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Abstract. In the Class Incremental Learning (CIL) setup, a learning
model must have the ability to incrementally update its knowledge to rec-
ognize newly appeared classes (plasticity) while maintaining the knowl-
edge to recognize the classes it has already learned (stability). Such con-
flicting requirements are known as the stability-plasticity dilemma, and
most existing studies attempt to achieve a good balance between them
by stability improvements. Unlike those attempts, we focus on the gen-
erality of representations. The basic idea is that a model does not need
to change if it has already learned such general representations that they
contain enough information to recognize new classes. However, the gen-
eral representations are not optimal for recognizing the classes a model
has already learned because the representations must contain unrelated
and noisy information for recognizing them. To acquire representations
suitable for recognizing known classes while leveraging general represen-
tations, in this paper, we propose a new CIL framework that learns gen-
eral representations and transforms them into suitable ones for the target
classification tasks. In our framework, we achieve the acquisition of gen-
eral representations and their transformation by self-supervised learning
and attention techniques, respectively. In addition, we introduce a novel
knowledge distillation loss to make the transformation mechanism stable.
Using benchmark datasets, we empirically confirm that our framework
can improve the average incremental accuracy of four types of CIL meth-
ods that employ knowledge distillation in the CIL setting.

1 Introduction

Deep neural network models can provide superior performance in image recog-
nition tasks [49, 24, 17] if all the classes to be recognized are available when
training them. However, this prerequisite is unrealistic in most practical situ-
ations. To overcome this limitation, many studies have tackled the problem of
Class Incremental Learning (CIL) [38, 6], in which a model learns new classes in-
crementally through multiple classification tasks that are sequentially provided.
In the CIL setup, a learning model needs to update its knowledge to recognize
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newly emerged classes (plasticity), while maintaining the knowledge to recognize
the classes it has already learned (stability). Such conflicting requirements are
known as the stability-plasticity dilemma [40], which is the major issue in CIL.

In general, deep neural network models tend to learn task-oriented knowl-
edge and overwrite the knowledge learned for the previous tasks with the one
for the new task in CIL. This problem is known as catastrophic forgetting [39,
32], which implies that the balance of the two conflicting requirements is biased
toward plasticity. Thus, most existing studies attempt to achieve a good balance
between stability and plasticity by improving stability. For instance, regulariza-
tion methods [9] prevent important parameters of a neural network model from
moving. Knowledge distillation [25, 35] attempts to preserve features a model
has already acquired. However, all those approaches achieve improvement in
stability in exchange for the plasticity of a learning model, which implies their
performance degrades for the new tasks when the model needs to be highly
plastic to adapt to the new tasks.

The above observation indicates that the CIL methods with knowledge distil-
lation cannot achieve high performance both for the new and learned tasks simul-
taneously without a mechanism to decrease the required plasticity for adapting
to the new tasks. Therefore, in this paper, we focus on the generality of learned
representation because the model does not need to change if the representations
it has already learned are so general that they contain enough information to
recognize new classes. The existing approaches cannot learn such general rep-
resentations because they optimize model parameters with the cross-entropy
loss to solve the classification task. The cross-entropy loss encourages learning
task-oriented representations, but it does not ensure the model acquires repre-
sentations not directly related to the current and previous tasks, even if they
may be helpful for the subsequent tasks. Thus, we propose a new CIL framework
and adopt the self-supervised learning technique [14] to learn general represen-
tations that could be useful for classes involved in future tasks. Here, it is noted
that the general representations are not optimal for recognizing the classes a
model has already learned because they must contain unrelated and noisy infor-
mation for the known classes to be recognized. Thus, we further introduce into
our framework a mechanism based on attention techniques [44, 27] to transform
the general representations into suitable ones for the target classification tasks.
Furthermore, we introduce a novel knowledge distillation loss to improve the
stability of our transformation mechanism.

Our contributions are summarized as follows:

1. We propose a novel CIL framework that makes a model learn general repre-
sentations and transforms them into suitable ones for the target classification
tasks.

