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Abstract. Conventional active learning (AL) frameworks aim to reduce
the cost of data annotation by actively requesting the labeling for the
most informative data points. However, introducing AL to data hun-
gry deep learning algorithms has been a challenge. Some proposed ap-
proaches include uncertainty-based techniques, geometric methods, im-
plicit combination of uncertainty-based and geometric approaches, and
more recently, frameworks based on semi/self supervised techniques. In
this paper, we address two specific problems in this area. The first is the
need for efficient exploitation/exploration trade-off in sample selection in
AL. For this, we present an innovative integration of recent progress in
both uncertainty-based and geometric frameworks to enable an efficient
exploration/exploitation trade-off in sample selection strategy. To this
end, we build on a computationally efficient approximate of Thompson
sampling with key changes as a posterior estimator for uncertainty rep-
resentation. Our framework provides two advantages: (1) accurate poste-
rior estimation, and (2) tune-able trade-off between computational over-
head and higher accuracy. The second problem is the need for improved
training protocols in deep AL. For this, we use ideas from semi/self super-
vised learning to propose a general approach that is independent of the
specific AL technique being used. Taken these together, our framework
shows a significant improvement over the state-of-the-art, with results
that are comparable to the performance of supervised-learning under
the same setting. We show empirical results of our framework, and com-
parative performance with the state-of-the-art on four datasets, namely,
MNIST, CIFAR10, CIFAR100 and ImageNet to establish a new baseline
in two different settings.

1 Introduction

Active learning (AL) has consistently played a central role in domains where la-
beling cost is of great concern. The core idea of AL frameworks revolves around
learning from small amounts of annotated data and sequentially choosing the
most informative data sample or batch of data samples to label. To this end,
after initial training using available labeled data, an acquisition function is uti-
lized to leverage the model’s uncertainty in order to explore the pool of unlabeled
data for most informative data points. In parallel with advancements in AL, in
the recent years, deep learning has gained tremendous attention due to its emer-
gence as a high-performing approach, primarily conditioned on the availability
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of large amounts of training data. An interesting challenge is how to efficiently
incorporate data-hungry deep learning tools into supposedly data-efficient AL
frameworks.

Adjusting AL algorithms for deep neural networks has been very challenging,
where extending the model complexity/capacity to that of CNNs ultimately
ended up with either a poor performance, or some minor improvements at the
cost of querying almost all samples. On the other hand, sequential training of
such expressive models as well as extending the framework to high dimensional
data injects even more complexity [1–3]. This challenge was relatively under-
explored, until a breakthrough work by Gal et al [4], which essentially considered
the problem of incorporating deep learning into AL for high dimensional data as
highly connected with that of uncertainty representation. They thus approached
the problem from the perspective of uncertainty representation in deep learning
for AL, and developed a Bayesian AL framework for image data. Later work
(such as [5]), however, argued that the approach exhibits poor scalability to big
datasets due to its limited model capacity .

Another approach that also relied on uncertainty representation, is ensemble-
based AL [5]. Here, an ensemble of classifiers is used, where the classifiers in-
dependently learn from the data in parallel. The major drawback is the poor
diversity (lack of exploration) even with larger ensembles. Our approach, while
enjoying the power of ensembles, solves this problem by offering an inherent ex-
ploration/exploitation trade-off as classifiers maintain some dependency in the
form of a shared prior. Apart from uncertainty representation, another set of
emerging methods that primarily rely on geometrical data representation [6]
showed improved performance in deep AL. However, similar to [7], we empiri-
cally observed that these geometric approaches typically suffer from performance
degradation as the class diversity (number of classes) increases. Another recent
approach is the work reported in [7] where they take advantage of adversarial
training to provide improved performance over previous methods. We empirically
find that their work provided a balanced performance on datasets at different
scales and diversity. As we will show later, our proposed model outperforms this
approach in multiple settings with significant margins, with results approaching
that of supervised learning models in some cases.

