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Abstract. Self-supervised learning has drawn attention through its ef-
fectiveness in learning in-domain representations with no ground-truth
annotations; in particular, it is shown that properly designed pretext
tasks bring significant performance gains for downstream tasks. Inspired
from this, we tackle video scene segmentation, which is a task of tempo-
rally localizing scene boundaries in a long video, with a self-supervised
learning framework where we mainly focus on designing effective pretext
tasks. In our framework, given a long video, we adopt a sliding win-
dow scheme; from a sequence of shots in each window, we discover a
moment with a maximum semantic transition and leverage it as pseudo-
boundary to facilitate the pre-training. Specifically, we introduce three
novel boundary-aware pretext tasks: 1) Shot-Scene Matching (SSM), 2)
Contextual Group Matching (CGM) and 3) Pseudo-boundary Prediction
(PP); SSM and CGM guide the model to maximize intra-scene similarity
and inter-scene discrimination by capturing contextual relation between
shots while PP encourages the model to identify transitional moments.
We perform an extensive analysis to validate effectiveness of our method
and achieve the new state-of-the-art on the MovieNet-SSeg benchmark.
The code is available at https://github.com/kakaobrain/bassl

Keywords: Video scene segmentation · Self-supervised learning

1 Introduction

Understanding long videos such as movies, for an AI system, has been viewed
as an extremely challenging task. [1] In contrast, for humans, as studies in cog-
nitive science [49] tell us it is naturally achieved by breaking down a video into
meaningful units (e.g., event) and reasoning about these units and their rela-
tion [42]. From this point of view, dividing a long video into a series of shorter
temporal segments can be considered as an essential step towards the high-level
video understanding. Motivated by this, in this paper, we tackle the video scene
? Equal contribution † Corresponding authors
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(a) Dissimilar visual cues in the same scene

(b) Similar visual cues in two different scenes Boundary

Fig. 1. Examples of the video scene segmentation. In each row, we visualize the shots
including similar visual cues (e.g., characters, places, etc.) with the same colored border.

segmentation task, temporally localizing scene boundaries from a long video; the
term scene is widely used in filmmaking and scene (a series of semantically co-
hesive shots) is considered as a basic unit for understanding the story of movies.

One of the biggest challenges in video scene segmentation is that it is not
achieved simply by detecting changes in visual cues. As shown in Fig. 1(a), we
present an example of nine shots, all of which belong to the same scene, where
two characters are talking on the phone; the overall visual cues within the scene
do not stay the same but rather change repeatedly when each character appears.
On the other hand, Fig. 1(b) shows two different scenes which contain visually
similar shots (highlighted in blue) where the same character appears in the same
place. Thus, it is expected that two adjacent scenes which share shots with similar
visual cues need to be contextually discriminated. From this observation, it is
important for the video scene segmentation task to model contextual relationship
between shots by maximizing 1) intra-scene similarity (i.e., the shots in the same
scene should be close to each other) and 2) inter-scene discrimination across two
adjacent scenes (i.e., shots across the scene boundary should be distinguishable).

Supervised learning approaches (e.g., [34]) are clearly limited due to the lack
of large-scale datasets with reliable ground-truth annotations; in addition, col-
lecting boundary annotations from long videos is extremely expensive. Recently,
self-supervision [5, 9, 17, 37] is spotlighted through its effectiveness in learning
in-domain representation without relying on costly ground-truth annotations.
The self-supervised learning methods [11, 14, 33] in the video domain have been
proposed to learn spatio-temporal patterns in a short term; inspired by this,
ShotCoL [8] proposed shot-level representation pre-training algorithm based on
contrastive prediction task. Although ShotCoL shows the remarkable perfor-
mance, such shot-level representation learned without being aware of the se-
mantic transition is insufficient for video scene segmentation. This is because
the task requires not only a good representation for individual shots but also
contextual representation considering neighboring shots at a higher level as ob-
served in Fig. 1. Thus, we set our main goal to design effective pre-text tasks for
video scene segmentation so that the model can learn the contextual relationship
between shots across semantic transition during pre-training.

