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Abstract. Facial expression recognition (FER) suffers from high in-
terclass similarity and large intraclass variation, leading to ambiguity
or uncertainty and further confusing annotators. They also hinder the
network in learning the valuable features of facial expression. Recently,
many studies have revealed that the uncertainty or ambiguity is one of
the key challenges in FER. In this paper, we propose a new method to
address this issue from two aspects: a soft label mining module to con-
vert the original hard labels to soft labels dynamically during training,
and an average facial expression anchoring module to separate unique
expression features from similarity expression features. The soft label
mining module breaks the limits of the categorical model and mitigates
the uncertainty or ambiguity. And the average facial expression anchor-
ing module suppresses the high interclass similarity of facial expressions.
Our method can train any backbone network for facial expression recog-
nition. The experiments on the popular datasets show that our method
achieves state-of-the-art results by 92.82% on RAF-DB and 67.91% on
SFEW, and achieves a comparable result of 62.26% on AffectNet. The
code is available at https://github.com/HaipengMing/SLM-AEA.

1 Introduction

Facial expression is one of the most natural, powerful, and universal signals
for human beings to convey their emotional states and intentions [6, 32]. In the
past years, facial expression recognition (FER) has attracted much attention
due to its important role in human-computer interaction, health care, and many
other applications. Similar to other modalities in affective computing, a facial ex-
pression is commonly characterized as one of several discrete affective states(e.g.,
basic emotions defined by Ekman and Friesen [10, 9]), which is also known as the
categorical model. Generally, annotating facial expressions with the categorical
model is much easier and cheaper than other models (FACS [11] and dimen-
sion models [26]). It’s more consistent with people’s intuition as well. Existing
facial expression datasets are mostly annotated with categorical model, such as
Oulu-CASIA [44], SFEW/AFEW [7], FERPlus [1], RAF-DB [16], AffectNet [20]
(AffectNet also annotated Valence-Arousal dimensions), etc.
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2 H.P. Ming et al.

Fig. 1. An illustration of the uncertainty or ambiguity. These 14 images are from
AffectNet and their labels are attached to the bottom of the images. From left to
right, sadness, neutral, happiness. But there is no clear boundary between sadness and
neutral as well as neutral and happiness.

However, the categorical model is limited in the ability to represent the com-
plexity and subtlety of facial expressions, especially in the wild. As illustrated
in Fig. 1, there is not usually a clear boundary between the different expression
categories. Even worse, due to the high interclass similarity, annotators may even
annotate incorrectly. This means that the quality and consistency of the datasets
are difficult to guarantee because of the subjectivity of the annotators. Compared
to discrete affective states, the soft label has a greater expressivity, which can
describe ambiguity appropriately. High interclass similarity can be described as
other expression components, while high intraclass variation can be described
as different extensions of the real expression component. However, it is expen-
sive and time-consuming to provide soft labels for large-scale FER datasets. A
compromised way is soft label mining. Based on [41], we designed a simple yet
efficient soft label mining module to mine soft labels from original annotations,
i.e., the hard labels. Specifically, we introduce the label smoothing method to
initially transfer the hard labels to soft labels according to an artificially set
value p, which reflects the confidence level of the original annotations. The ini-
tialized soft labels act as targets to train the network parameters. We update
them by taking into account both the network predicted distribution and the
original distribution(i.e., the hard labels) during training. To make a trade-off
between them, we design a ramp function to achieve a balance dynamically. Note
that the soft label mining module is designed for training, imposes no additional
burden on inference, and adds only a very small additional burden to training.
Meanwhile, we also design a novel average facial expression anchoring module to
suppress the high interclass similarity. Specifically, we take the average feature of
a mini-batch as the anchor feature, i.e., the average expression, and introduce a
learnable vector with the same size as the attention weight of the anchor feature.
The weighted anchor features are further summed with the expression features
as the final extracted features. We suppress the uncertainty or ambiguity in FER
through these two modules, especially the soft label mining module, which has
an excellent and stable performance on different FER datasets. Our method can
be used to train any backbone network for facial expression recognition.
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Overall, the main contributions can be summarized as follows:
(1) We propose a novel method to address the uncertainty or ambiguity prob-

lem in FER by designing a soft label mining module and an average expression
anchoring module. In comparison with existing related work, our approach is
simpler and more efficient.