In the first part of the paper, primarily motivated to efficiently integrate
the advantages of uncertainty and geometrical representations, we propose an
approach built upon approximate Thompson sampling. On one hand, this pro-
vides an improved representation of uncertainty over unlabeled data, and on the
other hand, supports an inherent tune-able exploration/exploitation trade-off
for diverse sampling [8, 9]. Unlike conventional ensemble-based methods whose
performance tend to saturate quickly, under our tuneable model, adding a few
more classifiers tends to improve the uncertainty and geometric representation.
To mitigate the general sample diversity problem of ensemble models (see [10,
5] ), we use an inclusive sample selection strategy. Our framework showed a no-
ticeable improvement over the state-of-the-art, with performance approaching
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those of supervised learning methods. Further, we explore the scope and scale
of model efficiency improvements brought about by our proposed techniques.

Briefly, due to the exploration/exploitation trade-off, Thompson sampling is
expected to improve both predictive uncertainty and sample diversity by com-
puting, sampling, and updating a posterior distribution. A serious consideration,
however, is that, for more expressive models such as deep convolutional neural
networks (CNNs) designed for high dimensional data, Thompson sampling makes
the process computationally difficult. This is primarily because computation of
the posterior distribution over CNNs is complex by nature. Inferences based on
Laplace approximations or Markov chain Monte Carlo approaches would be two
possible alternatives. However, both approaches are still very expensive in terms
of computational cost [11–13]. Lu et al [13] argue that due to the compatibility of
Thompson sampling with sequential decision and updating, an approximate ver-
sion of Thompson sampling could be a promising solution. Accordingly, we build
an ensemble model relying on an efficient approximate of Thompson sampling,
which improves the state-of-the-art. Interestingly, this model possesses both the
advantage of uncertainty based deep AL approaches (exploiting most uncertain
samples), and of geometric solutions (exploring for more diverse though not
necessarily highly uncertain samples).

In the second part of the paper, we investigate a new line of efforts/arguments
revolving around the idea of boosting AL frameworks using self/semi supervised
learning techniques. We substantiate and unify these arguments and also design
and perform extensive experiments on multiple baselines to assess this approach
as a new general training protocol for AL frameworks. This enables our approach
to be compared against recent boosted AL frameworks.

Briefly, our key contributions in this paper are as follows:

– A new framework for deep AL which enables an exploration/exploitation
trade-off for sample selection and hence offers the advantages of both uncertainty-
based and geometry-based methods.

– A new general training protocol for visual AL approaches, developed by
substantiating and unifying recent arguments on boosting AL using self/semi
supervised learning, and experimentally evaluating this approach on multiple
recent baselines. We compare our framework against two sets of baselines to
show its performance.

2 Background and preliminaries

Background: Early efforts on AL with image data considered mainly kernel-
based approaches [14–16]. Later, AL methods with image data using CNN in-
cluded uncertainty-based approaches [4, 17, 5, 18, 19], geometry-based approaches
[6], or their combination [7], e.g, based on adversarial training. Generally speak-
ing, uncertainty-based approaches focus on finding most uncertain samples to
label, with the potential downside of less diversity in sample selection, while
geometric approaches tend to weigh on diversity of samples, resulting in per-
formance degradation in cases of very diverse datasets (with large number of
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classes). Most recently, in a relatively different setting, Gao et al. [20] leveraged
semi-supervised learning while Bengar et al. [21] applied self-supervised learn-
ing (SSL) techniques to deliver a significant performance improvement. We will
compare our proposed approach against these related work, on the same problem
settings. Some other recent work in this general area of modern AL with high
dimensional data can be found in [22–27]. Though these are relevant, they are
not as closely related to our approach.
SSL: As the second contribution of this work relates to SSL we briefly review
the literature. Briefly, SSL is one of the closest modern problem domains to AL
with zero labeling effort policy. Here, the goal is to leverage all unlabeled data to
train a network for a pretext task so as to prepare the network for a downstream
task, usually with small amounts of data [28]. Until recently, a major set of SSL
baselines were contrastive baselines relying on contrasting augmented views of a
sample with each other (positive contrastive pairs) and with views of other sam-
ples (negative contrastive pairs) [29, 30]. Newer baselines such as [31, 32], a.k.a
non-contrastive approaches, rely on contrasting positive pairs, needless of con-
trasting negative pairs. Recently, Ermolov et al. [33] reported a non-contrastive
method based on whitening the embedding space, which was effective, yet con-
ceptually simple. We adopt this approach in this work.
Preliminary: We describe these two major paradigms below.
1. Uncertainty-based techniques: Two categories of well-known deep learn-
ing techniques for uncertainty representation and estimation include ensemble-
based techniques (non-Bayesian) [18, 19] and Monte-Carlo (MC) dropout (Bayesian)
[17, 4]. In ensemble-based methods, an ensemble of N identically structured neu-
ral networks are trained using identical training data Dtr, where the different
random values are applied for weight initialization wi. For a given class c out of
multiple classes and input X, we then have:

p(y = c|x,Dtr) =
1

N

i=N∑
i=1

p(y = c|x,wi) (1)

