-HD images and 64-line LiDARs
construct high-resolution data with sufficient details; well-organized APIs
and open-source codes ensure the extensibility of DOLPHINS. We also
construct a benchmark of 2D detection, 3D detection, and multi-view col-
laborative perception tasks on DOLPHINS. The experiment results show
that the raw-level fusion scheme through V2X communication can help
to improve the precision as well as to reduce the necessity of expensive Li-
DAR equipment on vehicles when RSUs exist, which may accelerate the
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popularity of interconnected self-driving vehicles. DOLPHINS dataset
and related codes are now available on www.dolphins-dataset.net.

Keywords: Collaborative perception · Interconnected self-driving · Dataset

1 Introduction

One major bottleneck of achieving ultra-reliability in autonomous driving is
the fundamental defect of stand-alone intelligence due to the single perception
viewpoint. As illustrated in Fig. 1(a), the autonomous vehicle could not detect
the pedestrians in its blind zone caused by the truck, which may lead to a
severe accident. Great efforts have been put into single-vehicle multi-view object
detection with multiple heterogeneous sensors [6, 8] or homogeneous sensors [20,
35], but the intrinsic limitation of stand-alone intelligence still exists.

(a) Stand-alone (b) V2X communication (c) Collaborative perception

Fig. 1: An illustration of the advantages of collaborative perception over stand-
alone intelligence.

Thanks to the Vehicle-to-Everything (V2X) network [42], interconnected au-
tonomous driving is a highly-anticipated solution to occlusions, and thus enables
advanced autonomous driving capabilities in complex scenarios such as intersec-
tions and overtaking. A vehicle can exchange the local sensor data with other
terminals (as shown in Fig. 1(b)), including other vehicles and Road Side Units
(RSUs), and then perform the object detection by fusing data from multiple
viewpoints. The shared sensor data might contain information about the ob-
ject in the blind zones of the ego vehicle, potentially enhancing the perception
reliability [40] as in Fig. 1(c). This procedure is named as collaborative percep-
tion, which can be categorized into three levels: raw-level (early fusion, e.g. [5]),
feature-level (middle fusion, e.g. [4, 34]), and object-level (late fusion, e.g. [17]).

However, the lack of large-scale datasets for collaborative autonomous driving
has been seriously restricting the research of collaborative perception algorithms.
Traditional datasets focus on a single viewpoint, i.e., the ego vehicle. In the past
decade, KITTI [13], nuScenes [1], and Waymo Open [33] have successfully ac-
celerated the development of stand-alone self-driving algorithms with a huge
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DOLPHINS 3

amount of multi-modality data. But all of the information is collected from the
ego vehicle view. Unfortunately, the most challenging but the greatest beneficial
issue is the large parallax due to strong perspective changes between differ-
ent terminals, i.e., aux vehicles and RSUs, as illustrated in Fig. 2. The large
parallax leads to various occlusion relationships between objects, which may
help the terminals to fulfill the blind zones, but also put forward the matching
of the same object from different perspectives. Recently, some pioneer works
have concentrated on datasets with multiple viewpoints, such as OPV2V [38],
V2X-Sim [21], and DAIR-V2X [41]. Nevertheless, either data from aux vehicles
(Vehicle-to-Vehicle, V2V) and RSUs (Vehicle-to-Infrastructure, V2I) are not pro-
vided simultaneously, or only an intersection scenario is considered. A more com-
prehensive dataset is required to fully support the development of V2X-based
collaborative autonomous driving algorithms.

Fig. 2: An example of multi-view object detection in DOLPHINS dataset. There
is a right merging lane in front of the ego vehicle. Because of the occlusion, the
ego vehicle can hardly detect the purple vehicle (red box) on the branch and the
police car (blue box). The auxiliary vehicle is in front of the ego vehicle, which
can see both object vehicles distinctly. Additionally, the RSU can detect another
two vehicles (purple box) on the branch.

To meet the demands, we present DOLPHINS, a new Dataset for cOLlabor-
ative Perception enabled Harmonious and Interconnected Self-driving. We use
the CARLA simulator [9] to complete this work, which can provide us with realis-
tic environment modeling and real-time simulations of the dynamics and sensors
of various vehicles. Fig. 3 briefly demonstrates the advantages of DOLPHINS in
six dimensions.

V2X DOLPHINS contains temporally-aligned images and point clouds from
both aux vehicles and RSUs simultaneously, which provides a universal out-
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of-the-box benchmark platform for the development and verification of V2V
and V2I enabled collaborative perception without extra generation of data.

Variety DOLPHINS includes 6 typical autonomous driving scenarios, which
is second only to real-world single-vehicle datasets [13, 1]. Our dataset in-
cludes urban intersections, T-junctions, steep ramps, highways on-ramps,
and mountain roads, as well as dynamic weather conditions. Different sce-
narios raise different challenges to autonomous driving, such as dense traffic,
ramp occlusions, and lane merging. More detailed information on traffic sce-
narios is presented in Sec. 3.1.