(2) Our approach is extensively evaluated on laboratory databases and real-
world datasets. Experimental results show that our method achieves the state-of-
the-art performance by 92.82% on RAF-DB and 67.91% on SFEW, and achieves
a comparable result of 62.26% on AffectNet.

2 Related work

2.1 Facial Expression Recognition

Facial expression recognition has been an active topic for many years. Early
work focused on using handcraft features (e.g., SIFT [22], HOG [5], LBP [27],
Gabor Wavelets [2].etc) to exact the emotion feature and recognize facial ex-
pressions. While with the development of deep learning, now the learning-based
methods have become mainstream, which can be roughly classified into three
groups: data-focused [21, 42], model-focused [3, 40, 34, 25] and label-focused [4,
35, 28]. The results observed by Ng et al. [21] show that pre-fine-tuning on an
additional FER dataset can improve the performance. Zeng et al. [42] propose
a new model termed IPA2LT to address the inconsistency issue in fusion of dif-
ferent FER datasets. Yang et al. [40] and Wang et al. [34] introduce adversarial
mechanism into FER. Ruan et al. [25] propose a novel model to take into account
subtle differences between different facial expressions. Recently, some researchers
began to consider the uncertainty of annotations in FER datasets. Chen et al. [4]
introduce label distribution learning and draw on an auxiliary space of FACS or
landmarks. Wang et al. [35] propose a Self-Cure Network (SCN) to suppress the
uncertainty by correcting possible mislabeling. She et al. [28] proposed a model
named DMUE, which achieved previous leading performance, to mine latent dis-
tribution and estimation uncertainty. Zhao et al. [45] propose a lightweight FER
network considering both model and label.

2.2 Methods for Uncertainty or Ambiguity

Low-quality annotations caused by uncertainty or ambiguity can be considered
as label noise, which also appears in other computer vision tasks. Numerous
methods have been proposed to resolve this issue. Some methods leverage a small
set of clean data [33, 17]. Qu et al. [23] proposed a label-noise robust network by
matching the feature distributions. In the field of FR (Face Recognition), a GCN-
based model [43] is proposed to address the large-scale label noise. Recently, label
distribution has been proposed to mitigate the adverse impact of label noise
by converting logical labels to discretized bivariate Gaussian label distribution
with the help of prior knowledge [12, 13, 31]. In the classification problem, label
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distribution means soft label. Label enhancement (LE) [39, 38] is the universal
way to find the latent ground truth. Uncertainty estimation methods can be used
to [30, 37] address the inconsistent data quality. The uncertainty or ambiguity
in FER is intrinsic. Compared to other classification tasks, facial expressions of
different classes suffers from high interclass similarity but also high intraclass
variation.

3 Method

Fig. 2. The overall framework of our method. Face images are first fed into a backbone
network for feature extraction. The extracted features are then averaged to obtain
the anchor feature, further multiplied element-wise by a learnable weight vector. The
obtained results and the extracted initial features are added element-wise as the final
extracted features of the network. We view the soft label as the target to train the
network. When training, the soft labels are updated dynamically with a newly designed
loss function. The solid line in the figure represents forward propagation while the
dashed line represents back-propagation.

Notation. Given a FER dataset X , we donate its corresponding hard label
space as H = {yyy : yyy ∈ {0, 1}C , ∥yyy∥1 = 1}, and the soft label space as S =

{yyy : yyy ∈ [0, 1]
C
, ∥yyy∥1 = 1}, where C is the number of classes. For the i-th
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facial image xxxi belonging to X , we denote ŷyyi = {ŷi1, ŷi2, ..., ŷiC} ∈ H as its
annotated deterministic hard label, which is a one-hot vector. The output vector
of backbone network is donated as zzzi = {zi1, zi2, ..., ziC}.

3.1 Soft Label Mining

We first transfer the hard labels to soft labels with the help of label smooth-
ing [15], which is a trick to improve the performance in classification tasks. A
hyperparameter p is introduced for initialization. The more uncertain or am-
biguous the FER dataset is, the lower the p is set. As for hard labels, p is 1.
We take the initialized soft labels as the new target to train the network. While
training, we update the soft labels dynamically.