However, MC-dropout trains a network with dropout, and during test, imple-
ments T forward passes, each individually with a new dropout mask, resulting
in T sets of weights wt. Given input x, the average of all T softmax vectors
represents the output for a desired class c.

p(y = c|x,Dtr) =
1

T

t=T∑
t=1

p(y = c|x,wt) (2)

Here we briefly describe some popular effective uncertainty-based acquisition
functions [4, 5] or their approximation for ensemble-based approaches, MC dropout,
and our proposed framework, all based on uncertainty sampling.

A. Selecting samples with highest predictive entropy [34].

H[y|x,Dtr] := −
∑
c

(
1

N

∑
n

p(y = c|x,wn)). log(
1

N

∑
n

p(y = c|x,wn)) (3)
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B. Selecting samples with highest mutual information between their pre-
dicted labels and the weights, BALD [35, 4], which was initially applied in [4]
with T forward passes in MC-dropout. It can be analogously rewritten for an
ensemble with N members by replacing T with N .

I[y;w|x,Dtr] := H[y|x,Dtr]−
1

T

∑
t

∑
c

−p(y = c|x,wt). log p(y = c|x.wt) (4)

C. Highest Variation Ratio [36] as a measurement of non-modal predicted
class labels, where fm is the number of modal class predictions [5].

V R := 1− fm/N (5)

We used this acquisition function in our proposed DAES framework.
2. Geometry-based techniques: Geometric or representation-based methods
primarily rely on density-based acquisition functions. Typical examples include
REPR [37], and Core-Set [38]. With a total of n samples, at each iteration
Core-Set selects a fixed number of samples, that minimize the upper bound
on the distance between point xi in n samples, and xj , its closest neighbour
in selected subset o. The acquisition function of Core-Set is given as follows:
s = argmaxi∈[n]ø minj∈o dist(xi, xj). See [37] for that of REPR.
3. Other techniques:
Other methods include implicit combination of uncertainty and geometry ap-
proaches, such as in [7], which designs a minimax game in the context of adver-
sarial training. There are also methods that have used the power of pre-trained
models such as [20], and to a less extent [39].

3 Deep active ensemble sampling

Our work is primarily inspired by the reports in [4, 19, 13] towards finding an
uncertainty-diversity trade-off. In particular, we propose a tuneable trade-off
between uncertainty-wise exploitation of samples vs exploration of less uncertain,
but more diverse samples.

3.1 Thompson sampling for AL

Contextual bandit: Thompson sampling was primarily developed as a heuris-
tic to address the Multi-armed bandit (MAB) problem, aiming for a trade-off
between exploration and exploitation in sequential decision making. The core
idea of Thompson sampling has a Bayesian essence (See Algorithm 1). Unlike
greedy algorithms that mostly lean toward exploitation, Thompson sampling
draws random samples from a posterior distribution to fine-tune between explo-
ration and exploitation. See [9, 8] for related work on low dimensional data. New
attempts towards using Thompson sampling for efficient estimation of posterior
distribution for more complex models such as CNNs revealed an immediate need
to find a computationally tractable approximation [13].
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Deep AL: Assuming a pool-based AL setting, we initially have a set of unan-
notated data U0 = {x1, x2, ...xn} and a small set of annotated data A0, where
at each iteration, an algorithm, known as acquisition function, looks into the
whole set of unlabeled data to select a number of samples and pass them to an
Oracle for labeling. In deep learning backed AL with high dimensional data such
as images, the goal is to adjust the model to enable learning from a relatively
small initial training set, and accordingly select a subset of most informative
unlabeled data samples (in terms of uncertainty and diversity) to be labeled.