We introduce a novel Boundary-aware Self-Supervised Learning (BaSSL)
framework where we learn boundary-aware contextualized representation effec-
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tive in capturing semantic transtion during pre-training and adapt the learned
representation for precise scene boundary detection through fine-tuning. The
main idea during pre-training is identifying a moment with a maximum semantic
transition and using it as psuedo-boundary. Then, we propose three boundary-
aware pretext tasks that are beneficial to the video scene segmentation task as
follows: 1) Shot-Scene Matching (SSM) matching shots with their associated
scenes, 2) Contextual Group Matching (CGM) aligning shots whether they be-
long to the same scene or not and 3) Pseudo-boundary Prediction (PP) capturing
semantic changes. SSM and CGM encourage the model to maximize intra-scene
similarity and inter-scene discrimination, while PP enables the model to learn the
capability of identifying transitional moments. In addition, we perform Masked
Shot Modeling task inspired by CBT [46] to further learn temporal relationship
between shots. The comprehensive analysis demonstrates the effectiveness of
the boundary-aware pre-training compared to shot-level pre-training as well as
the contribution of the individual proposed components (i.e., pseudo-boundary
discovery algorithm and boundary-aware pretext tasks).

Our main contributions are summarized as follows: (i) we introduce a novel
boundary-aware pre-training framework which leverages pseudo-boundaries to
learn contextual relationship between shots during the pre-training; (ii) we pro-
pose three boundary-aware pretext tasks, which are carefully designed to learn
essential capabilities required for the video scene segmentation task; (iii) we per-
form extensive ablations to demonstrate the effectiveness of the proposed frame-
work; (iv) we achieve the new state-of-the-art on the MovieNet-SSeg benchmark
with large margins compared to existing methods.

2 Related Work

Video scene segmentation approaches formulate the task as a problem of
temporal grouping of shots. In this formulation, the optimal grouping can be
achieved by clustering-based [7, 35, 36, 40], dynamic programming-based [16, 39,
48] or multi-modal input-based [30, 43] methods. However, the aforementioned
methods have been trained and evaluated on small-scale datasets such as OVSD
[38] and BBC [3] which can produce a poorly generalized model. Recently, [19]
introduce a large-scale video scene segmentation dataset (i.e., MovieNet-SSeg)
that contains hundreds of movies. Training with large-scale data, [34] proposes a
strong supervised baseline model that performs a shot-level binary classification
followed by grouping using the prediction scores. [8] proposes a shot contrastive
pre-training method that learns shot-level representation. We found ShotCoL [8]
to be the most similar to our method. However, our method is different from
ShotCoL in that we focus on learning contextual representations by considering
the relationship between shots through boundary-aware pre-text tasks.

Action segmentation in videos is one of the related works for video scene
segmentation, which identifies action labels of individual frames, thus can divide
a video into a series of action segments. Supervised methods [13, 24] proposed
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CNN-based architectures to effectively capture temporal relationship between
frames in order to address an over-segmentation issue. As frame-level annota-
tions are prohibitively costly to acquire, weakly supervised methods [6, 15, 26,
27, 41, 44, 59] have been suggested to use an ordered list of actions occurring in
a video as supervision. Most of the methods are trained to find (temporal) se-
mantic alignment between frames and a given action list using an HMM-based
architecture [21], a DP-based assignment algorithm [15] or a DTW-based tempo-
ral alignment method [6]. Recently, unsupervised methods [22, 23, 28, 51, 54] have
been further proposed; in a nutshell, clustering-based prototypes (corresponding
to one of the actions) are discovered from unlabeled videos, then the methods
segment the videos by assigning prototypes into frames. Contrary to action seg-
mentation localizing segments each of which represents a single action within
an activity, video scene segmentation requires localizing more complex segments
each of which may be composed of more than two actions (or activities).

Self-supervised learning in videos has been actively studied for the recent
years with approaches proposing various pretext tasks such as future frame pre-
diction [2, 45, 52], temporal ordering of frames [25, 31, 55], geometric transforma-
tions prediction [20], colorization of videos [53], multimodal correspondence [57]
and contrastive prediction [11, 14, 33]. In addition, CBT [46, 47] proposes a pre-
text task of masked frame modeling to learn temporal dependency between
frames (or clips). Note that since most of those methods are proposed for the
classification task, they would be sub-optimal to the video scene segmentation
task. On the other hand, BSP [56] proposes a pre-training algorithm based on
pseudo-boundary synthesis for temporal localization tasks. However, the method
still requires video-level class labels to synthesize pseudo-boundaries thus is not
applicable to videos such as movies that are hard to define semantic labels. Also,
note that we empirically show that pseudo-boundaries identified by our method
are more effective for pre-training than synthesized pseudo-boundaries.

