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Abstract. In this work, we address the Zero-Shot Domain Generaliza-
tion (ZSDG) task, where the goal is to learn a model from multiple source
domains, such that it can generalize well to both unseen classes and un-
seen domains during testing. Since it combines the tasks of Domain Gen-
eralization (DG) and Zero-Shot Learning (ZSL), here we explore whether
advances in these fields also translate to improved performance for the
ZSDG task. Specifically, we build upon a state-of-the-art approach for
domain generalization and appropriately modify it such that it can gen-
eralize to unseen classes during the testing stage. Towards this goal, we
propose to make the feature embedding space semantically meaningful,
by not only making an image feature close to its semantic attributes,
but also taking into account its similarity with the other neighbouring
classes. In addition, in order to reserve space for the unseen classes in the
embedding space, we propose to introduce pseudo intermediate classes
in between the semantically similar classes during training. This reduces
confusion of the similar classes and thus increases the discriminability of
the embedding space. Extensive experiments on two large-scale bench-
mark datasets, namely DomainNet and DomainNet-LS and comparisons
with the state-of-the-art approaches show that the proposed framework
outperforms all the other techniques on both the datasets.

1 Introduction

The recent advancement in deep neural networks has achieved enormous success
in numerous areas of computer vision, such as classification [49, 13], segmenta-
tion [40], retrieval [50, 38, 34], playing Atari games with reinforcement learning
[32], etc. In standard supervised training, we assume that the training and the
test data belong to the same distribution, and the test data contains only the
classes that were seen during training. Such models can fail when they encounter
images from classes and domains unseen during the training process, as often
encountered in real scenarios. Since it is impractical to collect examples from
all possible classes and domains during training, it is important that the learnt
models generalize well to these challenging scenarios. This has led to a significant
amount of research focused in areas like domain generalization (DG) and zero-
shot learning (ZSL). The DG task [25, 27, 48, 39] aims to classify samples from
⋆ Corresponding author.
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unseen target domains after learning from multiple source domains which have
the same classes as the target data. On the other hand, the ZSL task [33, 23]
aims to classify samples belonging to classes unseen during training, but from
the same domain as the training data. It is only recently, that researchers have
started addressing the more realistic and challenging zero-shot domain general-
ization (ZSDG) task [28, 8, 29], where during testing, the samples can not only
belong to unseen classes, but also unseen domains.

ZSDG being a combination of DG and ZSL tasks, an advancement in any of
these fields should translate to an advancement in the ZSDG problem. But recent
research [8] indicates that naively combining DG and ZSL approaches does not
help to improve the performance on the ZSDG task. In this work, we explore
whether a state-of-the-art DG approach can be appropriately modified so that
it also achieves state-of-the-art performance for the ZSDG task. Specifically, we
build upon MixStyle [51], which computes the convex combination of instance-
level feature statistics of different samples to generate diverse domains/styles for
training, while keeping the semantic information intact for the DG task.

In this work, we propose simple, yet effective modifications which can gen-
eralize the MixStyle [51] framework for classifying unseen classes (from unseen
domains) during testing. Towards this goal, we want to make the feature em-
bedding space semantically meaningful, so that unseen class images/features
can be matched with their semantic attributes, as well as discriminative, so that
the classification performance in this space is satisfactory. To account for both
these objectives, we propose two modifications to the original DG approach,
namely (1) We introduce intermediate (pseudo) classes between semantically
similar classes in the embedding space, to reserve space for the unseen classes
during testing; (2) Each image feature is encouraged to be not only close to
its true attribute vector, but also at semantically meaningful distances from
the attributes of its neighbouring classes. The combined framework is termed
as Semantic Embedding with Intermediate Classes (SEIC). To summarize, our
contributions are as follows:

1. We propose a simple, yet effective framework termed SEIC, to address the
problem of zero-shot domain generalization.

2. We propose to make the feature embedding space semantically meaningful
and discriminative by accounting for the neighbouring class information as
well as by introducing intermediate pseudo classes.

3. We show that a state-of-the-art DG method can be appropriately modified
to get state-of-the-art result for the related ZSDG problem.