2. We design a novel knowledge distillation loss that improves the stability of
our transformation mechanism.

3. Through the experiments on benchmark datasets in the CIL setting, we
empirically confirm that our framework improves the average incremental
accuracy of existing CIL models employing knowledge distillation.

3995



Learning and Transforming General Representations 3

2 Related Work

2.1 Class Incremental Learning

A straightforward solution to the problem of CIL is to learn classes involved in
the current task with all the classes the model has already learned in the past
tasks. However, this solution is unrealistic because of the considerable training
time and the huge memory space. Experience replay [11] achieves this ideal
solution within a reasonable training time by memorizing only a few exemplars
used in the previous tasks and replaying them while learning the current task.
Thanks to its simplicity and good performance in the CIL setting, experience
replay has been one of the standard methods in CIL to date.

Even if using experience replay, the model is still unstable through the pro-
cess of a CIL scenario and does not perform well for classes in the previous
tasks because the number of memorized exemplars is very limited. For stabil-
ity improvements, many CIL methods [47, 26, 18, 50, 48, 34] employ knowledge
distillation, which preserves the input-output relations the model has already
learned. For instance, while learning the t-th task, the less-forget constraint pro-
posed in [26] forces a model to minimize the distance between its output feature
vector and the one of the latest previous model, which has just finished learning
the (t− 1)-th task.

The other issue involved in experience replay is the class-imbalance problem
between the previous and current tasks. This class-imbalance problem causes
predictions biased toward the classes in the current task [54]. To tackle this
problem, several studies propose the bias correction methods such as the bias
correction layer [54], the normalization of weight vectors in the classification
layer [26, 5, 4, 58], and the imbalance-aware loss functions [1, 30, 41].

2.2 Representation Learning in CIL

A few studies on CIL focus on representation learning of deep neural net-
work models. We categorize them into three groups: contrastive learning meth-
ods [37, 42, 8], meta-learning methods [46, 28, 3], and self-supervised learning
methods [20, 57, 59, 29]. Firstly, contrastive learning methods optimize a model
with respect to supervised contrastive loss [31], which encourages the model
to acquire intra-class concentrated and inter-class separated features. Secondly,
meta-learning methods learn features that accelerate future learning via meta-
learning frameworks [19]. However, due to the nature of the meta-learning frame-
work, each task must be explicitly identified when using the model for predic-
tion. This necessity for task identification leads to the requirements of the addi-
tional task prediction system [46], which should be continually updatable without
forgetting. Thirdly, self-supervised learning methods utilize the self-supervised
learning approaches [36] as with our framework. For instance, the existing stud-
ies [59, 57] use the angle of training data as self-supervision. They optimize one
feature space with respect to original and self-supervised labels. In contrast, our
framework optimizes two kinds of feature space with respect to each label. To
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our best knowledge, DualNet [45] is the most similar method to our framework.
In DualNet, two completely different networks are optimized with each label,
interacting with each other. In contrast to DualNet, our framework works with
a single neural network, so the number of parameters is lower than the one used
in DualNet. We note that DualNet is specialized in online continual learning [2],
which is similar but different to the CIL scenario targeting in our work. There-
fore, we do not compare our framework to DualNet in this paper.

2.3 Self-supervised Learning

Recently, self-supervised learning has been shown effective in learning general
representations without label supervision [12, 23, 14]. The earlier studies propose
the proxy task, e.g., prediction rotations [21], patch permutation [43], image col-
orization [56], and clustering [7], which enables a model to learn the general
representations. More recently, contrastive self-supervised learning has shown
great success [36]. It encourages a model to learn the features that can identify
one view of an image with the other view and distinguish the image from any
other images. For instance, SimCLR [12] produces two types of views by sophis-
ticated data augmentations, and the variants of MoCo [23, 13, 15] introduce a
momentum encoder to produce the different views. The key issue of contrastive
self-supervised learning methods is the necessity of the vast amount of negative
samples. BYOL [22], SimSiam [14], and Barlow Twins [55] are representative
methods that only rely on two distinct views of the same image. In our methods,
we use SimSiam as a self-supervised learning method because of its simplicity
and the unnecessity of negative samples.

