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Abstract. In object detection, data amount and cost are a trade-off,
and collecting a large amount of data in a specific domain is labor-
intensive. Therefore, existing large-scale datasets are used for pre-training.
However, conventional transfer learning and domain adaptation cannot
bridge the domain gap when the target domain differs significantly from
the source domain. We propose a data synthesis method that can solve
the large domain gap problem. In this method, a part of the target image
is pasted onto the source image, and the position of the pasted region
is aligned by utilizing the information of the object bounding box. In
addition, we introduce adversarial learning to discriminate whether the
original or the pasted regions. The proposed method trains on a large
number of source images and a few target domain images. The proposed
method achieves higher accuracy than conventional methods in a very
different domain problem setting, where RGB images are the source do-
main, and thermal infrared images are the target domain. Similarly, the
proposed method achieves higher accuracy in the cases of simulation
images to real images.

Keywords: Object detection · Domain adaptation · Few-shot learning.

1 Introduction

Systems used in various environments throughout the day, such as autonomous
driving and surveillance robots, are being put to practical use. These systems
require high accuracy throughout the day. Infrared cameras can capture visi-
ble images even in such situations, and they can robustly detect objects. To
achieve high accuracy, object detection models require a large amount of labeled
training data. It is easy to use a large amount of labeled training data of RGB im-
ages [24,7,22,34,20,4]. However, most of the images are captured using an RGB
camera, and a few images are captured using an infrared camera (hereinafter
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infrared images). Therefore, to achieve high accuracy, detection models need to
train with a few labeled infrared images.

One of the methods for training high accuracy detection model is transfer
learning using pre-trained model trained with RGB images. However, it is diffi-
cult to improve the accuracy if the domain gap between RGB and infrared images
is large [30,40]. This phenomenon, called negative transfer, occurred under the
large domain gap between the training images for pre-trained model and the ones
for fine-tuning model. As one of the conventional methods for overcoming the
domain gap, there are style transformation methods such as CycleGAN [51,33].
GAN-based style transformations can easily convert between images with similar
spectra. However, the style transformation is difficult when the spectral distribu-
tions are significantly different, such as in RGB and infrared images. A method
using GRL [29,2,8] is proposed as a training method for domain adaptation in
the feature space. However, if the spectral distributions between the input images
are significantly different, it is difficult to align the distributions of different do-
mains because the feature distributions are extremely different. The methods for
training features that interpolate between two images are as follows: Mixup [46],
BC-learning [37], CutMix [45], and CutDepth [16]. These methods train features
located between two images by mixing the two images or by replacing a portion
of the image with the other image. These data augmentation methods synthesize
features with a mixture of different domains.

We propose a few shot adaptive object detection with cross-domain CutMix.
We take advantage of the fact that data augmentation can reduce the domain
gap by mixing features of domains with a large domain gap. Our method enables
highly accurate object detection even for a few annotated infrared images based
on a pre-trained model of RGB images. We paste a part of one domain’s image
onto a part of another domain’s image, such as CutMix, because we overcome
large domain gap. Particularly, in object detection task, the size of detection
targets is smaller than that of the background. Therefore, to perform domain
adaptation of small detection object, we cut out the detection object and paste
it onto the other domain instead of randomly cutting out the image. Even if
there is a significant difference in appearance between domains, the features of
the detected objects between domains are trained to be similar to each other.

Additionally, we adapt the domain using feature-based adversarial learning.
In conventional methods, the discriminator of the domain identification label
does not change during training. However, the domain identification label also
needs to change the label according to the pasted area because our CutMix-based
method changes the pasting area during training. The conventional domain iden-
tification label cannot be used by pasting an image of another domain. Therefore,
the domain identification label should be the same domain label as the input
image to which the image of another domain is pasted. Since the correct domain
label can be assigned according to the pasting position of the object, feature-
level domain alignment can be performed even when the input image is changed,
as in the proposed method.
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Our contributions are as follows: we propose a few shot adaptive object de-
tection with cross-domain CutMix so that we can adapt the domain, which
looks significantly different. Furthermore, we propose an input image synthesiz-
ing method based on CutMix for cross-domains and domain identification label
in discriminator for that. Through experiments, we show the effectiveness of
the proposed method using RGB images as a pre-trained model and data from
multiple domains such as RGB and thermal infrared images.

2 Related Work

2.1 Object Detection for Each Domain

Most object detection methods have been studied for RGB images [26,18,41].
These methods can be roughly divided into two-stage and one-stage detection
methods. R-CNN and its extended technologies [11,10,32] represent the two-
stage methods. YOLO [31], SSD (Single Shot Multi-box Detector) [27], and
their extended technologies represent the one-stage methods. Additionally, ob-
ject detection techniques that use transformer have been proposed [6,3,52,44,28],
and they are expected that it will be applied to various environments.