3.2 Ensemble sampling

From a geometry perspective, one ideal estimation of the desired posterior space
in AL framework could be represented by a direct sum over the space. Along
this line, some methods such as [24] propose splitting the input space to improve
uncertainty sampling associated with the posterior distribution. Hinton et al [40]
noted the fact that data points are generated by natural sources that actually in-
ject limited complexity, rather than random sources with unlimited complexity.
Therefore, unlike a random source that practically enables sampling from an infi-
nite space, the natural source can be represented with a direct sum over the pos-
terior space S with any finite number of summands Q: S = S1 ⊕ S2 ⊕ ...⊕ SQ,
where Si represents the i-th subspace. Later we will see that compared with
regular ensembles, ensemble sampling is closer to this direct sum as it allows a
better exploration of whole representation space.

In the case of AL on a neural network with weights θ, let’s say the network
represents the mapping gθ : RW 7→ RK (W is the dimensionality of input) and
the goal is to sequentially choose a fixed number of samples dt from a pool D of
K samples as input at each time t = 0, 1, ...T , where D ⊆ RW , such that it leads
to desirable output. Accordingly, with each set of samples dt selected from D at
time t = 0, 1, ..., T , an output gθ(dt) and random variable wt ∼ N(0, σ2

wI) form
the observation yt = gθ(dt) + wt which allows to update a reward rt = r(wt)
sequentially. Supposing that we have a prior on θ, θ ∼ N(µ0, Σ0), the model will
become much more prone to uncertainty. Therefore, at each time t, the neural
network will be fitted by dt, yt, and the samples are selected with the goal of
converging to a trade off between immediate desirable outputs (minimizing the
loss) and reducing uncertainty in θ.

With the problem presented in as above, an algorithm is required to incor-
porate Thompson sampling in this new context. In the case of linear bandit
problem, since the conventional Thompson sampling yields an efficient solution,
no approximation to Thompson sampling is needed. However, in case of neural
networks, the conventional form of Thomson sampling could be computationally
expensive. This calls for a more efficient implementation in terms of approxi-
mate Thompson sampling. Accordingly, Lu et. al [13] introduce an ensemble of
N networks with a shared prior on their weights, as an approximate Thompson
sampling. This allows efficient posterior estimation on complex models such as
neural network.
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3.3 Algorithms for CNNs

Here we represent ensemble sampling as an efficient approximation of Thomp-
son sampling for neural networks. In fact, unlike in simpler cases such as linear
bandit, exact Bayesian inference can not easily be performed effectively for neu-
ral networks, which necessitates an efficient approximation. First, we present
the algorithm for Thompson sampling (Algorithm 1 (taken from [41]) ). Then,
we discuss ensemble sampling as its efficient approximation, and present the
algorithm for Deep Active Ensemble Sampling (Algorithm 2).

More precisely on Thompson sampling, let’s assume X is a finite set of data
points x1, ..xn, where selecting a data point xt (or a number of data points) at
time t yields a randomly generated output yt based on a conditional probabil-
ity distribution q(.|xt). Accordingly, a known function rt = r(yt) is defined to
capture the reward for the selected data point. This reward can be interpreted
as a negative loss. At the beginning, the decision maker gets initialized with a
prior p on θ, and as it starts to explore, updates its uncertainty representation.
While greedy algorithms generally use expected value of θ with respect to p to
produce model parameters θ̂, Thompson sampling relies on random sampling
from p. Next, the algorithm will choose data points maximizing the expected
reward presented as follows:

Eqθ̂
[r(yt)|xt = x] =

∑
o

qθ̂(o|x)r(o) (6)

Subsequently p is updated by conditioning on ŷt, and for θ coming from a finite
set, relying on Bayes rule we will have:

Pp,q(θ = u|xt, yt) =
p(u)qu(yt|xt)∑
v p(v)qv(yt|xt)

(7)

Algorithm 1 (taken from [41]) captures the above steps. As noted, this will be
very time consuming, especially for neural networks.