Viewpoints Considering the actual driving situation, 3 different viewpoints are
meticulously set for each scenario, including both RSUs and vehicles. The
data collected from viewpoints can achieve full coverage of key areas in each
scenario as illustrated in Fig. 4. More specific locations of each viewpoint
are illustrated in Fig. 5.

Scale In total, temporally-aligned images and point clouds are recorded over
42376 frames from each viewpoint, which is much larger than any other
dataset for collaborative perception. 3D information of 292549 objects is
annotated in KITTI format for ease of use, along with the geo-positions and
calibrations. Statistical analysis of objects is provided in Sec. 3.4.

Resolution DOLPHINS furnishes high-resolution images and point clouds to
maintain sufficient details. Full-HD (1920× 1080) cameras and 64-line LiDARs
equipped on both vehicles and RSUs, which are both among the highest
quality in all datasets. Detailed descriptions of sensors are stated in Sec. 3.2.

Extensibility We also release the related codes of DOLPHINS, which contains
the well-organized API to help researchers to generate additional data on
demand, which makes DOLPHINS easily extensible and highly flexible.

Variety

V2XScale

Extensibility

Resolution Viewpoints

Dolphins(Ours)
OPV2V
V2X-Sim
DAIR-V2X-C
KITTI
nuScenes

Fig. 3: A comparison with 3 brand new collaborative perception datasets:
OPV2V [38], V2X-Sim [21], and DAIR-V2X-C [41], as well as 2 well-known
single-vehicle autonomous driving datasets: KITTI [13] and nuScenes [1]. A de-
tailed comparison is provided in Sec. 2.
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(a) Ego vehicle (b) RSU (c) Aux vehicle

Fig. 4: An illustration of temporary-aligned images and point clouds from three
viewpoints. The position of each viewpoint is demonstrated in Fig. 2.

We also conduct a comprehensive benchmark of state-of-the-art algorithms
on DOLPHINS. Three typical tasks are considered: 2D object detection, 3D
object detection, and multi-view collaborative perception. Other tasks, such as
tracking, are also supported in DOLPHINS but not exhibited here. Besides, we
construct two raw-level fusion schemes: the point clouds from the ego vehicle and
the other viewpoint, and the image from the ego vehicle and point clouds from
the RSU. The results of the raw-level fusion algorithms reveal the dual character
of interconnected self-driving: enhancing the precision with more information or
reducing the cost of sensors on the self-driving vehicles within the same precision.

As a new large-scale various-scenario multi-view multi-modality dataset, we
hope this work brings a new platform to discover the potential benefits of con-
nected intelligence. Our main contributions are summarized as:

i. release DOLPHINS dataset with different scenarios, multiple viewpoints,
and multi-modal sensors, aiming to inspire the research of collaborative au-
tonomous driving;

ii. provide open source codes for on-demand generation of data;
iii. benchmark several state-of-the-art methods in 2D object detection, 3D ob-

ject detection, and multi-view collaborative perception, illustrating the pos-
sibility of solving blind zones caused by occlusions as well as cutting the cost
of self-driving vehicles by V2V and V2I communication.

2 Related works

There are many relative research areas, such as object detection, collaborative
perception, and autonomous driving dataset. Due to the space limitation, some
representative works which inspire us are introduced here, and the differences
with our proposed dataset are highlighted.
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(a) Scenario 1 (7046 frames) (b) Scenario 2 (7020 frames) (c) Scenario 3 (7043 frames)

(d) Scenario 4 (7057 frames) (e) Scenario 5 (7011 frames) (f) Scenario 6 (7199 frames)

Fig. 5: All ego vehicles are driving along a pre-defined route (green arrows), while
each RSU camera is settled with a fixed direction and range (blue or brown sector
mark). We also mark positions where the ego vehicle or possible auxiliary vehicles
are initialized. Among all scenarios, (a) and (e) are two intersection scenarios; (b)
is the scenario of a T-junction with moderate rain; (c) is also a crossroads while
the ego vehicle is on a steep ramp; (d) is a scenario existing a right merging lane
on the expressway, and the weather is foggy; (f) is the scenario of a mountain
road. All scenarios have plenty of occlusion situations.

Object detection is one of the most important tasks in autonomous driving.
Typically, there are two kinds of object detectors, distinguished by whether to
generate region proposals before the object detection and bounding box regres-
sion. R-CNN family [15, 14, 30, 16] is the representative of two-stage detectors,
which exhibits epoch-making performance. On the other hand, the single-stage
detectors, such as SSD [23] and YOLO [27–29], focus on the inference time and
perform significantly faster than the two-stage competitors. Recently, Center-
Net [10] and CornerNet [19] propose a new detection method without anchor
generation. They directly predict the key points per-pixel, which makes the de-
tection pipeline much simpler. DETR [2] firstly brings transformer architecture
into object detection tasks.