3 Preliminary

Terminologies A long video (e.g., documentaries, TV episodes and movies) is
assumed to have a hierarchical structure at three-level semantics: frame, shot and
scene. A shot is a series of frames physically captured by the same camera during
an uninterrupted period of time. A scene is a series of semantically cohesive shots
and serves as a semantic unit for making a story. Note that, in this paper, our
focus is on finding scene-level boundaries.

Video Scene Segmentation Task Given a long video, which contains a series
ofN shots {s1, ..., sN} with class labels {y1, ..., yN} where yi ∈ {0, 1} indicating if
it is the last shot of a scene, the video scene segmentation task is formulated as a
simple binary classification task at an individual shot level. Leveraging the local
context from the neighbor shots, existing methods [8, 34] adopt a sliding window
scheme. For nth shot sn, the window is defined by Sn = {sn−K , ..., sn, ..., sn+K}
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Fig. 2. Overall pipeline of our proposed framework, BaSSL.

containing a sequence of 2K +1 shots where K is the number of neighbor shots
before and after sn. Then, supervised learning methods typically train a param-
eterized (θ) model by maximizing the expected log-likelihood:

θ∗ = argmax
θ

E [log pθ(yn|Sn)] . (1)

Note that each shot s is given by a set of Nk key-frames, resulting in a tensor
with size of (Nk, C,H,W ) where C, H and W are the RGB channels, the height
and the width, respectively.

Model Architecture The model (θ) consists of two main components: 1) shot
encoder embedding a shot by capturing its spatio-temporal patterns, and 2)
contextual relation network (CRN) capturing contextual relation between shots.
Taking a window Sn = {sn−K , ..., sn, ..., sn+K} centered at sn as an input, two-
level representations are extracted as follows:

en = fENC(sn) and Cn = fCRN(En), (2)

where fENC : RNk×C×H×W→RDe and fCRN : R(2K+1)×De→R(2K+1)×Dc repre-
sent the shot encoder and CRN while De and Dc mean dimensions of encoded
and contextualized features, respectively. en is an encoding of shot sn by fENC
while En = {en−K , ..., en, ..., en+K} and Cn = {cn−K , ..., cn, ..., cn+K} corre-
spond to the input and output feature sequence for fCRN, respectively. In ad-
dition, the model employs additional pretext-specific heads for pre-training or a
scene boundary detection head for fine-tuning.

Shot-level Self-supervised Learning ShotCoL [8] proposes a shot-level con-
trastive self-supervised learning algorithm for video scene segmentation, which
learns to make representation of visually similar nearby shots—highly likely to
belong to the same scene—similar. However, the method has following two lim-
itations. First, since ShotCoL pre-trains a model without explicitly identifying
semantic boundaries during pre-training, it may fail to properly maximize intra-
scene similarity and inter-scene dissimilarity. For example, the visually similar
shots in different scenes may be learned indistinguishable. Second, the method
learns shot representation given by the shot encoder (fENC) only and does not
learn temporal and contextual relation between shots given by the contextual
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Fig. 3. An example in each row shows an input window sampled from the same scene
where there exists no ground-truth scene-level boundary. Our method finds a pseudo-
boundary shot (highlighted in red) that divides a sequence into two pseudo-scenes
(represented by green and orange bars, respectively) so that semantics (e.g., places,
characters) maximally changes.

relation network (fCRN). Contrary to such shot-level self-supervised learning,
we propose boundary-aware self-supervised learning that trains both fENC and
fCRN while capturing the desired contextual relation between shots across se-
mantic change. More detailed comparisons are given in appendix.

4 Boundary-aware Self-supervised Learning (BaSSL)

4.1 Overview

As illustrated in Fig. 2, our framework BaSSL is based on two-stage training
following common practice [8]: pre-training on large-scale unlabeled data with
self-supervision and fine-tuning on relatively small labeled data. Our main fo-
cus is in the pre-training stage, designing effective pretext tasks for video scene
segmentation. Furthermore, we aim to train both shot encoder and contextual
relation network while maximizing intra-scene similarity and inter-scene discrim-
ination across semantic transition.

During pre-training, given an input window Sn, BaSSL finds a shot across
which the semantic transition becomes maximum and uses it as a pseudo-boundary
to self-supervise the model. To be specific, we leverage the dynamic time warp-
ing technique to divide the shots in a window into two semantically disjoint
sub-sequences, thus yielding a pseudo-boundary (Section 4.2). Then, we pre-
train a model θ using three boundary-aware pre-text tasks and the masked shot
modeling task adopted from CBT [46] to maximize intra-scene similarity and
inter-scene dissimilarity (Section 4.3). After pre-trained with the four pretext
tasks, the model is fine-tuned with labeled scene boundaries (Section 4.4).