3 Problem Setup and Preliminaries

In this section, we firstly introduce the problem setup of CIL and then briefly
describe CIL methods with knowledge distillation, the baseline methods for our
framework. Let {T1, T2, · · · , TN} be a sequence of N tasks. For the t-th task Tt,
there is a training dataset Dt and a memorized exemplar setMt. More specifi-
cally, Dt = {(xi

t, y
i
t)}

nt

i=1 is composed of pairs of an image xi
t ∈ Xt and its corre-

sponding label yit ∈ Yt. The memorized exemplar set Mt = {(xi
mem, y

i
mem)}

M

i=1

is composed of M previously learned instances (xi
mem, y

i
mem) ∈

⋃t−1
j=1Dj . Note

that the label sets of different tasks do not overlap, meaning Yi ∩ Yj = ∅ if
i ̸= j. We consider a deep neural network model with two components: a feature
extractor f and a classifier g. While learning the t-th task, the model updates
its parameters with both the training dataset Dt and the exemplar set Mt to
achieve correct prediction for any instance x ∈

⋃t
j=1 Xj . We refer to the model

that is being updated for the current task Tt as the current model and call its
components the current feature extractor ft and the current classifier gt. Simi-
larly, the model that has already been updated for the task Tt−1 is referred to as
the previous model, whose components are the previous feature extractor ft−1

and classifier gt−1.
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Fig. 1. Illustration of our framework. The feature extractor consists of the attention
modules and convolutional blocks, e.g., Residual blocks. It outputs two feature vectors:
one for the calculation of the self-supervised loss Lssl and the other for the calculation
of the loss term Lcls for classification in addition to knowledge distillation loss Lkdl.
The attention-wise knowledge distillation loss Lattn keeps each attention module stable.
For simplicity, we omit the other network components, e.g., the classifier.

The CIL methods with knowledge distillation optimize parameters with the
loss function defined as:

Lkd = βcls
t Lcls + βkdl

t Lkdl + Lother , (1)

where Lcls, Lkdl, and Lother denote the loss terms for classification, knowledge
distillation, and other purposes, respectively. In addition, βcls

t and βkld
t are the

scalar values that control the impact of each loss term depending on the num-
ber of classes the model learned. The implementation of loss terms depends on
individual CIL methods. For instance, UCIR [26] uses cross-entropy loss as the
loss term Lcls and the cosine distance between output vectors of the previous
and current feature extractors as the loss term Lkdl. However, the fundamental
purpose of the loss terms is the same; Lcls and Lkdl evaluate the classification
performance of the current model and the dissimilarity between the current and
previous models, respectively.

4 Methodology

Fig. 1 shows an overview of our framework combined with CIL methods em-
ploying knowledge distillation. In our framework, the feature extractor outputs
two kinds of feature vectors from an image. One vector derived through convolu-
tional blocks (blue line in Fig. 1) is used for the calculation of the self-supervised
loss Lssl. Through the optimization of the self-supervised loss, the parameters of
convolutional blocks are updated to extract less task-oriented but more general
features. The other vector (red line in Fig. 1) affected by attention modules is
used for the calculation of the loss term for classification Lcls. The optimization
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Fig. 2. The schemas of the original SE block (left) and our modified SE block (right).
In our block, an attention map is generated from the intermediate feature vector vsource

derived from the convolutional blocks. The attention map acts on the other intermedi-
ate feature vector vattn derived from the convolutional blocks and attention modules.

of the loss term Lcls enables the attention modules to transform general repre-
sentations extracted by convolutional blocks into suitable ones for classification.
Moreover, a new knowledge distillation loss Lattn improves the stability of our
transformation mechanism. To sum up, our framework consists of three compo-
nents: representation learning with self-supervision, the transformation mecha-
nism with attention modules, and knowledge distillation for the transformation
mechanism.