Collaborative perception is a growing topic in the intelligent transportation
society. Due to the 3D information provided by point clouds, LiDAR-based data
fusion and object detection have been widely discussed. [5] proposes a raw-level
fusion on point clouds with a deep network for detection. [26, 36] aim to use deep
neural networks to enhance the perception outputs for sharing. V2VNet [34] con-
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siders the feature-level fusion and uses a compressor to reduce the size of original
point clouds, which is vital in bandwidth-limited V2X communications. V2V-
ViT [37] introduces vision transformer to conquer the noises from communica-
tion. [25] and [24] consider the pure image fusion on feature-level and conduct
a re-identification task during the detection. The latter uses Graph Neural Net-
work (GNN) for perception and clustering.

Autonomous driving datasets are the key to evaluating the performance of
detection methods. The commonly used KITTI [13] and nuScenes [1] only con-
tain data from the ego vehicle. Pasadena Multi-view ReID dataset is proposed
in [25], which contains data from different viewpoints of a single object. However,
the objects are only street trees, which is not enough for autonomous driving.
OPV2V [38] uses CARLA simulator [9] to produce multi-view autonomous driv-
ing data, but it only considers V2V communication. V2X-Sim [21] is also a
CARLA-based simulated dataset. The first version of V2X-Sim only contains
point clouds from different vehicles, which can only be applied for V2V com-
munication. The second version of V2X-Sim contains both RGB images and
the infrastructure viewpoints. Nevertheless, it still only considers the intersec-
tions scenario, and the BEV Lidar on the infrastructure is not realistic. By late
February 2022, a new real-world connected autonomous driving dataset DAIR-
V2X [41] is released. It consists of images and point clouds from one vehicle and
one RSU, and contains both high-ways and intersections. However, DAIR-V2X
is not capable of V2V data fusion or any other scenarios with more than two
terminals. Our proposed dataset is generated by the CARLA simulator with six
different scenarios and reasonable settings of RSUs and aux vehicles. Besides,
with the related codes (which will also be released with the dataset), researchers
can add any type and any number of sensors at any location as needed. A com-
parison to the above datasets is provided in Table 1.

Table 1: A detailed comparison between datasets. For DAIR-V2X, we choose
DAIR-V2X-C since only this part is captured synchronously by both vehicles
and infrastructure sensors.

Dataset Year V2X Scenarios Viewpoints Frames Extensibility Resolution

KITTI 2012 none - 1 15 k × 1382×512
64 lines

nuScenes 2019 none - 1 1.4 M × 1600×1200
32 lines

OPV2V 2021 V2V 6 2-7 (avg. 3) 11.5 k ✓
800×600
64 lines

V2X-Sim 2022 V2V+V2I 1 2-5 10 k ✓
1600×900
32 lines

DAIR-V2X-C 2022 V2I 1 2 39 k × 1920×1080
I: 300 lines; V: 40 lines

DOLPHINS (Ours) 2022 V2V+V2I 6 3 42 k ✓
1920×1080

64 lines
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3 DOLPHINS Dataset

3.1 Settings of traffic scenarios

We select six typical autonomous driving scenarios and several common types of
weather from the preset scenarios of the CARLA simulator (as shown in Fig. 5).
In each scenario, we set three units (RSU or vehicles) to collect both images
and point cloud information. The first unit is attached to the vehicle we drive,
namely, the ego vehicle, which provides us with the main viewpoint. In each
simulation round, we initialized it at a specific location. The other two units will
also be set up at appropriate positions. They are set on the RSUs or the auxiliary
vehicles selected from the scenario and initialized at a specially designated point
with a stochastic vehicle model. We initially set 20-30 vehicles as well as 10-15
pedestrians within a specific area around the ego vehicle, which is 100-150 meters
in length and 100 meters in width. The initial locations are randomly selected
from the preset locations provided by the CARLA simulator, which guarantees
that no collisions will happen.

In each scenario, our ego vehicle chooses a specific route. At the same time,
we collect the information of all sensors synchronously every 0.5 seconds in the
simulation environment, i.e., at the rate of 2 fps. After the vehicle passes through
the specific scenario, we wind up the current simulation round, reinitialize the
scenario and start a new one. During each round, except for our ego vehicle and
the possible auxiliary vehicle, all other traffic participants appear in a reasonable
position randomly at the beginning and choose their route by themselves freely.

3.2 Settings of sensors

We equip each unit with a LiDAR and an RGB camera, whose parameters are
listed in Table 2. For the convenience of calibration between different sensors,
we install both camera and LiDAR on the same point. The position of sensors
on the vehicle is illustrated in the supplementary material.