4.2 Pseudo-boundary Discovery

The goal of our pre-training is to learn a capability of capturing semantic change
before and after a semantic transition moment, thereby leading to higher perfor-
mance in video scene segmentation. Specifically, we leverage a pseudo-boundary
as a clue for self-supervision. However, extracting scene-level pseudo-boundaries
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Fig. 4. Illustration of four pre-training pretext tasks.

from an input window is challenging. This is because there may be no scene
boundary and it is also difficult to determine how many boundaries there are.
Therefore, given an input window, we adopt a simple approach of finding a single
moment where the semantics is maximally transitioning, and use it as pseudo-
boundary. Although such identified moment may not correspond to scene-level
boundary, it is still effective in learning a capability to capture semantic transi-
tion and the capability can be adapted to detect scene-level transition via fine-
tuning. Fig. 3 shows identified pseudo-boundaries from input windows having no
ground-truth scene boundary; we observe that the resulting two sub-sequences
are still cognitively distinguishable. More examples are presented in appendix.

The process, dividing an input window Sn into two continuous, non-overlapping
sub-sequences Sleft

n and Sright
n with maximum semantic transition, can be seen

as a temporal alignment problem between Sn and Sslow
n ; specifically, observ-

ing the first shot should belong to Sleft
n and the last one to Sright

n , we define
Sslow
n = {sn−K , sn+K}, which can be seen as a same video with Sn with lower

sampling frequency. Then, the problem becomes aligning intermediate shots ei-
ther to the first shot sn−K or the last shot sn+K while preserving continuity.

Under the problem setting, we adopt dynamic time warping (DTW) [4] to
find the optimal alignment between Sn and Sslow

n . DTW solves the following opti-
mization problem using dynamic programming to maximize semantic coherence
of the resulting two sub-sequences among all possible boundary candidates:

b∗ = argmax
b=−K+1,...,K−1

(
1

b+K

b∑
i=−K+1

sim(en−K , en+i)

+
1

K − b− 1

K−1∑
j=b+1

sim(en+K , en+j)

)
, (3)

where b and b∗ are the candidate and optimal boundary offsets, respectively.
sim(x,y) = x>y

‖x‖‖y‖ computes cosine similarity between two given shot encod-
ings. Two sub-sequences are inferred as Sleft

n = {sn−K , ..., sn+b∗} and Sright
n =

{sn+b∗+1, ..., sn+K}. sn+b∗ is the pseudo-boundary shot, which is the last shot
of Sleft

n . The results are used for learning boundary-aware pretext tasks, which
will be described Section 4.3.

Discussion on Single Pseudo-boundary One might question if identifying
multiple pseudo-boundaries is more reasonable, since there may exist more than

4033



8 J. Mun et al.

two semantic transitions in an input window. However, we emphasize that the
goal of our boundary-aware pre-training is learning a capability of capturing
semantic transition, not lying on perfectly capturing all semantic transitions (or
scene boundaries) at once; the capability to capture all scene-level boundaries
is adapted via fine-tuning. In experiments, we verify that pre-training with one
semantically strongest pseudo-boundary brings remarkable performance gain.

4.3 Pre-training Objectives

As shown in Fig. 4, we pre-train a model with three novel boundary-aware pre-
text tasks—1) shot-scene matching (Lssm), 2) contextual group matching (Lcgm)
and 3) pseudo-boundary prediction (Lpp)—and an additional one, masked shot
modeling (Lmsm) as follows:

Lpretrain = Lssm + Lcgm + Lpp + Lmsm. (4)

Shot-Scene Matching (SSM) The objective of this task is to make the rep-
resentations of a shot and its associated scene similar to each other, while the
representations of the shot and other scenes dissimilar. In other words, SSM en-
courages the model to maximize intra-scene similarity, while minimizing inter-
scene similarity. Considering the splitted two sub-sequences (Sleft

n and Sright
n ) as

pseudo-scenes, we train the model using the InfoNCE loss [32]:

Lssm = Lnce
(
hssm(en−K), hssm(r

left
n )
)
+ Lnce

(
hssm(en+K), hssm(r

right
n )

)
, (5)

Lnce(e, r) = − log
esim(e,r)/τ

esim(e,r)/τ +
∑

ē∈Ne
esim(ē,r)/τ +

∑
r̄∈Nr

esim(e,r̄)/τ
, (6)

where hssm is a SSM head of a linear layer, τ is a temperature hyperparameter
and rleftn means a scene-level representation, which is defined by the averaged
encoding of shots in the sub-sequence Sleft

n . Ne and Nr in Eq. (6) are constructed
using other shots and pseudo-scenes in a mini-batch, respectively.