4. Extensive experiments and comparisons on the challenging DomainNet and
DomainNet-LS datasets [35] justify the effectiveness of the SEIC framework.

2 Related Work

Here, we briefly describe the related literature on domain generalization (DG),
zero-shot learning (ZSL) and finally zero-shot domain generalization (ZSDG).
Domain Generalization: First proposed in [5], domain generalization is a
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problem gaining rapid attention in the vision community. A broad category
of approaches can be summarized by domain-invariant representation learning,
i.e., learning representations that eliminate domain-specific variations within the
dataset. This approach was first examined in the context of domain adaptation
in [4], which was used to construct a domain-adversarial neural network in [11].
Several algorithms have been proposed for domain generalization via adversarial
learning [25, 27, 48, 39]. MixStyle [51] is motivated by the observation that visual
domain is closely related to image style (or domain). [20] augments the feature-
space by identifying the dominant modes of change in the source domain. [14,
47] transform images into frequency space to perform domain generalization.
Single-source DG methods, tackle a more challenging scenario, where only a
single source domain is available during training [14, 37, 39, 42]. Some works also
address the DG problem during the testing phase [16].

Zero Shot Learning: ZSL [33, 23] aims to transfer the model trained on
the seen classes to the unseen ones, usually using a semantic space between seen
classes and unseen classes. Early works in ZSL focused on the conventional ZSL
[1, 2, 6, 22, 7], where the test data only belongs to the unseen classes, and the
predicted class is calculated based on the feature similarity with the attributes
of the unseen test classes in the embedding space. In generalized ZSL (GZSL),
both seen and unseen classes can be present during testing, making it a more
challenging task. The works in [9, 3, 46, 15] addresses the overfitting problem
that arises due to training on only the seen classes [44]. Many works [19, 31, 45]
employ generative methods for converting the problem into a supervised learning
problem using Generative Adversarial Networks (GANs) [12] and Variational
Autoencoder (VAEs) [21] to synthesize images of the unseen classes. [18] uses
adaptive metric learning to check the compatibility of a sample with the class
semantics.

Zero Shot Domain Generalization: In general, the ZSL and DG tasks
have been considered separately. But recently, ZSDG is being researched ac-
tively because of its more realistic and practical applications. Cumix [28] aims
to simulate the test-time domain and semantic shift using images from unseen
domains and categories by mixing up the images available in source domains
and categories during the training phase. It also uses a curriculum-based mixing
policy to generate increasingly complex training samples. SLE-Net [8] uses visual
and semantic encoders to learn domain-agnostic structured latent embeddings
by projecting images from different domains and their class-specific semantic
representations to a common latent space. SnMpNet [34] addresses the problem
of image retrieval, where the test data can belong to classes or domains which
are unseen during training. Our work is similar in spirit to [29], which effectively
exploits semantic information of the classes to adapt the existing DG methods
to tackle the ZSDG task. Zero-shot domain adaptation is another research area
similar to ZSDG, which aims to transfer the knowledge from a single source do-
main to a target domain. [26] projects the samples of source and target domains
to a common space and then learns unseen class prototypes of the target domain.
[17] learns class-agnostic domain feature representations and prevents negative
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transfer effects using adversarial learning. [41] introduces a new scenario where
labelled samples are available for a subset of target domain classes and proposes
a method to transform samples from source domain to target domain without
loss of class information.

3 Problem Definition

Zero-shot domain generalization (ZSDG) aims to classify unseen classes in unseen
domains. Let X denote the image space, Y the set of possible classes and D the
set of possible domains. The classes are divided into two sets, one is used for
training or the seen classes (Ys ∈ Y) and the other for testing or the unseen
classes (Yu ∈ Y). Similarly, we have seen domains (Ds ∈ D) and unseen domains
(Du ∈ D). For training, we are given the set, M = {(x, y,ay, d)|x ∈ X , y ∈
Ys,ay ∈ E , d ∈ Ds}, where x is an image belonging to a seen class and a seen
domain, and has a class label y belonging to the seen class set Ys. ay is the
semantic embedding in E for class y in Ys, where E is the embedding space. d is
x’s domain label from the seen domain set.