3.3 Extra data and calibrations

For each scenario, We divide our data into the training set and the test set at
the ratio of 8:2. Each set contains the original pictures taken by the camera,
the point cloud information generated by LiDAR, and the ground truth labels,
and the calibration files. The labels include the following information: (i) 2D
bounding box of the object in the image, (ii) 3D object dimensions and loca-
tion, (iii) the value of alpha and rotation_y which are defined in the KITTI
Vision Benchmark [13]. Except for the above data, we further introduce two
extra pieces of information in DOLPHINS: the locations of key vehicles and the
context-aware labels. These two kinds of data are essential for collaborative au-
tonomous driving. The geo-positions of vehicles can greatly help to align the
perceptual information from different perspectives through coordinate transfor-
mations. Actually, to the best of our knowledge, all the published multi-view
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Table 2: Parameters of sensors on different units

Sensor type Parameter attributes RSU Vehicle

RGB
Camera

Horizontal field of view in degrees 90 90
Resolution 1920× 1080 1920× 1080
Height in meters 4 0.3+hveh

1

LiDAR

Number of lasers 64 64
Maximum distance to measure in meters 200 200
Points generated by all lasers per second 2.56× 106 2.56× 106

LiDAR rotation frequency 20 20
Angle in degrees of the highest laser 0 2
Angle in degrees of the lowest laser -40 -24.8
General proportion of points that
are randomly dropped 0.1 0.1

1. hveh denotes the height of the ego vehicle

collaborative perception algorithms are based on the locations of each vehicle,
no matter image-based [24, 25] or LiDAR-based [5, 4, 34]. Besides, the intercon-
nected autonomous vehicles can have wider perception fields with the help of
other transportation participants and the RSUs, which means they can detect
invisible objects. Most of the datasets only provide the labels of those who are
in the view angle of sensors, which is not enough for the vehicles to make safe
and timely decisions. We provide the labels of all traffic participants within 100
meters in front of or behind the ego unit, as well as 40 meters in the left and
right side directions.

3.4 Data analysis

To further analyze the data components of the dataset, we calculate the number
of cars and pedestrians in each scenario both in the training dataset and the test
dataset (as illustrated in Table 3). What’s more, we categorize each object into
three detection difficulty levels based on the number of laser points reflected by
it in the point clouds. Easy objects reflect more than 16 points, as well as hard
objects have no visible point, and the remaining objects are defined as moderate
ones. In other words, the difficulty level actually indicates the occlusion level
of each object. Since it is unlikely for us to manually annotate the occlusion
level, such kind of definition is a suitable and convenient approximation. From
the statistical analysis, it turns out that there is no pedestrian in scenarios 4
and 6, i.e., on high-way and mountain roads, which is self-consistent. Scenario 1
contains the most cars and pedestrians, as it is a crowded intersection. Scenario
2 is a T-junction, which has fewer directions for vehicles to travel. Scenario 3 is
a steep ramp, which will be the hardest scenario along with Scenario 6, because
of the severe occlusions caused by height difference.
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Table 3: Statistical analysis of objects in DOLPHINS training and test dataset

Scenario
Training Dataset Test Dataset

Car Pedestrians Car Pedestrians
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1 27548 4423 1090 12370 2117 349 7048 1096 296 3079 579 96
2 15428 1290 567 5641 2281 314 3895 330 155 1481 579 79
3 14365 4029 4291 3003 3462 584 3631 1068 1049 789 889 150
4 34012 11771 4089 0 0 0 8497 2937 1053 0 0 0
5 31648 6201 1993 4797 9734 1476 7918 1578 440 1161 2446 394
6 14035 2203 8531 0 0 0 3531 513 2150 0 0 0

Total 137036 29917 20561 25811 17594 2723 34520 7522 5143 6510 4493 719

4 Benchmarks

In this section, we provide benchmarks of three typical tasks on our proposed
DOLPHINS dataset: 2D object detection, 3D object detection, and multi-view
collaborative perception. For each task, we implement several classical algo-
rithms.

4.1 Metrics

We first aggregate the training datasets of six scenarios altogether. The composed
dataset will contain various background characteristics and occlusion relation-
ships, which help the model to have better generalization ability. The training
dataset is split for training and validation at the ratio of 5:3, then the perfor-
mance of each detector is examined on the test dataset. Similar to KITTI [13],
we use Average Precision (AP) at Intersection-over-Union (IoU) threshold of 0.7
and 0.5 to illustrate the goodness of detectors on cars, as well as IoU of 0.5 and
0.25 for the pedestrians since the pedestrians are much smaller than cars. The
degree of difficulty is cumulative in the test, that is, the ground truths of easy
objects are also considered in moderate and hard tests.