Algorithm 1 Thompson(X , p, q, r)

1: for t= 1, 2, ... , T do
2: Sample θ̂ ∼ p
3: xt ← argmaxx∈X Eq

θ̂
[r(yt)|xt = x]

4: Input chosen xt and observe yt
5: p← Pp,q(θ ∈ .|xt, yt)
6: end for

As an efficient approximate Thompson sampling for neural networks, we use
ensemble sampling, where we employ an ensemble of M networks and set priors
on the weights, as presented in Algorithm 2. All networks will be trained on
identical data samples while the initial shared priors on the weights makes a
connection between them. Algorithm 2 is inspired by [13], with key adjustments
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to make the approximate Thompson sampling adaptable to the AL framework.
These changes include (1) the optimization process of ensembles; (2) selecting
a set of samples rather than one sample; (3) we replace the original concept
of maximizing reward in the algorithm with minimizing the loss, namely, L̄(θ)
in our deep active learning framework. Accordingly, it is important to mention
that the optimization of the method need not to be combinatorial as in the case
with combinatorial contextual bandits. Moreover, sample selection is sequential
in which, each iteration of sample selection provides a batch of samples ranked
by the acquisition function. Unlike classical ensemble-based approaches, the pro-
posed deep active ensemble sampling (DAES) not only puts a joint prior on the
weights of the networks (all sampled from one prior distribution rather than
individual priors), but also jointly optimizes the members of an ensemble.

Algorithm 2 Deep Active Ensemble Sampling (M)

1: Ensemble EnM

(
g,N (µ, σ2)

)
: g(θ1), ..., g(θM ); Labeled Set: St

l ; Unlabeled Set: St
u

2: for t= 1, 2, ... , T do
3: Train over St

l : EnM : g(θ1,t), ..., g(θM,t)
4: Optimize: argminθi,t

(Lt) = argminθi,t
(L(θ1,t) + ...+ L(θM,t))

5: Batch bt selection by fixed EnM : EnM (St
u), V R = (1− fm

M
) via Eqn (5)

6: Update Training Set: St+1
l = St

l + bt

7: end for

3.4 DAES with self-trained knowledge distillation

Consistent with primary focus of AL on less annotation effort and with the goal
of establishing a new standard AL training protocol, we empirically evaluate
a simple training technique which inherently empowers any active learner, re-
gardless of the underlying approach. While this is inspired by the recent trend
in [20, 21], we also argue that using pre-training, here SSL pre-training, enables
any AL framework to better model uncertainty over the data, or to capture the
geometry of the data, due to the prior knowledge attained by SSL. To ensure
fairness of our comparisons, we apply the new training protocol to both the pre-
vious baseline AL models, and to our proposed DAES framework. The proposed
training protocol could help to eventually unify this line of work with some form
of knowledge distillation [42, 43].

Training protocol: The protocol is a two step process: SSL pre-training,
and then active learning using the pre-training output. (See Fig. 1). Due to huge
success of SSL in learning representation from unlabeled data, we adopt a most
recent SSL model suitable for our setting. Thus, our proposal for training AL
models is to consider a training protocol, first a pre-training is performed on
the deep network (encoder in Fig. 1) as a building block for the active learning
models. In this work, we tested this idea by adopting the conceptually simple,
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Fig. 1. SSL pre-training for deep active learning. Here, E(.) is the encoder and g(.) is
the projection head. After pre-training, the weights of E(.) will be fixed and will then
be used in our AL setting, training a classifier head on top of that.

yet effective SSL model in [33] to initially train ResNet18 as the building block
for the AL methods, namely, Random baseline, VAAL, Core-Set and DAES.

We explore a new setting in which a given baseline is equipped with a concep-
tually simple self-training as discussed above. As shown in Fig. 1, we adopt the
SSL framework from [33], to leverage knowledge distilled from unlabeled data
for empowering the active learner. The idea is to use whitening in SSL in order
to train the encoder (ResNet18) and then freeze all layers except for head-layers
which are replaced with fully connected layers to be trained.