4.1 Representation Learning with Self-supervision

To encourage the model to acquire the general representation, we introduce the
loss function used on SimSiam [14]. More specifically, for a training image x,
we first generate two views of the image denoted as ẋ and ẍ through random
data augmentation. Then, we produce the two types of vectors for each view
through the feature extractor ft, the projector projt, and the predictor predt.
More precisely, these vectors are denoted as ṗ = (predt ◦ projt ◦ ft)(ẋ) and
q̇ = (projt ◦ ft)(ẋ), respectively. Finally, we calculate Lssl as below:

Lssl =
1

2
(Dcos(ṗ, stopgrad(q̈)) +Dcos(p̈, stopgrad(q̇))) , (2)

where stopgrad denotes the stop-gradient operation, and Dcos(p, q) denotes the
cosine distance between two vectors p and q. With the optimization of self-
supervised loss Lssl, the parameters of the convolutional layers are updated so
as to extract meaningful features from an image belonging to not only the learned
classes but also the new upcoming classes.

4.2 Attention Module

Thanks to the optimization of self-supervised loss, the representations extracted
from the convolutional layers are general. However, they definitely contain un-
related information to recognize the classes involved in the current and previ-
ous tasks. Thus, we introduce a transformation mechanism that weakens such
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unrelated information and strengthens the useful one for classification. We real-
ize such transformation by introducing the attention module similar to the SE
block [27]. As shown in Fig. 2, we change the original SE block with respect
to the generation process of an attention map and the activation function. This
modification is intended to mitigate the potential stability decrease caused by the
attention modules, enable strengthening of information, and avoid unnecessary
transformations.

The original SE block generates an attention map from an intermediate fea-
ture vector, so the attention map changes with the fluctuation of the intermedi-
ate vector even if the parameters of the SE block do not change while learning
new tasks. In addition, the fluctuation of the intermediate vector further enlarges
due to the multiplication with fluctuated attention map. Such property indicates
that the fluctuation of parameters in a convolutional layer or an SE block could
significantly fluctuate the final output vector even if the parameters of their suc-
ceeding layers do not change. We experimentally confirmed that SE-ResNet [27]
was less stable than ResNet [24], which does not have any attention mechanism
(as for the detailed experimental results, please see the supplementary materi-
als). To mitigate the potential stability decrease, we use the intermediate feature
vector derived through only convolutional blocks for the generation of the atten-
tion map. With this modification, the procedure to generate attention maps in
our SE block is not affected by its proceeding attention modules. Additionally,
we introduce a stop-gradient operation because this gradient could prevent the
optimization with self-supervision.

We alter the activation function from sigmoid function to 1 + tanh(·). This
altered function has two desirable properties which the sigmoid function does
not have. First, the range of 1 + tanh(·) is from 0 to 2, so the attention module
with our activation function can strengthen or weaken the values of intermediate
feature vectors, while the one with a sigmoid function can only weaken the
values. Second, the attention module with the activation function of 1 + tanh(·)
becomes an identity mapping if all the values of its parameters are 0. Owing to
this property, our attention modules can avoid generating unnecessary attention
maps which lead to destructive transformations of general representations.

4.3 Knowledge Distillation for Attention Mechanism

Formally, the l-th attention module generates the attention map alt = 1 +
tanh(hl

t(z
l
t)) by applying the calculation on the FC layers hl

t contained in the
attention module to the pooled intermediate feature vector zlt. In addition, let
alt−1 = 1 + tanh(hl

t−1(z
l
t−1)) be the attention map generated by the l-th at-

tention module in the previous feature extractor, where hl
t−1 is its FC layers

and zlt−1 is the pooled intermediate feature vector derived from its preceding
layers. To stabilize the process of generating attention maps, the input vector
to each attention module should less fluctuate in addition to preserving the
input-output relations defined by each attention module. More specifically, the
pooled intermediate feature vector zlt should be close to the vector zlt−1 derived
through the previous feature extractor, and the l-th attention module should
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preserve its input-output relations. To achieve such preservation, we design the
attention-wise knowledge distillation loss composed of two types of loss terms;
one preserves the input-output relations, and the other prevents the fluctuation
of the intermediate feature vectors.