4.2 Experiment details

We use MMDetection [3] and MMDetection3D [7] to construct the training and
test pipeline. As for 2D object detection tasks, we finetune the COCO [22] pre-
trained models on our dataset. We also provide the GPU memory consumption
and the inference speed to illustrate the differences between different methods,
where the experiment is set with a batch size equal to 1. All the experiments are
performed on 8 RTX 3090 GPUs.

4.3 2D object detection

As mentioned in Sec. 2, there are four typical detection paradigms: anchor-based
two-stage detectors, anchor-based one-stage detectors, anchor-free one-stage de-
tectors, and the vision transformer. In this part, we select Faster R-CNN [30]
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as the representative of anchor-based two-stage detectors, YOLOv3 [29] for the
anchor-based one-stage detectors, YOLOX [12] and TOOD [11] for the anchor-
free one-stage detectors, and DETR [2] for the vision transformer. Specifically,
we set the backbone network of Faster-RCNN and YOLOv3 to be Resnet-50,
so that the size of these networks is close to each other. The experiment results
are illustrated in Table 4 (left) and Table 5. It shows that all the detectors can
have good knowledge of different scenarios. However, the modern anchor-free
detectors can significantly speed up the entire inference procedure without loss
of precision. One abnormal result is the surprising rise of AP in hard and mod-
erate tasks compared with easy tasks, especially in the pedestrian detection. A
reasonable explanation is the large proportion of moderate and hard objects due
to the characteristics of different scenarios. For example, in Scenario 6, which
is a mountain road, nearly half of the objects are severely occluded due to the
undulating planes. Thus, the detectors tend to propose much more candidate ob-
jects to match those hard objects, which leads to low AP in easy tasks because
of the false positives. It is proved by the high recall scores in easy tasks. The
same thing happens in pedestrian detection, where the pedestrians are smaller
and thus more likely to be hard ones. However, low AP is not equal to poor per-
formance. On the contrary, meeting the ultra-reliability demands of self-driving,
a higher recall rate is much more meaningful than the AP, which can alert the
vehicles to the potential dangers in blind zones. More detailed analysis can be
found in the supplementary material.

Table 4: 2D and 3D object detection analysis on speed and cost
2D Method Inference speed (fps) Memory usage (MB)

Faster-RCNN 35.6 2513
YOLOv3 50.7 2285
YOLOX-S 58.1 2001
YOLOX-L 36.5 2233

TOOD 26.8 2247
DETR 26.3 2419

3D Method Inference speed (fps) Memory usage (MB)

SECOND 45.7 2433
PointPillars 36.8 3483
PV-RCNN 13.1 2899
MVX-Net 11.0 11321

4.4 3D object detection

As for the 3D object detection tasks, different modals of sensors lead to dif-
ferent detector architectures. We choose SECOND [39], PointPillars [18], and
PV-RCNN [31] as SOTA LiDAR-based methods in this part. What’s more, the
multi-modal detectors can combine the segmentation information from images
and the depth information from LiDARs, which is an advantage to the detection
of small objects which reflect few points, e.g. pedestrians. We also test MVX-
Net [32] on our multi-modality dataset. The experiment results are illustrated
in Table 4 (right) and Table 6. The results show that Scenarios 3 and 6 are the
corner cases where the AP is significantly lower than in other scenarios. Due to
the steep ramp, the LiDAR on the ego vehicle is hard to detect the opposite vehi-
cles and pedestrians, which is the fundamental defect of stand-alone intelligence.
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Table 5: 2D object detection results on DOLPHINS

Scenario Method
Car

AP@IoU=0.7
Car

AP@IoU=0.5
Pedestrian

AP@IoU=0.5
Pedestrian

AP@IoU=0.25
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1

Faster R-CNN 89.18 80.73 80.62 90.07 89.72 88.76 87.12 90.77 90.82 87.12 90.79 90.88
YOLOv3 84.76 79.36 79.19 86.93 89.90 89.79 85.22 90.41 90.54 85.40 90.66 90.79
YOLOX-S 76.21 69.18 68.31 87.57 84.79 82.44 87.19 90.21 89.54 87.46 90.63 90.40
YOLOX-L 84.72 79.58 78.79 88.95 88.90 87.42 87.76 90.66 90.70 87.82 90.73 90.81

TOOD 88.30 80.04 79.97 89.76 90.07 89.71 89.02 90.83 90.87 89.03 90.83 90.88
DETR 82.29 77.76 75.61 89.40 88.43 86.79 87.16 89.44 89.19 87.77 90.17 90.14

2

Faster R-CNN 90.50 90.31 90.19 90.82 90.81 90.80 87.36 90.49 90.18 87.36 90.66 90.60
YOLOv3 89.33 89.46 89.48 90.17 90.27 90.47 75.96 90.05 90.11 75.96 90.47 90.59
YOLOX-S 86.46 79.98 79.53 90.20 89.85 89.54 86.99 86.70 80.76 87.24 89.66 87.92
YOLOX-L 89.48 86.87 80.85 90.61 90.47 90.25 86.29 89.51 87.65 86.29 89.98 89.72