Contextual Group Matching (CGM) Since directly matching representa-
tions of shots and scenes would not be effective when the scenes are composed
of visually dissimilar shots, CGM is introduced to bridge this gap. Similar to
SSM, CGM is also designed to maximize intra-scene similarity and inter-scene
discrimination. However, CGM measures semantic coherence of the shots rather
than comparing visual cues. With CGM, the model learns to decide if the given
two shots belong to the same group (i.e., scene) or not. In detail, we use the
center shot sn in the input sequence as the anchor and construct a triplet of
(sn, spos, sneg). We sample each shot from Sleft

n and Sright
n ; the one sampled

within the same sub-sequence with sn is used as the positive shot spos, while the
other as the negative sneg. CGM loss is defined using binary cross-entropy by

Lcgm = − log (hcgm(cn, cpos))− log (1− hcgm(cn, cneg)) , (7)

where hcgm is a CGM head taking two shots as input and predicting a matching
score. cn, cpos and cneg are the contextualized features by fCRN for the center,
positive and negative shots, respectively.
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Pseudo-boundary Prediction (PP) Through the above two pretext tasks,
our model learns the contextual relationship between shots. In addition to these,
we design an extra pretext task, PP, which is more directly related to boundary
detection; PP makes the model have a capability of identifying transitional mo-
ments that semantic changes. Using the pseudo-boundary shot and one randomly
sampled non-boundary shot, the PP loss is defined as a binary cross-entropy loss:

Lpp = − log (hpp(cn+b∗))− log (1− hpp(cb̄)) , (8)

where hpp is a PP head that projects the contextualized shot representation
to a probability distribution over binary class. cn+b∗ and cb̄ indicate the con-
textualized representation from fCRN for the pseudo-boundary shot sn+b∗ and
randomly sampled non-boundary shot sb̄, respectively.

Masked Shot Modeling (MSM) Inspired by masked frame modeling [46,
47], we adopt the MSM task whose goal is to reconstruct the representation
of masked shots based on their surrounding shots. In this task, given a set of
encoded shot representations, we randomly apply masking each of them with a
probability of 15%. For a setM of masked shot offsets, we learn to regress the
output on each masked shot to its encoded shot representation:

Lmsm =
∑
m∈M

‖em − hmsm(cm)‖22, (9)

where hmsm is a MSM head to match the dimension of contextualized shot
representation with that of encoded one. em and cm denote the encoded and
contextualized features by fENC and fCRN for a masked shot sm, respectively.

4.4 Fine-tuning for Scene Boundary Detection

Recall that we formulate the video scene segmentation as a binary classification
task to identify contextual transition across the scene. Different from the pre-
training stage, given an input window Sn, we employ a scene boundary detection
head hsbd to infer a prediction from the contextualized representation (cn) for
the center shot sn. Following ShotCoL [8], we freeze the parameters of the shot
encoder and then train only CRN and the scene boundary detection head using
a binary cross-entropy loss with the ground truth label yn as follows:

Lfinetune = −yn log(hsbd(cn)) + (1− yn) log(1− hsbd(cn)). (10)

With a sidling window scheme, each shot is decided to be a scene boundary when
its prediction score is higher than a pre-defined threshold (set to 0.5).

5 Experiment

5.1 Experimental Settings

Dataset For evaluation, we use the MovieNet-SSeg dataset [19] containing 1,100
movies with 1.6M shots. Only 318 out of 1,100 movies have scene boundary an-
notations, which are divided into 190, 64, and 64 movies for training, validation,
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Table 1. Comparison with other algorithms. † and ‡ denote that the numbers are
copied from [34] and [19], respectively. ? indicates the methods exploiting additional
information (e.g., audio, place, cast, transcript). The best numbers are in bold.