During testing, the goal is to classify the test data N = {x}, which belong
to an unseen class, i.e. y ∈ Yu and also an unseen domain, i.e. d ∈ Du. In
standard ZSL, training is done on the set of seen classes and testing on the set
of unseen classes which are mutually disjoint, but the domains remain the same,
i.e., Ys ∩ Yu = ϕ and Ds ≡ Du. In DG, training is done on images belonging to
a set of domains that is disjoint to the set of domains used for testing, but the
set of classes is shared, i.e., Ds ∩ Du = ϕ and Ys ≡ Yu. Each domain can have
different distributions, i.e., pX (x|di) ̸= pX (x|dj),∀i ̸= j. Here, we address the
more challenging ZSDG problem where testing is done on domains and classes
unseen during training, i.e., Ds ∩ Du = ϕ and Ys ∩ Yu = ϕ.

4 Proposed Method

Now, we describe the proposed framework, termed SEIC for the ZSDG task.
First, we describe the recent state-of-the-art DG technique MixStyle [51] that we
use as the backbone for SEIC framework, followed by the proposed modifications.

4.1 Handling Unseen Domains Using Domain Generalization

Here, we briefly describe the MixStyle [51] approach, where given training data
from multiple source domains, the goal is to learn a model which can generalize
well to unseen target domains. MixStyle regularizes CNN training by perturbing
the style information of the samples from the source domains. It mixes the feature
statistics of two instances with a random convex weight to simulate new styles.
The framework broadly consists of a feature extractor FDG and a classifier gDG

to get the output, yDG = gDG ◦ FDG. The mixing is done using the statistics
of features from the output of different CNN layers in the feature extractor.
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Let fi and fj be the feature maps corresponding to samples xi and xj after a
particular CNN layer. It computes the mixed style feature statistics for fi using
fj as follows:

µms(fi; fj) = λµ(fi) + (1− λ)µ(fj) (1)

σms(fi; fj) = λσ(fi) + (1− λ)σ(fj) (2)

where λ ∼ β(α, α) and α ∈ (0,∞) is a hyper parameter. σ(.) and µ(.) are
standard deviation and mean, respectively, computed along the height and width
of each channel. Finally, the style-normalized features fms(fi; fj) are computed
by using the mixed feature statistics as follows:

fms(fi; fj) = σms(fi; fj) ∗ f ′i + µms(fi; fj) (3)

where, f ′i =
fi − µ(fi)

σ(fi)
(4)

The mixing of the statistics does not alter the class information (i.e. class is
same as that of xi) even if the two features being mixed belong to different
classes. This module can be easily plugged in after different layers of the CNN
to get more diversity in the source domains and achieve better generalizability
for unseen domains.

4.2 Handling Unseen Classes Using the Proposed SEIC Framework

We will now describe the proposed modifications, such that the above model also
performs well for unseen classes during testing. Specifically, we make the follow-
ing three modifications: (i) First, to establish the connection between the seen
and unseen classes, we replace the classifier weights using the semantic vectors,
which are automatically obtained using the class names. (ii) To reserve space
for the unseen classes which will be encountered during testing, we introduce
intermediate pseudo-classes in the training process; (iii) We utilize the neigh-
bourhood class information to make the feature embedding space semantically
meaningful. These modifications (details below) enable the proposed framework
(SEIC) to handle unseen classes as well during the testing stage.