Specifically, in a C-classes classification task, the process of prediction with
the model can be formulated as:

zzzi = f(xxxi;θθθ) (1)

where f is a model and θθθ is the set of network parameters. Then the predicted
result of the model f will be normalized by softmax function.

z̄zzi = softmax(zzzi) (2)

z̄ij =
exp(zij)∑C
j=1exp(zij)

(3)

Obviously, z̄zzi belongs to S. It can be viewed as the label distribution generated
by model f . Generally, the purpose of training is to minimize the cross-entropy
loss function:

L = − 1

N

N∑
i=1

C∑
j=1

ŷij logz̄ij (4)

For the i-th image belongs to c-th class,

Li = −zic + log(
∑C

j=1exp(zij)) (5)

Its optimal solution is z∗ic = infinfinf , while keeping others small enough. But
many ambiguous facial expressions have similar intensity in different emotional
components. It is not reasonable to force other components small enough. The
idea of label smoothing is to transfer ŷyyi ∈ H to ȳyyi ∈ S by changing the construc-
tion as:

ȳij =

{
1− ε if j = c,

ε/(C − 1) otherwise
(6)

where ε is a small constant. ȳyyi is a label distribution. We donate its predecessor
before the softmax operator as ỹyyi, its components are computed as:

ỹij =

{
k if j = c,

k − log (1−ε)(C−1)
ε otherwise

(7)
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where k is an arbitrary number. It determines the data scale before softmax. But
when ε is fixed, k has no effect on ȳyy, that is, the distribution of ȳyy in S is only
related to ε. In our experiments, k is set to 5. The ỹyyi is used as the score-form
soft labels and updated with a learning rate during training.

Note that we use p (p = 1−ε) instead of ε as the hyperparameter. It is because
p responds to the confidence level of the original annotations. Our experimental
results show that in the synthetic noise datasets, p should be adjusted to lower
as the noise ratio increases.

As mentioned earlier, ỹyyi is used as the score-form soft label. The cross entropy
loss function in Equation 4 now is:

Lcls = −
1

N

N∑
i=1

C∑
j=1

ȳij logz̄ij (8)

ȳyyi = softmax(ỹyyi) (9)

Lcls is the loss function to update the network parameter θθθ. We update ỹyyi
and θθθ in two continuous but different backpropagation stages. After θθθ has been
updated, ỹyyi is regarded as the learnable parameters. Both [35] and [28] show that
the network prediction z̄zzi of some ambiguous facial expressions is more credible
than the annotations during training. So an intuitive approach is to take full
advantage of z̄zzi.

Lm = − 1

N

N∑
i=1

C∑
j=1

z̄ij logȳij (10)

We mine the soft label by Equation 10. But certain samples should benefit
from the original annotations, so we also utilize another loss function (Equa-
tion 11) to explore the compatibility between the original label and the latent
label distribution.

Lcpt = −
1

N

N∑
i=1

C∑
j=1

ŷij logȳij (11)

We introduce a ramp function [28] to adjust the weight between different loss
functions. The overall loss function guiding ỹyyi to update is:

L = rampup(e) · Lm + rampdown(e) · Lcpt (12)

rampup(e) =

{
exp(−(α− e

β )
2) e ≤ β,

1 e > β
(13)

rampdown(e) =

{
1 e ≤ β,

exp(−(α− β
e )

2) e > β
(14)
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where α and β are hyperparameters. α is used to adjust the slope of ramp
function, which is fixed at 1 in [28]. β is the epoch threshold. In the training
process, the network trusts the original annotations more before β-th epoch, and
trusts itself more after β-th epoch.

ỹyy ← ỹyy − λ
∂L
∂ỹyy

(15)

The backpropagation of L takes another learning rate λ to update ỹyy as shown
in Equation 15. Note that λ has a strong relationship with k in Equation 7. k
decides the scale of score-form soft label, while λ is the learning rate to update it.
In our experiment, k is fixed to 5 and λ is fixed to 200. Different k has different
optimal λ, but once a pair of k and λ is determined, there is no need to change it.
For different datasets, only the hyperparameter p, α and β need to be adjusted.

3.2 Average Expression Anchoring

To handle the high interclass similarity in FER, we design an average expres-
sion anchoring module to separate the common feature and the unique feature.
We share a similar mindset with a small part of [29].