Method AP (↑) mIoU (↑) AUC-ROC (↑) F1 (↑)
Supervised Learning
Siamese [3]‡ 35.80 39.60 - -
MS-LSTM [19]‡? 46.50 46.20 - -
LGSS [34]†? 47.10 48.80 - -
Unsupervised Learning
GraphCut [36]† 14.10 29.70 -
SCSA [7]† 14.70 30.50 - -
DP [16]† 15.50 32.00 - -
Story Graph [48]† 25.10 35.70 - -
Grouping [39]‡? 33.60 37.20 -
BaSSL w/o fine-tuning (10 epochs) 31.55 39.36 71.67 32.55
Self-supervised Learning
ShotCoL [8] 53.40 - - -
BaSSL (10 epochs) 56.26 ±0.04 49.50 ±0.11 90.27 ±0.02 45.70 ±0.24
BaSSL (40 epochs) 57.40 ±0.08 50.69 ±0.45 90.54 ±0.03 47.02 ±0.87

and test split, respectively. Following ShotCoL [8], we use the entire 1,100 movies
with no ground truth labels for the pre-training and fine-tune the model on the
training split. The performance is measured on the test split.

Metric Following [19], we compare algorithms using AP and mIoU. Also, we
adopt F1 score 1 and AUC-ROC as additional evaluation metrics. We also report
Meta-Sum metric inspired by [10, 29] for easy and straightforward comparison.

Implementation details We employ ResNet-50 [18] and Transformer [50] as
shot encoder and CRN, respectively. We cross-validate the number of neighbor
shots amongK = {4, 8, 12, 16} andK = 8 is selected due to its good performance
and computational efficiency. In all experiments, we report mean and std from
5 fine-tuned models with random seeds. More details are presented in appendix.

5.2 Comparison with State-of-the-art Methods

We compare BaSSL with 1) supervised ones: LGSS [34], Siamese [3], MS-LSTM [19]
and, 2) unsupervised ones: GraphCut [36], SCSA [7], DP [16], StoryGraph [48]
and Grouping [39], and 3) self-supervised ones: ShotCoL [8]. Without fine-tuning,
BaSSL can be seen as an unsupervised model in that it is trained to predict the
pseudo-boundary by the PP task. Table 1 summarizes comparison against com-
peting methods. BaSSL without fine-tuning shows competitive or outperforming
performance based only on the basic visual cue compared to competing unsuper-
vised ones. Furthermore, fine-tuning BaSSL with ground-truth scene boundaries
1 Contrary to the previous works [34, 8] that report recall, we use F1 score to consider
for balanced comparison between precision and recall.
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Table 2. Average precision (AP) comparison with pre-training baselines. Note that
SimCLR (NN) corresponds to our reproduced ShotCoL using SimCLR.

Method Pre-training Transfer Architecture of fCRN during fine-tuning
fENC fCRN fENC fCRN MLP MS-LSTM Transformer

Supervised pre-training using image dataset
M1 ImageNet X X 43.12 ±0.14 45.10 ±0.55 47.13 ±1.04
M2 Places365 X X 43.82 ±0.10 45.87 ±0.40 48.71 ±0.50
Shot-level pre-training
M3 SimCLR (instance) X X 45.60 ±0.07 49.09 ±0.24 51.51 ±0.31
M4 SimCLR (temporal) X X 45.55 ±0.11 49.24 ±0.26 50.05 ±0.78
M5 SimCLR (NN) X X 45.99 ±0.13 50.73 ±0.19 51.17 ±0.69
Boundary-aware pre-training
M6 BaSSL X X X 46.53 ±0.11 50.58 ±0.14 50.82 ±0.69
M7 BaSSL X X X X - - 56.26 ±0.04
M8 M5+M7 X X X X - - 56.86 ±0.01

improves AP by 24.71%p and BaSSL outperforms all other algorithms. Finally,
through longer pre-training (40 epochs), BaSSL surpasses the previous state-of-
the-art method (i.e., ShotCoL) by a large margin (4.00%p in AP).

5.3 Comparison with Pre-training Baselines

We perform extensive experiments to compare BaSSL with the pre-training base-
lines learning shot-level representation by fENC only. In the experiments, we
compare the following three types of pre-training approaches. The first group
(M1-2) trains fENC using image-level supervision on ImageNet [12] or place
labels on Places365 [58]. The second group (M3-5) trains fENC through shot-
level contrastive learning (i.e., SimCLR [9]) with different positive pair sam-
pling strategies. Specifically, instance (M3) takes an instance of the center shot
with different augmentation, temporal (M4) takes one randomly sampled neigh-
bor shot as positive pair in local temporal window, and NN (M5) takes the
most visually similar shot among the neighbor shots as positive pair, which is
also known as ShotCoL [8]. The last group (M6-8) learns both fENC and fCRN
through boundary-aware pretext tasks proposed in this paper. Given pre-trained
representations of fENC, we train a video scene segmentation model with three
different types of fCRN including MLP [8], MS-LSTM [19]2 and Transformer.
For fair comparison, all pre-training methods employ ResNet-50 as fENC and we
pre-train the models for 10 epochs.