We implement the loss term for the retention of the input-output relations as
the weighted sum of the distances between the output attention maps generated
by the current and previous attention modules from pooled intermediate feature
vectors zlt and zlt−1. For the l-th attention module, we define the loss term as:

Lmap,l
attn = λmap,new

attn Lmap,new,l
attn + λmap,old

attn Lmap,old,l
attn , (3)

Lmap,new,l
attn = ∥ tanh(hl

t(z
l
t))− tanh(hl

t−1(z
l
t))∥2 , (4)

Lmap,old,l
attn = ∥ tanh(hl

t(z
l
t−1))− tanh(hl

t−1(z
l
t−1))∥2 , (5)

where λmap,new
attn and λmap,old

attn are the hyperparameters controlling the impact of
each distance regularization.

To prevent the fluctuation of the intermediate feature vectors, we minimize
the weighted distance between the intermediate feature vectors derived from the
current and previous feature extractor. Formally, for the l-th attention module,
we define the loss term as:

Lsource,l
attn = λsource

attn ω̂l

∥∥∥zlt − zlt−1

∥∥∥
2
, (6)

ω̂l =
ωl∑L
j=1 ωj

, (7)

where z = z/∥z∥2 denotes the l2-normalized vector, L denotes the number of at-
tention modules, λsource

attn is the hyperparameter controlling the impact of this loss
term, and ωl denotes the weighting factor. We consider the sensitivity to change
in the values of the attention map with respect to change in the source vector
as the weighting factor, which is calculated and updated when each task Tt′ has
been learned as:

ωl ←
1

2

(
ωl + EDt′

[
1

D2

D∑
d=1

D∑
d′=1

∂ tanh(hl
t′(z

l
t′))

2
d

∂(zlt′)d′

])
, (8)

where D denotes the dimension of the source vector. With the introduction of
this weighting factor, the fluctuation of the intermediate feature vector is highly
prevented when it causes a large fluctuation of the corresponding attention map.

To sum up, we define the attention-wise knowledge distillation loss Lattn as:

Lattn =

L∑
l=1

Lmap,l
attn + Lsource,l

attn . (9)

4.4 Overall Loss

When the proposed framework is introduced to CIL methods with knowledge
distillation, the loss function is defined as:

L = βcls
t (αLcls + (1− α)Lssl) + βkdl

t (Lkdl + Lattn) + Lother , (10)
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where α ∈ [0, 1] is the hyperparameter that controls the balance between Lcls and
Lssl. We note that the self-supervised loss Lssl is calculated from two views of an
image generated by complex data augmentation techniques, while the others are
calculated from another view generated by the other simple data augmentation
techniques. The reason why we utilize these two types of data augmentation
is that complex data augmentation is unsuitable for classification learning. We
describe the entire learning process and learning tips in supplementary materials.

5 Experiments

5.1 Experimental Settings

Datasets and task configurations. We employed two image datasets for
our experiments: CIFAR100 [33] and ImageNet100 [16, 26]. CIFAR100 contains
60,000 images of size 32 × 32 from 100 classes, and each class includes 500
training samples and 100 test samples. ImageNet100 is a subset of the original
ImageNet1000 [16] with 100 classes randomly selected from the original one.
According to the common CIL setting [47], the arrangement of all classes was
shuffled with Numpy random seed 1993. We used the first 50 classes for the
first task and the rest for subsequent tasks by dividing them into K sets. We
constructed two kinds of CIL scenarios for each dataset by setting K to 5 and
10. Each CIL scenario is referred to as a K-phase setup.

Baselines. We used the following four knowledge distillation-based methods as
baselines of our framework:

– IL-Baseline [30]: IL-Baseline optimizes the parameters of a model through
the cross-entropy loss and the original knowledge distillation loss [25], which
restricts the output probability of the model from moving.

– UCIR [26]: UCIR introduces cosine normalization in a classification layer
to deal with the class-imbalance problem. Its implementation of knowledge
distillation loss is the cosine similarity between the output vectors of the
previous and current feature extractors.

– PODNet [18]: PODNet constrains the intermediate feature vectors of a fea-
ture extractor in addition to its output vector. In addition, it employs the
local similarity classifier, which is the extended version of the classification
layer used in UCIR.

– BSCE [30]: BSCE has the same learning procedure as IL-Baseline except for
introducing the balanced softmax cross-entropy loss instead of the standard
cross-entropy loss.