In general, the features extracted from backbone networks are processed by
a fully-connected layer to get zzzi:

zzzi =WWWTFFF i (16)

where FFF i ∈ RRRD and belongs to feature space.
The average expression anchoring module is comprised of a learnable atten-

tion weight W̃WW ∈ RRRD, and an element-wise summation operation layer which can
be donated as:

F̃FF i = W̃WW ∗ F̄FF +FFF i (17)

F̄FF =
1

b

b∑
i=1

FFF i (18)

where ∗ means element-wise multiplication and + means element-wise summa-
tion, b is the batch size of the train set.

The average expression anchoring module replacesFFF i with F̃FF i, and we think it
addresses the uncertainty or ambiguity problem from two aspects. First, because
the expressions of the different categories have very similar information, which
disturbs the network to distinguish, it is necessary to separate the unique features
from the common features. F̄FF represents the highly similar information while FFF i

represents the special information. Experimental results show that the network
advantages of the separation. Second, for low-quality samples, anchoring the
average expression allows them to take advantage of information from high-
quality samples in the same batch, thus improving the overall quality of the
dataset.

Note that the improvements of this module depends on “average expression",
i.e., F̄FF . That means it will not work if inferencing a single expression rather than
a batch of expressions.
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3.3 The overall framework

As illustrated in Fig. 2, given a FER dataset with hard labels, we first eval-
uate the confidence level of the dataset annotations by p. Then we fix p and
soften the hard labels by label smoothing to get the initialized soft labels. The
initialized soft labels are used as the target to train the backbone networks. An
average expression anchoring module is introduced at the end of the backbone to
mitigate the high interclass similarity in FER, by separating the unique features
from common features. The soft labels are further updated dynamically during
training by minimizing multiple loss functions. We force them to approximate
both the network prediction and the original annotations by Lcls and Lm. We
designed different weights to make the network trust original annotations more
in the beginning and trust itself more as the training progressed. Not that we
use not only traditional CNNs but also Swin-transformers [18] as our backbones
to extract facial expression features. The effects of different backbone networks
will be compared in Section 4.

4 Experiments

4.1 Datasets

Oulu-CASIA [44] contains videos captured in controlled lab conditions. Sub-
jects were asked to pose six basic expressions (happiness, surprise, sadness, anger,
disgust, fear). We select the last three frames in each sequence in the condition
of the visible light and strong illumination (consisting of 1,440 images in total),
to construct the training set and the test set. Similar to [35], we employ the
subject-independent tenfold cross-validation protocol for evaluation.

RAF-DB [16] is the real-world facial expression dataset, and contains 15,339
facial images annotated with six basic expressions and neutral expression. Among
them, 12,271 images are used for training, and the other 3,068 images for testing.
We report the overall sample accuracy of the testing set for measurement.

AffectNet [20] is by far the largest FER dataset collected in the wild. It was
annotated with both categorical and Valence-Arousal dimension labels. It con-
tains more than 100,000 images from the Internet by querying 1,250 expression-
related keywords in three search engines, of which 450,000 images are manually
annotated with seven expression classes the same as RAF-DB and the extra
contempt expression. Among them, 280K images are used for training and the
remaining 4K images for testing. The overall sample accuracy is used for mea-
surement.

SFEW [7] is created by selecting static frames from Acted Facial Expressions
in the Wild (AFEW). The images in SFEW are labeled with six basic expressions
and neutral expression same as RAF-DB. We use 958 images for training and
436 images for testing. The overall sample accuracy is used for measurement.
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4.2 Implementation Details

We take ResNet18 [14] pre-trained on MS-Celeb-1M as the default backbone
network with the standard routine for a fair comparison. We also aligned the
faces of the in-the-wild datasets for pose normalization. The facial expression
images are resized to 256×256 pixels and further augmented by random crop-
ping to 224×224 pixels, horizontally flipped, and added Gaussian noise with a
probability of 0.5. As mentioned earlier, the parameter k and λ are set to 5 and
200, respectively. The hyperparameter α is set to 1.6. But the other parameters
(β and p) need to be adjusted according to the datasets. p reflects the confidence
level of the original annotations and β is the epoch that the backbone has learned
enough knowledge so that it can trust its prediction. Considering carry out in
practice, β is set to 7 and p is set to 0.9 can achieve a performance that greatly
exceeds the baseline generally. We use Adam with a weight decay of 10−4. The
initial learning rate is 10−3, which is further reduced to 10−6 as a cosine func-
tion. The training ends at epoch 40. We use the Pytorch toolbox to implement
our model on a single Nvidia 2080Ti GPU and train it in an end-to-end manner.