4 Experiments and results

We conduct two sets of experiments on images classification task to evaluate our
proposed DAES framework as well as compare it against state-of-the-art models.
Specifically, we mainly perform the experiments on MNIST [44], CIFAR10 and
CIFAR100 [45], and ImageNet [46]. To ensure the fairness of compassion scenar-
ios, we compare the framework against two sets of baselines, namely, trained
from scratch, and self-trained enabled by self/semi supervised learning (SSL).
Evaluation: On CIFAR10/100 and ImageNet, starting with an initial budget of
10% labeled samples, we measure the performance on sequential training using
T training iterations, where in each iteration of training we add 5% labeled data
from unlabeled pool to the training set (labeled data ratio of 0.1, 0.15, 0.20, ...
up to 0.35 or 0.50). We assume each training iteration is from scratch unless
otherwise stated. On MNIST the initial training set is 200 samples and the eval-
uation is performed on acquisition budget of 100 samples. The results of all our
experiments on all datasets including ImageNet are averaged over three trials.
Baselines: We compare the performance of DAES against two sets of baselines.
First set of approaches, specifically trained from scratch, includes Random sam-
pling from unlabeled pool (Random), Monte-Carlo dropout (M-C Dropout) [17],
deep Bayesian active learning (DBAL) [4], Core-Set [6], Ensemble with Variation
Ratio (Ens-VarR) [5], and VAAL [7]. We also design and implement another set
of extensive experiments on our framework as well as some of previous baselines
empowered by self-training including Random, Core-Set, and VAAL to contrast
against a very recent baseline taking advantage of SSL, CSSAL [20], and also
later compare with a semi-supervised baseline, REVIVA [39].
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Fig. 2. Accuracy vs ratio of labeled samples from CIFAR10, CIFAR100 and ImageNet
datasets.

4.1 Experimental settings

We implemented our network architectures in Pytorch. Besides our experiments,
experiments of all other competitive baselines including Random baseline, on
CIFAR10, CIFAR100 and ImageNet are performed with ResNet18, with similar
setting of VAAL except they used VGG16 [47]. However for MNIST, we used
a three-layer (two convolutional and one fully connected) network described in
[4]. Specifically an ensemble includes N = 5 identical classifiers unless other-
wise specified. We used Xavier initialization when applicable, and we utilized
Adam optimizer [48] for all experiments. All experiments start with an initial
balanced budget of 10% of unlabeled training pool (6000 for MNIST, 5000 for
CIFAR10/100, and 128120 for ImageNet), which is then iteratively updated by
adding 5% of whole training pool. Both initial training and other sequential it-
erations of training continue for 100 epochs. After every update, the network
is trained from scratch unless otherwise specified (i.e., incremental training).
Further, unlike classical ensemble-based methods, the optimization process of
all classifiers in DAES is performed jointly as one loss function. Practical con-
siderations in case of DAES with very deep networks are discussed in ablation
studies.

4.2 DAES performance comparison

In this section we explain the immediate results of experiments on MNIST,
CIFAR10/100 and ImageNet in two comparing scenarios, namely, AL model
trained from scratch, and AL on self-trained model.
1. Trained from scratch: The conventional protocol is training from scratch.

Our results on MNIST is on par with VAAL and Core-Set where all three
approaches attained 99 + % accuracy with 1000 samples (1.67%) of the data.
Ens-VarR, DBAL, M-C Dropout and Random baselines achieved 97.81 ± 0.12,
97.55± 0.18, 97.26± 0.14, and 95.2± 0.23

On CIFAR10 as shown in Fig.2, our framework tends to outperform other
baselines including VAAL upon using more than 15% of the data, while the
difference grows by adding more labeled samples. Our approach attains mean
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accuracy of 82.98$ and 83.93% upon using 40% and 50% of the data respec-
tively, whereas Top-1 accuracy using 100% of data is 93.27%. Second and third
highly performant methods using half of the data are VAAL and Core-Set with
82.89% and 82.31% respectively. While Ens-VarR remains fairly competitive,
M-C dropout as well as DBAL are evidently underperforming.

On CIFAR100 also our method starts to outperform competitive VAAL and
Core-Set approaches upon using 20 + % of the data. The accuracy difference
swiftly grows by adding more samples to the point that upon using 50% of data,
our method outperforms VAAL and Core-Set by 51.33% to 50.01% and 49.03%.
Note that the Top-1 accuracy using full data is 75.43%. As it is clear, due to
larger number of classes, Core-Set experienced performance degradation down
to performing on par with Ens-VarR .