(i) Utilizing class attributes to link the seen and unseen classes:
In ZSDG task, since unseen classes can be encountered during testing, it is
important to link the seen and unseen classes. Specifically, the goal is to learn
the relation between the feature embeddings and the class semantics, such that
the class label of the test data can be predicted by comparing it with the semantic
embeddings of all the classes. The semantic embeddings can be obtained using
unsupervised Natural Language Processing algorithms like Word2Vec [30], GloVe
vectors [36], etc. As discussed earlier, in MixStyle, the model architecture has a
feature extractor FDG followed by a classifier gDG. For handling unseen classes,
we replace the weights in the classification layer by the semantic vectors of each
class, i.e., we want the predicted semantic embeddings extracted from the model
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Fig. 1: Depiction of the proposed method. For training, samples from seen do-
mains and seen classes are fed to the feature extractor, which consists of CNN
blocks, each followed by a mixing module. The mixing module consists of the
domain and class mixing modules to simulate unseen domains and classes. To
learn distinctive features, especially between similar classes, the mixing module
is given the information of pair-wise mixing probabilities of the classes, PMix and
intermediate pseudo classes are inserted at the output layer. During testing, the
model has no mixing module and pseudo-class nodes, and predicts the samples
from unseen classes and unseen domains.

to be similar to the semantic embeddings, g : Y → E . The modified feature
extractor and embedding function are denoted as F : X → E and g : Y → E
respectively. In this work, g is the Word2Vec embedding of the class name. For
an image x, the model predicts the class as follows:

y∗ = argmax
y

g(y)TF(x). (5)

With this modification, the model is capable of recognizing unseen classes. But
currently, since the model is trained using only the seen classes, the feature
embedding space may not be discriminative enough to distinguish between the
seen and unseen classes, which we address using the intermediate pseudo-classes.

(ii) Introducing Intermediate Pseudo Classes: Now, we discuss how
we address the challenge of correctly classifying unseen classes during testing.
The current model will try to embed the features of the unseen classes to its class
attributes, but since these classes were not used for model training, their em-
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beddings are usually confused, specifically with those of the semantically similar
seen classes. For example, a new bee class feature may be easily confused with
features of other insects, but will probably not be confused with features from
animals like cat or vehicles like buses, etc. To improve class discrimination and
thus reduce this confusion, we propose to introduce additional pseudo classes
in between the existing training classes, with more emphasis on semantically
similar classes. These intermediate classes act as proxies for the unseen classes,
that might be encountered during testing. We propose to generate data for the
intermediate classes using the available training data as explained below.

Given two classes yi, yj ∈ Ys in the seen class set with their respective
semantic embeddings as ayi

,ayj
∈ E , we form an intermediate pseudo class yij

(or equivalently yji) and assign it a semantic embedding equal to the average of
the semantic emmbeddigs of yi and yj , i.e.,

ayij
=

ayi
+ ayj

2
(6)

To generate the training data for these intermediate pseudo-classes, we propose
to mix pairs of samples belonging to classes yi and yj in the feature space after
different CNN layers. Given the feature maps fi and fj of two training instances
after some CNN layer, we obtain the intermediate class feature fic as:

fic(fi; fj) = γfi + (1− γ)fj (7)

where γ ∈ R is sampled from a uniform distribution, i.e., γ ∼ U(t1, t2). Since
the pseudo classes are generated using the average of two semantic embeddings,
as shown in eq. (6), we choose t1 and t2 such that the feature of one class does
not overshadow the feature of the other class.

We have discussed handling of unseen domains by mixing the statistics and
handling the unseen classes by mixing the features. Now, we combine them to
get our final mixing module:

fMix(fi; fj) = fic(f
′
i ; f

′
j) ∗ σms(fi; fj) + µms(fi; fj) (8)

where f ′i and f ′j are defined as per eq. (4). Since we also want to retain the original
samples with their class and domain information, the mixing is done only if a
generated random number (r) is less than a pre-set threshold (τ), otherwise the
original features with their class information are used for training. This random
number is generated independently for each mixing module and for every batch
in every epoch. Depending on whether mixing has happened or not, we have two
separate losses. The final loss for the image xi belonging to class yi is given as:

LMix(xi;xj) =

{
LCE(g(y)

TF(xi;xj), yij), r < τ

LCE(g(y)
TF(xi), yi), otherwise

(9)

where LCE is the cross-entropy loss, g(y) is the set of semantic embeddings cor-
responding to each class node, F is the feature extractor consisting of the CNN
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layers and the mixing modules inserted between the layers, yij is the pseudo
class in-between the classes corresponding to xi and xj . When the random num-
ber r (generated uniformly in the range 0 to 1) is greater than or equal to the
threshold τ , then the mixing module acts as an identity function.