TOOD 90.39 90.20 90.10 90.85 90.84 90.82 88.12 90.75 90.53 93.67 90.80 90.76
DETR 89.90 88.52 87.30 90.60 90.53 90.47 86.80 89.63 87.12 89.83 90.51 90.12

3

Faster R-CNN 85.23 88.55 80.25 86.54 90.18 81.51 75.89 89.77 90.67 75.89 89.80 90.76
YOLOv3 84.64 78.65 71.03 87.46 88.97 80.94 44.31 88.77 89.23 44.63 89.80 90.74
YOLOX-S 85.95 76.67 66.72 89.42 87.02 77.75 82.54 87.99 81.18 86.54 89.91 85.83
YOLOX-L 88.55 80.41 71.25 89.64 89.70 80.39 86.55 90.39 89.65 89.02 90.43 90.37

TOOD 88.25 80.47 71.50 89.62 90.30 81.26 85.60 90.15 90.69 85.60 90.18 90.83
DETR 87.94 85.00 79.18 89.17 88.71 86.74 85.73 87.49 85.87 85.73 88.69 87.56

4

Faster R-CNN 89.33 81.21 81.09 89.40 89.68 88.70 N/A N/A N/A N/A N/A N/A
YOLOv3 82.43 78.22 77.66 83.95 89.21 89.50 N/A N/A N/A N/A N/A N/A
YOLOX-S 88.97 76.37 70.29 89.65 86.24 84.43 N/A N/A N/A N/A N/A N/A
YOLOX-L 89.96 80.81 79.58 90.07 89.20 88.25 N/A N/A N/A N/A N/A N/A

TOOD 90.08 81.19 80.22 90.22 90.04 81.63 N/A N/A N/A N/A N/A N/A
DETR 88.17 76.00 74.13 89.44 86.50 86.00 N/A N/A N/A N/A N/A N/A

5

Faster R-CNN 89.70 80.86 81.04 90.25 89.34 88.82 68.07 80.10 81.06 71.49 80.17 81.41
YOLOv3 83.57 78.58 78.80 85.45 89.64 89.77 38.03 87.20 86.48 40.79 89.25 90.52
YOLOX-S 79.04 75.71 70.72 88.53 86.92 85.07 65.48 79.95 77.82 65.54 85.47 79.99
YOLOX-L 87.88 80.14 80.18 89.20 89.53 88.75 64.05 87.73 81.18 64.05 88.61 87.24

TOOD 89.12 85.12 80.73 89.87 89.92 89.96 77.25 88.18 81.41 78.71 89.16 88.43
DETR 84.26 78.03 75.95 89.58 88.35 87.00 74.59 81.21 77.55 77.04 86.34 83.82

6

Faster R-CNN 77.97 79.60 90.10 78.09 79.74 90.55 N/A N/A N/A N/A N/A N/A
YOLOv3 79.67 79.68 88.85 80.00 80.12 90.35 N/A N/A N/A N/A N/A N/A
YOLOX-S 81.63 79.53 79.73 82.34 81.28 88.61 N/A N/A N/A N/A N/A N/A
YOLOX-L 76.59 76.87 87.35 76.85 77.32 90.07 N/A N/A N/A N/A N/A N/A

TOOD 82.54 81.62 90.63 82.65 81.77 89.93 N/A N/A N/A N/A N/A N/A
DETR 85.09 83.27 81.81 85.47 84.03 89.89 N/A N/A N/A N/A N/A N/A

What’s more, PV-RCNN [31] gains significantly better performance at the cost
of taking nearly four times as long as SECOND [39]. MVX-Net [32] is inferior
to those pure LiDAR-based methods, but it achieves surprising performance in
pedestrians, which means the rich segmentation of information from images is
profitable for the detection of small objects.

4.5 Multi-view collaborative perception

Based on the information to exchange, collaborative perception can be catego-
rized into three levels: raw-level (early fusion), feature-level (middle fusion), and
object-level (late fusion). Due to the 3D information provided by point clouds,
LiDAR-based data fusion and object detection have been widely discussed. We
realize a raw-level fusion algorithm based on DOLPHINS LiDAR data through
the superposition of point clouds from different perspectives. However, not all
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Table 6: 3D object detection results on DOLPHINS

Scenario Method
Car

AP@IoU=0.7
Car

AP@IoU=0.5
Pedestrian

AP@IoU=0.5
Pedestrian

AP@IoU=0.25
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1

SECOND 95.65 90.37 87.36 98.79 96.05 92.97 74.17 70.08 68.19 96.78 95.86 93.47
PointPillar 96.63 92.09 88.83 98.55 96.19 93.13 70.12 65.41 63.56 95.57 94.38 91.98
PV-RCNN 98.14 93.87 90.69 98.90 96.18 92.98 83.67 80.36 78.37 97.31 96.50 94.09
MVX-Net 89.25 84.3 83.99 89.62 89.51 87.02 91.36 88.93 86.49 99.61 99.55 97.06