In Table 2, we found the following observations. First, when transferring pre-
trained shot representation, employing MS-LSTM and Transformer as fCRN is
more effective than using MLP, as they are favorably designed to capture con-
textual relation between shots (see M1-6). Second, BaSSL (M7) outperforms all
competing baselines (M1-5), which shows the importance of boundary-aware pre-
training. Third, it turns out that transferring the representation through fCRN
2 https://github.com/AnyiRao/SceneSeg/tree/master/lgss
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Table 3. Ablation study on varying combinations of pretext tasks for pre-training.
The best scores are highlighted in bold.

Pretext Tasks Evaluation Metric
SSM CGM PP MSM AP mIoU AUC-ROC F1 Sum

P1 X 42.57 ±0.29 40.12 ±0.50 84.11 ±0.15 30.83 ±0.79 197.63
P2 X 36.76 ±0.02 40.59 ±0.18 82.06 ±0.04 30.94 ±0.32 190.35
P3 X 36.55 ±0.04 39.58 ±0.05 81.36 ±0.03 29.96 ±0.04 187.45
P4 X 13.33 ±0.23 29.80 ±0.39 64.65 ±0.98 18.68 ±0.39 126.45
P5 X X 55.77 ±0.05 48.19 ±0.21 90.19 ±0.03 43.17 ±0.39 237.32
P6 X X 56.04 ±0.08 49.00 ±0.16 90.13 ±0.02 44.74 ±0.29 239.91
P7 X X 38.09 ±0.03 41.25 ±0.10 82.85 ±0.01 32.24 ±0.24 195.43
P8 X X 54.39 ±0.07 47.54 ±0.18 89.72 ±0.03 42.48 ±0.22 234.13
P9 X X 39.49 ±0.04 41.71 ±0.12 83.27 ±0.02 32.85 ±0.20 197.32
P10 X X 38.53 ±0.07 40.85 ±0.15 82.78 ±0.04 31.47 ±0.16 193.63
P11 X X X 41.02 ±0.07 40.89 ±0.10 83.79 ±0.02 31.53 ±0.18 197.23
P12 X X X 56.10 ±0.08 49.10 ±0.17 90.09 ±0.03 45.42 ±0.30 240.71
P13 X X X 56.20 ±0.06 48.00 ±0.17 90.13 ±0.01 43.24 ±0.27 237.57
P14 X X X 56.26 ±0.02 48.42 ±0.33 90.25 ±0.01 43.98 ±0.58 238.91
P15 X X X X 56.26 ±0.04 49.50 ±0.11 90.27 ±0.02 45.70 ±0.24 241.73

is important for the boundary detection task where it leads to a performance
gain of 5.44%p in AP (see M6-7). Finally, learning shot-level and contextual
representations is complementary to each other; that is, incorporating ShotCoL
(M5) and our framework (M7) provides further improved performance (M8).

5.4 Ablation Studies

Impact of individual pretext tasks We investigate the contribution of indi-
vidual pretext tasks. In this experiment, we train models by varying the com-
binations of the pretext tasks. From Table 3, we can obtain following two ob-
servations. First, among models trained by a single pretext task (P1-4), the
MSM leads to the worst performance compared to the others. This indicates
that boundary-aware pretext tasks (i.e., SSM, CGM and PP) are indeed impor-
tant for scene boundary detection. Second, the more pretext tasks are used, the
better the performance is, and the best one is obtained from all tasks (P15). This
means all tasks are complementary to each other, contributing to improvement.

Psuedo-boundary discovery method To check the effectiveness of DTW-
based pseudo-boundary discovery, we train three models with different pseudo-
boundary decision strategies—1) Random defining one randomly sampled shot in
the input window as a pseudo-boundary, 2) Fixed always taking the center shot
as a pseudo-boundary, and 3) Synthesized, inspired by BSP [56], synthesizing
the input window by concatenating two sub-sequences sampled from different
movies and using the last shot of the first sub-sequence as a pseudo-boundary.
Table 4(a) summarizes the results. Our approach to adopting DTW to find
pseudo-boundaries achieves the best performance. It is notable that BaSSL with
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Table 4. Ablations to check the impact of pseudo-boundary discovery strategies, the
number of neighboring shots (K) and longer pre-training. The best scores are in bold.