As discussed earlier, to learn distinctive features for closely related classes,
we focus more on learning the pseudo classes that are between two semantically
close classes. First, we calculate the Euclidean distance between the semantic
embeddings of every pair of classes to find the similarity among them. A class
is mixed with another class following a probability distribution based on the
semantic similarity of the classes. For e.g., if we are given only three classes yi,
yj and yk, with their pair-wise distances from ayi

as, dist(ayi
,ayj

) = dij and
dist(ayi

,ayk
) = dik. Then, the probability of mixing a sample of class yi with a

sample of class yj will be:

PMix(yi, yj ; yk) =
exp(−dij)

exp(−dij) + exp(−dik)
(10)

The probability of mixing a sample of class yi with a sample of class yk can be
calculated in a similar manner. Another reason why we mix semantically close
classes is that it has more potential to generate meaningful novel classes. For
example, mixing two types of insects may produce another insect, but mixing
an insect with a dog might not produce anything realistic.

(iii) Incorporating Information from Neighbouring Classes: With
the above modifications, the model is now capable of handling both unseen
classes and unseen domains during testing. But, the success of the unseen class
predictions depend upon how semantically meaningful the feature embeddings
are. Here, we propose to guide the feature embeddings not only using its cor-
rect ground truth attribute (using the classification loss), but also using the
information of its semantically similar neighbouring classes. For e.g., the feature
embedding of an insect class wasp can be guided by its class attribute, and also
by its relative distances from the other insect classes. This is specially important
during the feature computation of the unseen classes, where in absence of its
ground truth attributes, the embedding has to be solely guided by the seen class
attributes.

The standard classification loss encourages the model to predict a score of 1
for the ground truth class and 0 for all other classes. In contrast, we propose to
calculate the loss not just with respect to the ground truth attribute, but also
with respect to the other classes, appropriately weighted by their similarity with
the ground truth class. Given an image xi ∈ X , belonging to class yi ∈ Ys with
semantic vector ayi

∈ E , we propose to use an additional loss term as follows:

LMSE(xi) =
∑
y∈Ys

exp(− ∥(ayi
− ay)∥2

maxz∈Ys ∥(ayi − az)∥2
)(∥F(xi)− ay∥2 − ∥ayi

− ay∥2)2

(11)
where ay is the semantic vector of an arbitrary class y. ∥F(xi) − ay∥2 is the
distance between the predicted embedding of the sample xi and the ground
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truth semantic vector of class y. Similarly, ∥ayi
− ay∥2 is the distance between

the ground truth semantic vector of xi and the ground truth semantic vector of
class y. The term inside the second parentheses encourages the embedding of the
image feature and its ground truth attribute vector with respect to the attributes
of the neighbouring classes to be similar. The term inside the first parentheses is
an exponential weighting factor so that this strict relative positioning is mainly
applied for the semantically similar classes.

Note that when the mixing module is not activated, we directly follow eq. (11).
For the case when mixing is done, we calculate the LMSE loss by replacing ayi

with the average of the attributes of the mixed classes, i.e., ayij as given in
eq. (6). We combine the two losses to get the final loss as:

L = LMix + ηLMSE (12)

where η is a hyper-parameter to balance the relative effects of the two losses.
Similar idea has been explored in SnMpNet [34] for the retrieval task.

5 Experimental Evaluation

Here, we describe in detail the datasets used, implementation details, results and
further analysis of the proposed approach.