2

SECOND 96.33 91.32 88.77 98.48 97.50 95.56 66.71 59.35 57.27 95.07 91.00 87.94
PointPillar 97.39 93.06 91.70 98.23 97.33 95.48 59.65 53.33 51.35 92.52 87.58 84.49
PV-RCNN 98.57 94.76 91.15 99.12 97.44 94.33 78.74 71.59 68.94 97.37 93.91 90.60
MVX-Net 93.77 91.04 88.63 96.33 95.91 93.72 89.12 82.22 79.78 99.37 98.72 94.19

3

SECOND 80.30 67.16 54.96 85.51 75.08 64.29 49.87 29.31 27.05 92.73 60.26 55.88
PointPillar 78.94 68.29 56.78 85.67 75.75 66.75 37.49 22.04 20.00 82.64 52.55 48.25
PV-RCNN 85.93 73.85 60.59 87.54 77.18 64.30 63.95 37.46 34.53 90.93 58.96 54.32
MVX-Net 68.96 58.47 48.73 71.80 61.67 56.25 71.96 41.36 37.10 93.99 56.62 53.85

4

SECOND 97.81 92.11 84.47 99.33 97.35 90.50 N/A N/A N/A N/A N/A N/A
PointPillar 98.07 94.00 86.52 98.79 97.57 91.01 N/A N/A N/A N/A N/A N/A
PV-RCNN 99.37 95.54 87.70 99.50 97.78 89.98 N/A N/A N/A N/A N/A N/A
MVX-Net 91.76 86.39 83.73 91.96 89.19 86.55 N/A N/A N/A N/A N/A N/A

5

SECOND 96.49 91.41 87.44 98.68 96.36 92.71 75.33 65.03 58.90 97.37 94.29 87.52
PointPillar 97.45 92.92 89.30 98.81 96.52 92.94 71.36 62.07 56.27 97.32 93.59 85.70
PV-RCNN 98.57 94.39 90.49 99.23 97.21 93.15 90.47 79.07 71.64 98.94 95.45 87.29
MVX-Net 91.69 86.67 84.17 94.45 91.94 89.39 84.87 75.83 68.91 99.52 99.36 91.81

6

SECOND 90.53 82.60 56.05 97.54 82.11 68.15 N/A N/A N/A N/A N/A N/A
PointPillar 89.31 82.30 57.32 97.44 92.66 70.62 N/A N/A N/A N/A N/A N/A
PV-RCNN 95.95 89.29 62.05 98.23 93.95 69.28 N/A N/A N/A N/A N/A N/A
MVX-Net 87.53 75.29 52.60 90.76 80.55 57.97 N/A N/A N/A N/A N/A N/A

the LiDAR-based 3D detection algorithms can be adapted to raw-level fusion
schemes. Since many detectors use voxels to represent the point clouds of a dis-
trict, the height of voxels is limited to reduce the computation complexity. The
limitation will not be violated when the cooperators are on the same horizon-
tal plane, as in [5] and [38]. However, when the data are from RSUs or from
vehicles on a mountain road (as in Scenario 3 and 6 in Fig. 5), the height of
the aggregated point clouds will be too large to tackle through traditional voxel
processing. In our experiment settings, PointPillars [18] is the only algorithm to
be compatible with the raw-level fusion scheme.

What’s more, we also extend the MVX-Net to the collaborative autonomous
driving scenarios. With the help of the point clouds from the LiDARs on the
RSUs, whose locations are usually much higher, the ego vehicle can have a wider
view with fewer occlusions. In addition, a single LiDAR on the RSU could free
all the nearby autonomous vehicles from the necessity of equipping expensive
LiDARs by sharing its point clouds through the V2I network, which brings great
benefits to the realization of Level-5 autonomous driving. In this work, we use
the point clouds from the RSU (or the aux vehicle 1 in Scenario 5) instead of
the ego vehicle by transforming the coordinates.