4.3 Ablation Studies

We conduct ablation experiments to observe the effect of key parameters and
different modules on the final performance. We choose RAF-DB and AffectNet
as the benchmark since they are two of the popular largest real-world FER
datasets.

Influence of different modules. In order to evaluate the contribution of
different modules, we conduct an ablation study to investigate the soft label
mining module and the average expression anchoring module on RAF-DB and
AffectNet. Considering some related works did not pre-train the network on
large scale face recognition datasets, we also investigate the effect of pertaining
on MS-Celeb-1M. The experimental results are shown in Table 1. Some obser-
vations can be concluded. First, the soft label mining module improves the per-
formance by 1.82% on RAF-DB and 3.86% on AffectNet without pertaining on
MS-Celeb-1M, and improves the performance by 1.98% on RAF-DB and 4.31%
on AffectNet with pre-training. It plays the most important role in our method
due to its outstanding and stable improvements. Second, pre-trained on large
scale face recognition datasets and the average expression anchoring module im-
proves the accuracy on RAF-DB observably. But pre-training achieves very little
improvement on AffectNet. The average expression anchoring module can even
degrade the accuracy on AffectNet slightly. We think it can be explained by
the consistency of the datasets. Due to the uncertainty or ambiguity problem
in FER, larger scale FER datasets tend to be more inconsistent. At this point,
the requirement for the soft mining module is even greater because it breaks
the limitations of the categorical model. Third, pre-trained on large scale face
recognition datasets and the union of two modules can improve the performance
greater. Taking the result of pre-training on MS-Celeb-1M as a baseline, our
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Table 1. Accuracy(%) comparison of different modules on RAF-DB and AffectNet.
SLM and AEA are abbreviations for the soft label mining module and the average
expression anchoring module, respectively. ✓ on “Pre-train" means ResNet18 is pre-
trained on MS-Celeb-1M, while ××× means the initialized parameters of ResNet18 are
provided by Pytorch, which is pre-trained on ImageNet.

Pre-train SLM AEA RAF-DB AffectNet

××× ××× ××× 86.34 59.34
××× ✓ ××× 87.91 61.63
××× ××× ✓ 89.12 58.78
××× ✓ ✓ 91.65 61.82
✓ ××× ××× 87.59 59.44
✓ ✓ ××× 89.32 62.00
✓ ××× ✓ 91.99 59.29
✓ ✓ ✓ 92.82 62.26

Fig. 3. The accuracy (%) with different α and β on AffectNet.

method improves the accuracy by 5.97% on RAF-DB and 4.74% on AffectNet
finally.

Influence of α. α determines the slope and the ramp function’s initial value.
We introduced α in our model to improve the ramp function. This is because
the original ramp function has a higher starting point, but we want to force the
network to concentrate more on the original labels in the early phases of training.
The experimental results show that the introduction of α helps to resolve this
problem. Fig. 3 shows the influence of α. If α is set too small, the network’s
predictions at the beginning moments of training will have a greater impact on
relabeling. If α is set too large, the slope of the ramp function will be too steep.

Influence of β. β is the epoch that the network starts to mine soft labels.
Before β-th epoch, soft label mining depends more on the original hard label.
But after β-th epoch, it depends more on the logits of the network. Theoretically,
the lower the quality of the dataset, the lower the β. But too small β will harm
learning enough useful features. Fig. 3 shows the impact of β on AffectNet, and
proves this speculation well. Different datasets need different β. As shown in
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Table 2, AffectNet has the minimum optimal β and RAF-DB has the maximum
optimal β.

Table 2. Optimal β and p for different FER datasets.