Datasets Used: For evaluation of our method, we use two large-scale bench-
mark datasets, namely DomainNet and DomainNet-LS, as used in the recent
works in ZSDG [28, 8]. DomainNet [35] consists of 345 classes and 6 domains,
namely clipart, infograph, painting, quickdraw, real and sketch, spread across
approximately 0.6 million images. We follow the same experimental protocol de-
fined in the literature. Out of 345 classes, we use 300 for training as the seen
classes and the remaining 45 for testing as unseen classes. Out of 6 domains, we
use 5 domains at a time for training as seen domains and the remaining domain
is used for testing as unseen domain. We hold-out each domain (except real)
one-by-one and repeat the training process using the 300 classes in the remain-
ing 5 domains. The testing is not done on the real domain, since the backbone
is pre-trained on the ImageNet dataset, and thus the real domain can not be
considered as an unseen domain. For the DomainNet-LS benchmark, only real
and painting domains are used for training and the rest are used for testing, the
splitting of the classes remains same. Clearly, it is a more challenging setting,
since the domain invariant features have to be learnt only using two domains.
Implementation details: For fair comparison with the state-of-the-art ap-
proaches, we use the ResNet-50 backbone, which has four CNN blocks. We have
the mixing modules only after the 1st three blocks, as done in [51]. To learn
the features in the semantic space, we use the 300-dimension semantic vectors
from the Word2Vec [30] representation. Following [51], we use α = 0.1 as the
input parameter of the Beta distribution. Inspired from [52], we sample γ from
a distribution uniform in t1 = 0.4 to t2 = 0.6, i.e. γ ∼ U(0.4, 0.6). Based on the
analysis shown in Fig. 3(b), we set η = 1 to give equal weightage to both the
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Table 1: Leave-one-domain-out ZSDG results on DomainNet using average per-
class accuracy metric.

Method Target Domain AverageDG ZSL Clipart Infograph Painting Quickdraw Sketch

-
DEVISE [10] 20.1 11.7 17.6 6.1 16.7 14.4

ALE [1] 22.7 12.7 20.2 6.8 18.5 16.2
SPNet [43] 26.0 16.9 23.8 8.2 21.8 19.4

DANN
DEVISE [10] 20.5 10.4 16.4 7.1 15.1 13.9

ALE [1] 21.2 12.5 19.7 7.4 17.9 15.7
SPNet [43] 25.9 15.8 24.1 8.4 21.3 19.1

Epi-FCR
DEVISE [10] 21.6 13.9 19.3 7.3 17.2 15.9

ALE [1] 23.2 14.1 21.4 7.8 20.9 17.5
SPNet [43] 26.4 16.7 24.6 9.2 23.2 20.0

CuMix (img only) [28] 25.2 16.3 24.4 8.7 21.7 19.2
CuMix (two-level) [28] 26.6 17.0 25.3 8.8 21.9 19.9

CuMix [28] 27.6±0.5 17.8±0.2 25.5±0.4 9.9±0.3 22.6±0.3 20.7±0.3
SLE-Net [8] 27.8±0.3 18.4±0.4 26.6±0.3 11.5±0.2 25.2±0.3 21.9±0.3

Proposed SEIC 29.9±0.2 17.4±0.1 26.7±0.4 12.0±0.4 27.3±0.3 22.7±0.3

Table 2: Leave-one-domain-out ZSDG results on DomainNet using standard ac-
curacy metric.

Method Clipart Infograph Painting Quickdraw Sketch Average
CuMix [28] 27.8 16.3 27.6 9.7 25.9 21.5
SLE-Net [8] 29.1 17.6 28.8 11.5 26.3 22.7

Proposed SEIC 32.7 18.3 27.5 11.9 30.4 24.2

losses. For training, we use the Adam optimizer with a learning rate of 10−5 and
a batch size of 80. We find that setting the probability threshold, with which
the mixing module is activated, equal to 0.2, i.e., τ = 0.2 gives the best results,
as shown in Fig. 3(a).

5.1 Results on DomainNet and DomainNet-LS Datasets

Here, we perform extensive experiments to evaluate the effectiveness of the pro-
posed SEIC framework for the ZSDG task.
Results on DomainNet dataset: For DomainNet dataset, we compare our
results using two metrics: average per-class accuracy and standard accuracy. We
follow the same experimental protocol as the previous works in the literature,
namely Cumix [28] and SLE-Net [8]. Fisrt, we report the results on standalone
ZSL methods such as DEVISE [10], ALE [1] and SPNet [43] and combination of
the ZSL methods with DG methods, like DANN [11] and Epi-FCR [24]. Along
with SLE-Net [8], we report the results of CuMix and its variants: CuMix (img
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Table 3: Leave-one-domain-out ZSDG results on DomainNet-LS using average
per-class accuracy metric.