The detailed learning procedure of each baseline method is described in sup-
plementary materials. We evaluated all of the methods through the average
incremental accuracy (AIA) [47], defined as the average taken over accuracies of
the model for test data after training for each task.
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Table 1. Average incremental accuracy of four baselines w/ and w/o our framework.
Each result is in the form of the average ± standard deviation obtained from three
independent trials using different random seeds. On ImageNet100, the scores of the
baselines are reported from their respective papers.

CIFAR100 ImageNet100
method 5-phase 10-phase 5-phase 10-phase

IL-Baseline [30] 52.92 ±0.15 43.14 ±0.31 51.52 42.22
w/ Ours 56.49 ±0.20 48.13 ±0.51 61.57 ±0.05 59.13 ±0.09

UCIR [26] 69.29 ±0.15 63.16 ±0.12 70.47 68.09
w/ Ours 71.03 ±0.28 66.24 ±0.42 76.80 ±0.08 76.06 ±0.19

PODNet [18] 68.99 ±0.36 66.64 ±0.15 75.54 74.33
w/ Ours 70.61 ±0.12 69.02 ±0.05 78.05 ±0.19 76.66 ±0.10

BSCE [30] 71.64 ±0.16 64.87 ±0.39 72.57 68.25
w/ Ours 74.09 ±0.24 70.30 ±0.38 74.96 ±0.39 72.32 ±0.23

Implementation details. We used ResNet18 [24] as the CNN backbone. Our
attention modules were attached to residual blocks in a similar manner to the
SE blocks [27]. In addition, we used the same architectures of the projector and
predictor as the ones of SimSiam [14]. All parameters were optimized through
stochastic gradient descent (SGD) with a momentum of 0.9. For the first task
of CIFAR100, the network was trained with 400 epochs using a cosine learning
rate decay for the base learning rate of 0.2 and weight decay of 5e-4. Then, it
was further optimized using the remaining tasks one by one with 200 epochs per
task. For ImageNet100, we set the number of epochs and the base learning rate
to 150 and 0.2 for the first task. For the other tasks, the number of epochs was
set to 90. We adopted 1e-4 as the weight decay for all the tasks of ImageNet100.
For all the experiments, the batch size was set to 128, and the number of ex-
emplars was set to 20 per class. The exemplars were sampled based on the herd
selection method [52, 47]. We employed the same data augmentation technique
used in SimSiam for self-supervised learning, while using image flipping, random
cropping, and color jittering for calculating the loss functions other than the
self-supervised loss. Based on the hyperparameter tuning process in the existing
work [10], we tuned the other hyperparameters through the three-task CIL set-
ting constructed from the training data belonging to the first task. We describe
the detailed hyperparameter tuning process and resulting hyperparameters in
the supplementary materials.

5.2 Main Results

Tab. 1 shows the AIA of four baselines with and without our framework on
CIFAR100 and ImageNet100. As shown in Tab. 1, our framework increases the
AIA of all baselines on every dataset and setup. More precisely, the minimum
increase of AIA is 1.62 points, and the maximum is 5.43 points on CIFAR100.
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Fig. 3. The curve of accuracy over the classes on CIFAR100 (left: 5-phase, right: 10-
phase). Each point indicates the average accuracy obtained from three independent
trials using different random seeds.

Table 2. Three types of the average accuracies of BSCE with a part of our framework
on CIFAR100 under the 5-phase setup. The first three columns indicate whether self-
supervised learning, attention mechanism, and attention-wise knowledge distillation are
introduced, respectively. Each result is in the form of the average ± standard deviation
obtained from three independent trials using different random seeds.

SSL AM AwKD AIA Avg. Acc. Avg. Acc.
(the first task) (the new tasks)

71.64 ±0.16 68.94 ±0.50 78.26 ±0.18

✓ 71.76 ±0.53 68.68 ±1.02 76.78 ±0.21

✓ 70.34 ±0.14 66.30 ±0.43 79.16 ±0.22

✓ ✓ 71.32 ±0.43 67.23 ±0.33 78.74 ±0.48

✓ ✓ 72.54 ±0.51 73.11 ±0.45 72.48 ±1.17

✓ ✓ ✓ 74.09 ±0.24 74.17 ±0.57 74.35 ±0.20

On ImageNet100, the increase of AIA is from 2.33 to 16.91 points. This common
tendency of increase in AIA indicates the high flexibility of our framework. We
also show the curve of accuracy over the classes on CIFAR100 in Fig. 3. As
shown in Fig. 3, our framework consistently exceeds the accuracy of any baseline
method. This result implies that the increase in AIA is not by chance.