Table 7 illustrates the multi-view collaborative perception on PointPillars [18]
and MVX-Net [32], and the corresponding AP difference compared with stand-
alone detection. It turns out that as for the superposition of raw point clouds, the
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Table 7: Multi-view collaborative perception results on DOLPHINS

Scenario Method
Car

AP@IoU=0.7
Car

AP@IoU=0.5
Pedestrian

AP@IoU=0.5
Pedestrian

AP@IoU=0.25
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1

PointPillar CP 97.13 95.19 94.57 97.63 96.40 95.89 72.73 70.60 70.23 94.01 93.69 93.31
Difference 0.52% 3.37% 6.46% -0.93% 0.22% 2.96% 3.72% 7.93% 10.49% -1.63% -0.73% 1.45%

MVX-Net CP 89.34 84.30 84.02 89.64 89.49 87.00 90.77 86.08 85.92 99.61 99.53 97.04
Difference 0.10% 0.00% 0.04% 0.02% -0.02% -0.02% -0.65% -3.20% -0.66% 0.00% -0.02% -0.02%

2

PointPillar CP 97.97 97.03 96.42 98.52 97.89 97.55 57.51 51.89 50.92 91.94 88.52 86.54
Difference 0.60% 4.27% 5.15% 0.30% 0.58% 2.17% -3.59% -2.70% -0.84% -0.63% 1.07% 2.43%

MVX-Net CP 93.75 90.99 88.47 96.41 96.19 93.81 88.52 81.72 79.25 99.29 98.76 94.13
Difference -0.02% -0.05% -0.18% 0.08% 0.29% 0.10% -0.67% -0.61% -0.66% -0.08% 0.04% -0.06%

3

PointPillar CP 81.48 72.73 66.30 86.88 77.69 72.33 32.62 19.89 18.47 73.24 48.12 44.80
Difference 3.22% 6.50% 16.77% 1.41% 2.56% 8.36% -12.99% -9.75% -7.65% -11.37% -8.43% -7.15%

MVX-Net CP 69.04 58.48 48.77 71.61 61.60 54.18 70.82 39.76 37.43 91.87 56.60 51.76
Difference 0.12% 0.02% 0.08% -0.26% -0.11% -3.68% -1.58% -3.87% 0.89% -2.26% -0.04% -3.88%

4

PointPillar CP 97.60 96.22 94.40 97.93 97.00 95.74 N/A N/A N/A N/A N/A N/A
Difference -0.48% 2.36% 9.11% -0.87% -0.58% 5.20% N/A N/A N/A N/A N/A N/A

MVX-Net CP 91.70 86.38 83.69 91.92 89.22 86.58 N/A N/A N/A N/A N/A N/A
Difference -0.07% -0.01% -0.05% -0.04% 0.03% 0.03% N/A N/A N/A N/A N/A N/A

5

PointPillar CP 96.38 94.24 92.77 96.87 95.82 94.38 65.50 61.53 58.69 93.00 91.62 87.82
Difference -1.10% 1.42% 3.89% -1.96% -0.73% 1.55% -8.21% -0.87% 4.30% -4.44% -2.10% 2.47%

MVX-Net CP 91.63 86.57 84.06 94.49 91.94 89.40 82.56 72.02 67.19 99.78 96.93 89.44
Difference -0.07% -0.12% -0.13% 0.04% 0.00% 0.01% -2.72% -5.02% -2.50% 0.26% -2.45% -2.58%

6

PointPillar CP 94.46 91.43 79.34 97.77 96.63 87.17 N/A N/A N/A N/A N/A N/A
Difference 5.77% 11.09% 38.42% 0.34% 4.28% 23.44% N/A N/A N/A N/A N/A N/A

MVX-Net CP 87.10 74.85 52.34 90.45 80.43 59.52 N/A N/A N/A N/A N/A N/A
Difference -0.49% -0.58% -0.49% -0.34% -0.15% 2.67% N/A N/A N/A N/A N/A N/A

ego vehicle can gain plentiful benefits from the richer information directly from
another perspective. Under those circumstances with severe occlusions such as
Scenario 3 and 6 and for those hard objects, the cooperative perception-based
PointPillars [18] achieves up to 38.42% increment in AP. However, the extra
noise also infects the detection of small objects, which is also discussed in the
supplementary material. On the other hand, as for the MVX-Net with the local
camera and RSU LiDAR, the performance is nearly the same as the one with
stand-alone sensors. It shows the opportunity to enable high-level autonomous
driving on cheap, LiDAR-free vehicles through the sensors on infrastructures.

5 Conclusions

In this paper, we present a new large-scale various-scenario multi-view multi-
modality autonomous driving dataset, DOLPHINS, to facilitate the research on
collaborative perception-enabled connected autonomous driving. All the data
are temporally-aligned and generated from three viewpoints, including both ve-
hicles and RSUs, in six typical driving scenarios, along with the annotations,
calibrations, and the geo-positions. What’s more, we benchmark several SOTA
algorithms on traditional 2D/3D object detection and brand-new collaborative
perception tasks. The experiment results suggest that not only the extra data
from V2X communication can eliminate the occlusions, but also the RSUs at
appropriate locations can provide equivalent point clouds to the nearby vehicles,
which can greatly reduce the prime cost of self-driving cars. In the future, we
are going to further extend the number of infrastructures and aux vehicles, and
construct more realistic maps of the downtown.
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