Method Clipart Infograph Quickdraw Sketch Average
SPNet [43] 21.5 14.1 4.8 17.3 14.4

Epi-FCR+SPNet [43] 22.5 14.9 5.6 18.7 15.4
CuMix (img only) [28] 21.2 14.0 4.8 17.3 14.3
CuMix (two-level) [28] 22.7 16.5 4.9 19.1 15.8
CuMix (reverse) [28] 22.9 15.8 4.8 18.2 15.4

CuMix [28] 23.7 17.1 5.5 19.7 16.5
SLE-Net [8] 24.0 16.0 7.2 20.5 16.9

Proposed SEIC 25.9 16.0 8.5 22.9 18.3

only) where MixUp is applied only at the image level and CuMix (two-level)
where MixUp is applied at both image and feature level, as given in [28].

In Table 1, we report the average per-class accuracy for the five test domains
using various methods. The results of all the previous approaches have been di-
rectly taken from [8]. On using only the standalone ZSL methods DEVISE [10],
ALE [1] and SPNet [43], we get 14.4%, 16.2% and 19.4% accuracy, respectively.
On integrating the DANN [11] framework with the above ZSL methods, there is
a drop in accuracy. Instead of DANN [11], if we combine Epi-FCR [24] with the
ZSL methods, the average accuracies improve to 15.9%, 17.5% and 20.0%, respec-
tively. The proposed SEIC framework outperforms the state-of-the-art SLE-Net
[8] on four out of the five domains with an average accuracy of 22.7%, which
is better than [8] by 0.8%. In Table 2, we show the standard accuracies of the
proposed approach for the DomainNet dataset and compare it with the previous
two ZSDG methods. SLE-Net [8] obtains average accuracy of 22.7%. Here also,
our method outperforms the other methods with an average accuracy of 24.2%,
which is an increase of 1.5% over SLE-Net [8].

Results on DomainNet-LS dataset: In Table 3, we show the results on the
DomainNet-LS dataset, where we train the model only on 2 domains: real and
painting. An average accuracy of 14.4% is attained by SPNet [8]. On combining
it with Epi-FCR [24], the accuracy improves by 1.0%. CuMix [28] achieves an
average accuracy of 16.5% beating its other variants like CuMix (reverse) [28].
Our method achieves an average accuracy of 18.3% which is better than SLE-Net
[8] by 1.4%.

5.2 Additional Analysis

Ablation Study: In Table 4, each of the components is deactivated one-by-one
while keeping the others activated. The baseline here is the original backbone
with the fixed semantic embeddings as the classifiers. We do this analysis on the
DomainNet-LS dataset by taking the following five cases:
(a) Here, domain mixing, which generates mixed style features is deactivated,
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Table 4: Analysis of the contribution of each component in the proposed method
using DomainNet-LS dataset.

fms fic PMix LMSE Clipart Infograph Quickdraw Sketch Average
Case (a): ✗ ✓ ✓ ✓ 24.9 15.0 6.5 21.9 17.1
Case (b): ✓ ✗ ✓ ✓ 25.8 14.2 6.4 21.7 17.0
Case (c): ✓ ✓ ✗ ✓ 24.2 15.4 5.4 20.2 16.3
Case (d): ✓ ✓ ✓ ✗ 25.2 15.9 8.0 21.2 17.6
Case (e): ✓ ✓ ✓ ✓ 25.9 16.0 8.5 22.9 18.3

Fig. 2: t-SNE plots of the semantic space of test domains: (a) Clipart, (b) Painting
and (c) Sketch in the DomainNet dataset for 10 unseen classes.