Performance on dataset at scale: On ImageNet as a large and more
challenging dataset of 1.2+ million samples of 1000 classes, our method patently
outperforms former baselines upon using 15% or more of data. Compared to
Top-1 mean accuracy of 71.8% using whole data, we achieve mean accuracy of
55.57% upon using only 35% of data, which is a 1.2% improvement over VAAl,
(while VAAL offers only less than 1% improvement over its former baseline, Core-
Set using 35% of data). Our method improves over Random baseline by mean
accuracy of 3.67%. Similar to their performance on CIFAR10 and CIFAR100,
Bayesian techniques, i.e., DBAL and M-C dropout, slightly underperform Ran-
dom baseline.
2. Self-Training: We also evaluated the proposed use of self-supervised knowl-
edge distillation [42] from unlabeled data as a general technique to further im-
prove the model training process for AL methods. There are two objectives here.
First, to provide a fair comparison of this SSL+AL approach when applied on
our proposed DAES, and three other AL baselines (namely, VAAL, Randon
and Core-Set), against two approaches [39, 20] that take advantage of knowledge
distillation of unlabeled data. Second, to show that the SSL+AL protocol estab-
lishes a new standard training protocol for deep AL regardless of the underlying
principle. As shown in Fig. 3, extensive experiments on Random baseline, VAAL,
Core-Set and DAES on CIFAR10, CIFAR100 and ImageNet consistently confirm
the performance jump due to SSL-wise leveraging of unlabeled data while still
using a small percentage of labeled data. Aside from bringing some accuracy
jump to VAAL, Core-Set and Random baseline, this allows our framework to
outperform CSSAL [20] on CIFAR10, CIFAR100 and ImageNet by using 18+%,
20 + % and 17% of data. As can be observed, the performance of our method
on all three datasets rivals Top-1 mean accuracy attained by supervised learning
(having the whole data labeled, denoted by the red line in the figure). On CI-
FAR10 and only using 40% of data (labeled), all approaches except for Random
acquisition perform above Top-1 mean accuracy of 93.27%. On CIFAR100 (50%
labeled) and ImageNet (35% labeled) all methods are competitive to supervised
Top-1 mean accuracy, with our method (DAES) achieving a mean accuracy of
73.55% ( compared to 75.81%) and 69.92% (compared to 71.80% ). Finally, com-
pared with a recent baseline on semi-supervised learning, REVIVAL proposed
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Fig. 3. Accuracy vs ratio of labeled samples from CIFAR100 and ImageNet datasets
on SSL boosted networks. Top groups: results with proposed training protocol using
SSL; Lower group: results with training without SSL. Red line denotes results using
supervised learning with the full labeled data.

in [39], on CIFAR10 and using 40% of the data, our framework performs on par
with REVIVAL. On CIFAR100 our approach (using 35% of the data) performs
on par with REVIVAL (using 25% of the data).

5 Ablation study and investigative scenarios

In this section we discuss our ablation studies to assess the effect of model size
on tuning the trade-off between performance and model capacity/complexity,
DAES behaviour with deeper networks, and finally incremental training. For all
methods, we used Variation Ratio as acquisition function, as it is empirically
proved to be the most effective query strategy in the literature [4, 5].

5.1 DAES model size

One main advantage of DAES is that it can provide higher accuracy by enlarg-
ing the ensemble. Ens-VarR enjoys a performance boost only when changing
the 1-member ensemble to ensemble with more than one member. Unlike Ens-
VarR which lacks a malleable trade-off between computational over-head and
performance, meaning that adding reasonably more classifiers to the ensemble
does not lead to a proportional increase in performance, we empirically assess
how larger ensembles provide desirable improvement in accuracy for DAES. As
shown in Fig. 4, DAES-10 with 5 additional classifiers (total of 10), approxi-
mately doubles the former accuracy improvement on ImageNet dataset (3 times
the accuracy improvement that VAAL adds to Core-Set under the same ex-
perimental setting). This is while DAES-20 with 20 classifiers brings 180 + %
improvement over 5-member DAES. Similar experiments on CIFAR100 also con-
firm the proportional improvement. CIFAR10 however enjoys relatively smaller
accuracy enhancement compared with the other datasets. We suspect that the
underlying cause of the source of the improvement could be due to two separate
reasons. First, adding more classifiers positively impacts the model’s capacity
on efficient sample selection. Second, training the model on full training budget,
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Fig. 4. Accuracy with different size of DAES and cumulative training (left and middle);
and the slope of the curve representing a tunable trade-off for DAES (right).