Pseudo-boundary AP
Random 46.64 ±0.37
Fixed 49.53 ±0.32
Synthesized 54.61 ±0.03
DTW (ours) 56.26 ±0.04

(a) Pseudo-boundary discovery
methods.

# Neighbors AP
4 55.98 ±0.10
8 56.26 ±0.04
12 56.29 ±0.03
16 55.31 ±0.04

(b) The number of neighbor
shots.

Epochs AP
10 56.26 ±0.04
20 56.74 ±0.04
30 56.74 ±0.07
40 57.40 ±0.08
50 57.15 ±0.08

(c) The number of pre-
training epochs.

Table 5. Scene clustering quality measured by normalized mutual information (NMI).

Model Scene Length
∆ ↓ (Short → Long)Short (Nc=8) Medium (Nc=16) Long (Nc=32)

ImageNet 67.50 61.60 56.25 -16.67%
SimCLR (temporal) 82.40 81.65 78.99 -4.14%
SimCLR (NN) 83.54 83.17 81.25 -2.75%
BaSSL (ours) 86.22 86.72 85.63 -0.68%

Synthesized pseudo-boundaries also outperforms the pre-training baselines in
Table 2, which shows the importance of boundary-aware pre-training.

Hyperparameters We analyze the impact of two hyperparameters: the number
of neighbor shots K and pre-training epochs. Table 4(b) shows that we achieve
higher performance with more neighbor shots, saturating around K = 12. Ta-
ble 4(c) shows the impact of longer pre-training. We find that performance in-
creases until certain numbers (40 epochs) and decrease afterward. We conjecture
that this is partly due to overfitting to noise from incorrect pseudo-boundaries.

5.5 Analysis on Pre-trained Shot Representation Quality

We analyze the quality of pre-trained shot representations using normalized mu-
tual information (NMI) to measure the clustering quality. Specifically, we ran-
domly sample 100 scenes from the test split of MovieNet-SSeg while we vary
the length of scenes Nc ∈ {8, 16, 32} (the number of shots included in a single
scene). Then, we perform K-Means clustering on Nc × 100 shot representations
extracted by the pre-trained model with the number of classes (=100). This
intends to form a single cluster for each scene, assuming that high-quality rep-
resentation would locate the shot embeddings within the same scene close to
each other. Considering the randomness in the K-Means clustering and scene
sampling, we report the averaged score from 5 trials.

Table 5 shows the NMI score for different pre-trained models. BaSSL out-
performs the shot-level pre-training baselines and the model pre-trained using
ImageNet. With respect to different scene lengths (Nc), we found BaSSL is more
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Fig. 5. Visualization of similarity (below) between shot representations in randomly
sampled consecutive shots (above). We observe that the shot representations are clearly
clustered as adding pretext tasks one by one.

robust than the others. When the visual diversity across the shots increases as
the scenes become longer (Nc=8 → 32), the performance of BaSSL drops only
-0.68% while the other baselines suffer from severe degradation. This implies the
effectiveness of BaSSL in maximizing intra-scene similarity.

5.6 Qualitative Analysis

To qualitatively check the effect of individual pretext tasks, we visualize the ma-
trix of cosine similarity between shot representations from the randomly sampled
16 consecutive shots in Fig. 5. The shot representations are computed by models
without the fine-tuning in order to solely focus on the behavior of each pretext
task at the pretraining stage. When the MSM is used only, approximately three
clusterings are shown, but similarity around boundaries is smoothed. Next, when
we add PP, dissimilarities around the boundaries are to be sharpened. Then,
with additional CGM, the clusters are more clearly obtained. Finally, adding
SSM makes the similarity of shots within the same cluster higher (i.e., more yel-
low ones). On the other hand, we present more qualitative analysis for discovered
pseudo-boundaries and scene boundary predictions in supplementary material.

6 Conclusion

We present BaSSL, a novel self-supervised framework for video scene segmenta-
tion, especially designed to learn contextual relationship between shots. Through
the pseudo-boundary discovery, we can define and conduct boundary-aware pre-
text tasks that encourage the model to learn the contextual relational repre-
sentation and a capability of capturing transitional moments. Comprehensive
experiments demonstrate the effectiveness of our framework and we achieve out-
standing performance in the MovieNet-SSeg dataset.
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