Oulu-CASIA RAF-DB AffectNet SFEW

β 7 8 6.5 7
p 0.95 0.97 0.85 0.91

Optimal p of different FER datasets. We conduct plenty of experiments
to test the optimal p of different datasets. As shown in Table 2, the result shows
that the AffectNet has the minimum optimal p. This means that it may be
the most uncertain or ambiguous of the four FER datasets. We think it can
be explained by the scale of AffectNet. As early mentioned, larger-scale FER
datasets tend to be more inconsistent.

Table 3. Accuracy(%) comparison of different backbone networks on RAF-DB and
AffectNet. SLM-AEA is an abbreviation for our method. All the backbone networks
are pre-trained on ImageNet for a fair comparison.

Backbone SLM-AEA RAF-DB AffectNet

ResNet18 [14] ××× 86.34 59.34
ResNet18 [14] ✓ 91.65 61.82
ResNet50 [14] ××× 85.39 59.04
ResNet50 [14] ✓ 89.08 60.95

Swin Transformer [18] ××× 87.61 59.74
Swin Transformer [18] ✓ 90.63 62.17

Different backbone networks. Our framework can be used to train any
backbone networks for facial expression recognition. We conduct experiments not
only on CNNs but also on the recently popular transformer. We choose ResNet18,
ResNet50, and Swin-transformer as the backbone networks for comparison. For
a fair comparison, all the backbones are pre-trained on ImageNet. Pre-training
on ImageNet makes the performance slightly inferior compared to pre-training
on MS-Celeb-1M. As shown in Table 3, one interesting thing is that ResNet50
does not perform as well as ResNet18 on RAF-DB and AffectNet. In contrast,
the performance of the Swin-transformer on AffectNet is a bit surprising. We
believe the transformer has even more potential for facial expression recognition.
However, on RAF-DB, the performance of the Swin-transformer decreases when
our method is implemented.
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Fig. 4. Nine images and their predicted results from RAF-DB. There is some ambiguity
in each image. The orange soft labels were mined by our model (Su: Surprise, Fe: Fear,
Di: Disgust, Ha: Happy, Sa: Sad, An: Anger, Ne: Neutral). The blue logits were output
from the baseline method.

4.4 Visualization Analysis

To demonstrate the superiority of our method, we analyze it visually in com-
parison with the baseline. We selected 9 images from RAF-DB with different
degrees of ambiguity. As shown in Fig. 4, the label of each expression is at-
tached to the green rectangle in the lower part of the image. Compared with
the baseline, our method mined more latent ground truth. The rationality of the
soft labels can be illustrated with the first two expressions labeled as sadness in
Fig. 4. In the baseline method, both images are predicted to be “Neutral”, but
our predictions have a larger weight on both “Neutral" and “Sadness”. Although
our method predicts only one of them correctly, we think it is closer to the
ground truth. The same conclusion can be observed in other images. Another
interesting example is the fourth expression, it’s hard to determine its real la-
bel. And it seems that our model has some “confusion” with it, too. Despite the
presence of many uncertain or ambiguous expressions in the FER dataset, we
assume that the labels provided by the annotators are correct overall (at least
for one component).

4.5 Evaluation on Synthetic datasets

One of the consequences of ambiguity is that annotators tend to mislabel ex-
pressions, which can be viewed as label noise. Label noise is usually classified into
two types: symmetric label noise and asymmetric label noise. Asymmetric noise
means that each expression can be incorrectly labeled as any other expression
uniformly. We synthesize asymmetrical noise like [34], and quantitatively added
10%, 20%, and 30% noise to RAF-DB. We reproduced SCN [34] to compare
with our method. To make a fair comparison, we use the same initialization pa-
rameters which pre-train on MS-Celeb-1M with the backbone of ResNet18. We
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Table 4. Accuracy(%) comparison with the state-of-the-art method on synthetic noise
RAF-DB datasets.

Method n(%) RAF-DB/best RAF-DB/last

Baseline 10 82.88 81.64
SCN 10 86.77 86.40

SLM-AEA 10 91.59 91.59
Baseline 20 80.84 74.88

SCN 20 85.20 84.78
SLM-AEA 20 89.86 89.57
Baseline 30 79.19 63.88

SCN 30 82.69 82.34
SLM-AEA 30 87.74 85.95

Table 5. Comparison with the State-of-the-arts. + denotes both AffectNet and RAF-
DB are used as the training set. ∗ denotes oversampling is used since the train set of
AffectNet is imbalanced.