allows classifiers to individually specialize in diverse feature representation and
accordingly yields to a better generalization at test time, compared to a model
with fewer classifiers. The former explanation could be intuitively conceived as
the performance/behaviour spectrum of ensembles with 1, 2, ..., N member(s)
over test time. In all experiments, cumulative training using the union of chosen
samples by DAES, VAAL and Core-Set performs slightly better than DAES-20
except for CIFAR10. We see this as indicative of the superior effect of training
budget size over model capacity on overall performance in this setting. Also as
shown in Fig 4, compared with DAES, training VAAL with the same cumulative
training budget led to lower accuracy – a clear contrast of the models’ capacities.

5.2 DAES with deeper networks

We closely watch the training behavior of DAES with deeper networks such as
ResNet50 and ResNet101. As an occasionally observed drawback, DAES built on
very deep networks such as ResNet101, tends to take much longer convergence
time than expected, or could even fail to converge. As a remedy, we found it
helpful to initially pre-train the networks (or blocks) separately using initial
training budget, and then train the ultimate ensemble built using pre-trained
blocks. Applying this simple trick ensures the convergence of DAES.

On ImageNet and using 35% of data, DAES-5 with ResNet101 brings only ap-
proximately 1% mean accuracy improvement over DAES-5 with ResNet18 which
is less than the improvement provided by DAES-10 with ResNet18. The same
behavior was observed with CIFAR100. We suspect that adding more members
(ensembles) to DAES leads to more improvement than replacing the blocks with
deeper CNNs.

5.3 Incremental training and tunable accuracy/cost trade-off

A. Incremental training: In a standard AL experimental setting, after up-
dating the training set, the next training iteration starts from scratch (here
for some 100 epochs). However, we investigate incremental training of models

4543



14 S. Mohamadi et al.

(VAAL, Core-Set and DAES) in which models are trained under much fewer
number of epochs at each iteration while in next iteration rather than restarting
the training, training continues. Specifically, we train the model for 20 epochs
(formerly 100 epochs) with initial budget. Then after each data acquisition, the
model first is trained on newly selected samples for as many epochs as former
samples trained over, and next, the model will be trained on the updated training
set for 20 epochs. This is to utilize a not fully trained model to leverage its current
data representation for sample selection. Interestingly, we find that this could
be a trick to speed up the active learner. Briefly, DAES, VAAL and Core-Set
experience respective performance degradation of (1.07±0.12)%, (1.39±0.14)%
and (1.51±0.11)%, respectively. In this setting Core-Set offers only 0.14% mean
accuracy gain over random acquisition under previous setting. Our analysis on
time complexity briefly shows that the ratio (to DAES) of average consumed
time for one iteration of sample selection for DAES, VAAL, Core-Set and DAES
with incremental training were 1, 0.57, 3.78, and 0.24 respectively.
B. Tunable trade-off: Consistent with the results in [5], we could not see much
accuracy improvement with increasing the ensemble size in classical ensemble-
based methods as shown in Fig. 4 (right figure). In other words, such classical
methods do provide a tunable trade-off between accuracy and computational
overhead. A satisfactory accuracy would be attained using 5 members, and in-
creasing the number of members does not seem to proportionally improve the
performance. However, active ensemble sampling showed a much robust perfor-
mance in terms of exploiting more model capacity by adding more members
to the ensemble. In fact, the Bayesian nature of active ensemble sampling in
conjunction with its ensemble-designed structure allows achieving much higher
accuracy by enlarging the ensemble at the cost of a proportional increase in
computational overhead.

6 Conclusion and future work

In this paper, we introduced deep active ensemble sampling (DAES) inspired
by an efficient approximation of Thompson sampling in order to combine the
advantages of uncertainty-based and geometric-based approaches into one unified
framework. We also examine a new training protocol formed on self-supervised
knowledge distillation from unlabeled data on four baselines in order to confirm
its effectiveness. Our framework is assessed on four benchmark datasets in two
experimental settings to establish a new baseline. Finally we pose a few scenarios
aiming for analysing DAES. We leave further theoretical and empirical analyses
on DAES with asymmetric architectures for future research.
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