5.3 Ablation Study

In this section, we present the results of several ablation experiments to clarify
the effect of our framework. We report the AIA on CIFAR100 with the 5-phase
setup in all the ablation experiments. Following the existing work [18], we use
the average accuracy on the first task and the one on the new tasks as the
additional evaluation metrics to analyze the effect of our framework in detail.
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Table 3. Three types of the average accuracies on CIFAR100 with the 5-phase setup
for different implementations of the transformation mechanism. “Original” means the
implementation of the transformation mechanism is the original SE block, and “Ours”
means the implementation is our modified SE block. The second column denotes
whether attention-wise knowledge distillation is introduced. Note that all the methods
optimize a model through the learning procedure of BSCE and self-supervision. Each
result is in the form of the average ± standard deviation obtained from three indepen-
dent trials using different random seeds.

AM AwKD AIA Avg. Acc. Avg. Acc.
(the first task) (the new tasks)

Original 71.09 ±0.23 67.13 ±0.50 77.20 ±0.10

Ours 71.32 ±0.43 67.23 ±0.33 78.74 ±0.48

Original ✓ 72.99 ±0.34 72.98 ±0.66 71.62 ±0.51

Ours ✓ 74.09 ±0.24 74.17 ±0.57 74.35 ±0.20

Intuitively, the former accuracy gets a high value if the model is stable without
the influence of forgetting, while the latter gets high if the model is plastic
enough to learn the new tasks. We give the definition of each additional metric
in supplementary materials. The baseline method is BSCE because it shows the
highest AIA on CIFAR100 with the 5-phase setup regardless of whether our
framework is introduced.

First, we verify the effect of the components of our framework, namely, self-
supervised learning, attention mechanism, and attention-wise knowledge distil-
lation. Tab. 2 shows the scores of the three evaluation metrics for the six types
of methods that differ with the existence of each component. We summarize the
comparing results as follows:

– The results on the first two rows show that self-supervised learning only
increases AIA slightly (71.64 to 71.76) when the self-supervised loss is simply
added as with the existing work [57].

– From the comparison between the results on the first and third rows, we
can confirm that the attention mechanism boosts the accuracy for the new
tasks while decreasing the accuracy for the first task and AIA. The results on
the second and fourth rows indicate that the same tendency appears when
introducing self-supervised learning.

– Even if self-supervised learning is not introduced (the fifth row), its AIA is
higher than the baseline (the first row), however, the difference is only 0.9
points because of the low accuracy for the new tasks.

– Our framework (the sixth row) increases the AIA of the baseline by 2.45
points by improving the accuracy for the first task while mitigating the
decrease in the accuracy for the new tasks.

The above findings suggest that the increase of AIA with our framework results
from the synergistic effect of the components, but not from an independent one
of each component.
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Table 4. Three types of average accuracies on CIFAR100 with the 5-phase setup for
different implementation of attention-wise knowledge distillation when the baseline
method is BSCE. In the first column, “None”, “w/o weight”, and “w/ weight” mean
the loss term Lsource,l

attn is not introduced, introduced without weighting, and introduced
with weighting, respectively. The second column denotes whether the loss term Lmap,l

attn

is introduced. Each result is in the form of the average ± standard deviation obtained
from three independent trials using different random seeds.