Benchmark Dataset Method pre-trained Dataset Acc.(%)

Oulu-CASIA IPA2LT+ [42] - 61.49
Oulu-CASIA FN2EN [8] 2.6M face images 87.71
Oulu-CASIA DeRL [40] BU-4DFE & BP4D 88.00
Oulu-CASIA DDL [24] Multi-PIE 88.26
Oulu-CASIA FDRL (ResNet18) [25] MS-Celeb-1M 88.26

Oulu-CASIA SLM-AEA (ResNet18) MS-Celeb-1M 88.61
RAF-DB LDL-ALSG+ [4] - 85.53
RAF-DB IPA2LT+ [42] - 86.77
RAF-DB SCN (ResNet18)+ [35] MS-Celeb-1M 88.14
RAF-DB DMUE (ResNet18) [28] MS-Celeb-1M 88.76
RAF-DB FDRL (ResNet18) [25] MS-Celeb-1M 89.47
RAF-DB SLM-AEA (ResNet18) MS-Celeb-1M 92.82
AffectNet IPA2LT+ [42] - 55.71
AffectNet RAN∗ [36] MS-Celeb-1M 59.50
AffectNet SCN (ResNet18)∗ [35] MS-Celeb-1M 60.23
AffectNet CVT∗ [19] MS-Celeb-1M 61.70
AffectNet SLM-AEA∗ (ResNet18) MS-Celeb-1M 62.26
AffectNet DMUE (ResNet18)∗ [28] MS-Celeb-1M 62.84
SFEW RAN [36] MS-Celeb-1M 56.40
SFEW DMUE(ResNet18) [28] MS-Celeb-1M 57.12
SFEW IPA2LT+ [42] - 58.29
SFEW DDL [24] Multi-PIE 59.86
SFEW FDRL(ResNet18) [25] MS-Celeb-1M 62.16
SFEW SLM-AEA (ResNet18) MS-Celeb-1M 67.91
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report the mean accuracy of ten experiments. As shown in Table 4, our method
outperforms both the baseline and the SCN for different ratios of label noise.
That is, our method has better error correction capability. We believe that this
error correction capability comes from representing expressions with soft labels
rather than hard labels. Note that the value of p should be adjusted according
to the synthesized noise ratio. With the noise ratio increasing, p should be tuned
down slightly to achieve better performance.

4.6 Comparison with the State-of-the-arts

We compared our method with the state-of-the-arts as shown in Table 5.
IPA2LT aims to address the inconsistency of different datasets. DDL is pro-
posed to disentangle the disturbing factors in facial expression images. DeRL
decomposes expressions into expressive components and unexpressed neutral
components with the help of GAN. RAN is developed to deal with the occlu-
sion and head pose in FER. LDL-ALSG introduces label distribution learning
to FER and uses extra information from related tasks. SCN and DMUE are
recently proposed and also committed to addressing the uncertainty or ambi-
guity problem of FER. [35] is the first paper to propose the uncertainty prob-
lem in FER. DMUE (ResNet50-IBN version) achieved previous leading perfor-
mance. We choose version ResNet18 of the DMUE for a fair comparison. FDRL
is also a recently proposed method and achieves leading performance on both
the Oulu-CASIA and RAF-DB datasets. CVT introduced transformer into FER
and also achieved state-of-the-art performance. Compared with these methods,
we definitely achieve better performance and set new records on Oulu-CASIA,
RAF-DB, and SFEW. SLM-AEA outperforms these state-of-the-art methods
consistently with a huge margin on RAF-DB and SFEW. Although it did not
outperform DMUE on AffectNet, a very competitive result was achieved and our
method was simpler compared to DMUE.

5 Conclusion

In this paper, we proposed a novel method to address the uncertainty and
ambiguity problem. Our method is composed of two main modules: the soft la-
bel mining module and the average expression anchoring module. The former
is designed to break the limitations of the classification model by dynamically
converting hard labels to soft labels, and the latter aims to alleviate the high
interclass similarity. The soft label mining module plays the most important role
in our method due to its outstanding and stable improvements. Compare with
the state-of-the-art methods, our SLE-AEA is more simple yet effective. Exper-
iments on popular benchmarks show that our method is extremely competitive.
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