(a) (b) (c)

rest of the components are active. The mixing of two samples is done only on
the feature level, the statistics of the features are not altered. Here, the model’s
ability to generalize to unseen domains would be hampered.
(b) Here, the CE loss corresponding to the intermediate class features fic is ab-
sent, thereby making the model less effective at recognizing unseen test classes.
(c) Our proposed method uses the knowledge of semantically similar classes for
generating the pseudo intermediate classes for increasing the class discriminabil-
ity. Here, we turn off this component making the model inefficient at distin-
guishing between similar classes. Here, for creating the intermediate classes, two
randomly picked samples are used instead of semantically similar classes.
(d) Here, the information provided by the neighbouring classes i.e. LMSE defined
in eq. (11) is not used.
(e) This is the proposed SEIC framework which uses all the components. We
observe that all the proposed modules help towards improving the performance
of the SEIC framework for the ZSDG task.

Visualization of the Semantic Space: Here, we visualize the feature em-
bedding space which is learnt using the proposed SEIC framework. Fig. 2 shows
the t-SNE plots of the feature embeddings for 10 randomly chosen unseen test
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marker peas skyscraper axe grapes tornado

Infograph

marker peas skyscraper marker suitcase ladder

axe beard skateboard hurricane peas cloud

Painting

axe beard skateboard dolphin asparagus moon

megaphone motorbike windmill bread rollerskates sweater

Quickdraw

megaphone motorbike windmill onion sweater windmill

boomerang hamburger helicopter parrot peanut scissors

Sketch

boomerang hamburger helicopter dolphin finger airplane

Table 5: Model predictions for some test images in 5 domains of the DomainNet
dataset. The ground truth is given at the top of each image. The correct (green)
and incorrect (red) predictions are shown at the bottom of each image.

classes for the DomainNet dataset. We observe that the unseen test classes form
reasonably nice clusters in the embedding space, even though the model has not
been trained using data from these classes or domains. Also, the clusters are
semantically meaningful, for example, in Fig. 2(c), we observe that semantically
similar classes (living creatures) like parrot, dolphin and octopus are closer to
each other compared to other different classes like scissors and boomerang.

Visual Examples of Correct and Incorrect Predictions: Table 5 shows
few examples which are correctly and wrongly classified by the proposed SEIC
framework. These images are from two domains of the DomainNet dataset. We
observe that many of the wrong predictions are quite intuitive and may be
wrongly classified even by humans. For example, the last image of painting, i.e.
cloud is wrongly predicted as moon, the last image of quickdraw, i.e. sweater is
wrongly predicted as windmill, etc.
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Fig. 3: Effect of variations in hyperparameters.

Effect of Varying Different Hyperparameters: First, we show the variation
in performance for different values of τ , which controls how frequently a mixing
module is activated. We analyze the performance for τ = {0.1, 0.2, 0.3, 0.4}, on
DomainNet-LS. In Fig. 3(a), we observe that the best result for each domain
is obtained at τ = 0.2. But the degradation of performance for different values
of τ is very gradual, indicating that the model performance is quite stable with
respect to this hyperparameter. In Fig. 3(b), we show the accuracy variation for
different values of η, which is a hyperparameter weighting the importance of the
MSE loss term in eq. (12). We analyze the results for η = {0.6, 0.8, 1.0, 1.2, 1.4}.
Clearly, the best result is achieved when the value of η is set equal to 1. The trend
is consistent across each of the four domains. Therefore, both the loss terms are
given equal weightage in the final loss equation in our experiments.

6 Conclusion

In this work, we propose a novel framework termed SEIC, to address the ZSDG
task. Specifically, we extend a state-of-the-art DG method capable of generalizing
across unseen domains into a ZSDG framework which can handle unknown test
classes as well. Generalization across unseen domains is achieved by generating
intermediate domains by mixing the feature statistics of the different training
samples. Similarly, generalization across unseen classes is handled by generating
pseudo classes between similar seen classes using mixed features of the training
samples. In addition, we also utilize the information of the neighbourhood classes
to learn the semantically meaningful feature embeddings. Extensive experiments
on two large-scale benchmark datasets and comparison with the state-of-the-art
show the effectiveness of the proposed SEIC framework.
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