Source Map AIA Avg. Acc. Avg. Acc.
(the first task) (the new tasks)

None 71.32 ±0.43 67.23 ±0.33 78.74 ±0.48

w/o weight 73.57 ±0.35 73.99 ±0.35 72.52 ±0.35

w/ weight 73.68 ±0.36 74.04 ±0.47 72.61 ±0.47

None ✓ 71.46 ±0.22 67.50 ±0.32 78.09 ±0.17

w/o weight ✓ 73.84 ±0.24 74.31 ±0.18 72.55 ±0.46

w/ weight ✓ 74.09 ±0.24 74.17 ±0.57 74.35 ±0.20

Next, we compare the original SE block [27] and our modified SE block to
clarify the effect of our modification on the transformation mechanism. Tab. 3
shows the scores of the three evaluation metrics for the methods whose trans-
formation mechanism is implemented by the original SE block or our modified
SE block. Without attention-wise knowledge distillation (the first and second
rows), AIA slightly increases (71.09 to 71.32) with our modification of the SE
block. However, with attention-wise knowledge distillation (the last two rows),
the increase of AIA by our modification becomes 1.10 points. In addition, the
accuracy for the first task and the one for the new tasks both increase through
the modification of the transformation mechanism. These results indicate that
our modification only has a negligible impact on the performance of the model
if the attention-wise knowledge distillation is not applied, however, the impact
becomes relatively large when it is introduced.

Finally, we clarify the effect of the attention-wise knowledge distillation loss
by the comparing results in Tab. 4. From the result on the first three rows, we
can verify that the constraints on the input vector to the attention modules
imposed by the loss term Lsource,l

attn increase AIA by improving the stability of a
model, whether with or without weighting. The effect of weighting is very limited
without the loss term Lmap,l

attn . Similarly, the comparison between the results on

the first and fourth rows shows that introducing the loss term Lmap,l
attn increases

AIA by only 0.14 points when the loss term Lsource,l
attn is not employed. However,

when the weighting and the loss term Lmap,l
attn are introduced (the sixth row),

the accuracy for the new tasks is 2.17 points higher than the accuracy of the
method employing only the loss term Lsource,l

attn without weighting (the second

row). Thus, introducing the weighting and the loss term Lmap,l
attn is effective in

improving the plasticity of a model. This is because they control the power of
constraints for each attention module. In fact, the weighting procedure controls
the power of the constraints on the input vector to each attention module. In
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Table 5.Average incremental accuracy and the last accuracy (LA) of Co2L w/ and w/o
our framework on CIFAR10 [33] with 200 exemplars. The experimental configurations
are all the same as the ones described in the original paper [8]. Each result is in the
form of the average ± standard deviation obtained from three independent trials using
different random seeds.

method AIA LA

Co2L 79.17 ±0.15 64.46 ±0.33

w/ Ours 80.69 ±0.21 66.76 ±0.79

addition, the constraints imposed by the loss term Lmap,l
attn affect the parameter

of each attention module only when its input-output relation changes. Such
selective constraint strongly regularizes a part of the parameters, which means
the other parameters are relatively free to adapt to new tasks.

5.4 The Effect on Contrastive Learning Methods

To show the effect on the contrastive learning methods, we conducted the com-
parative experiment using Co2L [8] as the baseline method, which learned clas-
sification through the supervised contrastive loss. We followed the experimental
settings reported in the original paper [8] on CIFAR10 [33] with 200 exemplars.
Tab. 5 shows the results in AIA and the last accuracy (LA), the accuracy of a
model having learned all the tasks. Note that we compare the methods in terms
of LA because it is the evaluation metric in [8]. The experimental results show
that our framework increases AIA by 1.52 points and LA by 2.3 points. This
indicates that our framework can improve the performance of not only methods
that learn classification with the cross-entropy loss but also those which learn it
with supervised contrastive loss.

6 Conclusion

In this paper, we proposed a novel CIL framework that incorporates the rep-
resentation learning with self-supervision, the transformation mechanism with
attention modules, and the attention-wise knowledge distillation. We empirically
confirmed our framework can improve the average incremental accuracy of four
types of knowledge distillation-based methods using benchmark datasets. In ad-
dition, we showed that our framework can also improve the average incremental
accuracy and the last accuracy of Co2L, a contrastive learning method. These
results assure the high generality of our framework. For future work, we plan
to verify the effect of our framework in the other continual learning scenarios,
including the CIL scenario without any exemplar [53], few-shot CIL [51], and
online continual learning [2].
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