There is research on applications in the real environment such as robots [19,36],
drones [13,42], object detection for in-vehicle cameras [23,49], and license plate
detection [43]. Many datasets [24,7,22,34,20,4] that can be used to train object
detection are available to the public. The night scenes on these datasets are fewer
than daytime scenes. Furthermore, visibility is poor because the pixel value of
the subject in the RGB image captured at night is small. Thus, it is difficult to
achieve high detection performance using RGB images both day and night.

Highly accurate object detection with in-vehicle cameras and outdoor drones
is required for both day and night. Some methods for detecting objects using
spectra information other than RGB images were proposed to detect objects with
high accuracy on both day and night. Lu et al. [47] proposed object detection
using RGB and infrared images in the framework of weakly supervised learning.
This method focuses on the use of multispectral information, and it detects
objects using a roughly aligned RGB image and an infrared image. Liu et al. [25]
and Konig et al. [21] proposed methods for inputting RGB and thermal infrared
images into a deep learning model and fusing their features. Highly accurate
object detection is possible under various lighting conditions using RGB and
infrared images simultaneously. These methods are algorithms that assume that
there are numerous RGB and infrared images. Thus, they can be used if the RGB
and the infrared images can be photographed in large quantities and annotated
in the same environment as the inference scene. However, the cost of collecting
data and annotating in each application environment is high in reality.

2.2 Knowledge Transfer to Different Domain

To reduce the cost of preparing infrared images and training high accurate object
detection models, domain adaptation and transfer learning use a pre-trained
model with a small number of labeled infrared and RGB images.
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Akkaya et al. [1] proposed unsupervised domain adaptation between a model
taken from numerous RGB and thermal infrared images for image classification.
Vibashan et al. [38] used paired RGB and thermal infrared images to perform
domain adaptation for object detection. When only the recognized object is
displayed as in the image classification, the domains of both the difference in
the sensor and shooting scene can be applied. However, when the background
area without objects occupies a large area in object detection, it is difficult to
adapt the domain of both the sensor difference and the shooting scene difference
without using a pair of datasets. Thus, it is still a problem to adapt between
different sensors and scenes for object detection.

There is a knowledge transfer method, which is by fine-tuning infrared im-
ages, using a model trained with RGB images as pre-trained model. For fine-
tuning to be effective, the feature of training data between source domain and
target domain must be similar. RGB and infrared images have extremely differ-
ent spectrum to be imaged, and they look very different even if they have the
same object and color. Negative transfer [30,40] occurs because of the difference
in the distribution of these data. Therefore, knowledge transfer using a small
number of labeled infrared images is difficult. In both domain adaptation and
fine-tuning, the key to improving performance is transferring knowledge while
making the differences between domains closer.

3 Proposed Method

3.1 Overview

In this paper, we propose high-accuracy object detection on infrared images
using a large number of labeled RGB images and a small number of labeled
infrared images. RGB and infrared images receive different spectra; thus, there
is a significant difference in appearance, which is a large gap between domains.
Therefore, we not only align the gaps between domains at the feature level using
methods such as adversarial learning but also explicitly reduce the gaps between
domains at the image level. This improves the accuracy of domain adaptation by
converting the input image to conditions that make it adapt the domain easier.

We propose Object aware Cross-Domain CutMix (OCDC) and OCDC-based
Discriminator Label (OCDCDL) based on the domain for each location. Figure
1 shows our proposed framework. We explain the outline of the proposed method
using the model of the domain adaptation method based on adversarial learning
proposed by Han-Kai et al. [14] as an example. This method trais using the
loss of both object detection and adversarial learning to reduce the difference
between domains. This proposed method is simple and easy to incorporate into
the type of domain adaptation that uses adversarial learning in object detection
problems, which uses few labeled images.

OCDC (Fig. 1 (a)) is a method for cutting out an object area and pasting
a part of the image between domains to reduce the gap between the source and
the target domains. Zhou et al. showed that there is a domain generalization
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Fig. 1: The framework of our proposed method; (a) OCDC mitigates the image-
level domain gap by cutting out the object area and pasting them in each other
domain. (b) We adaptively determine the domain identification label based on
the area pasted by the OCDC. The pasted object, which serve areas as new
ground truth, are input into the detection network, and the detection and the
adversarial losses are calculated.

effect by mixing images with different domains in a batch [50]. Inspired by that
study, we focused on mixing object units, which is important for object detection.
When the entire image is mixed, it is trained to reduce the distance between the
background domains that occupy most of the image. In the proposed method, the
distance between domains is emphasized rather than the background features,
so the object detection performance is expected to improve.

OCDCDL (Fig. 1 (b)) is a method for adaptively changing the domain label
of the discriminator based on the pasting position of other domain images. By
converting the input image using OCDC, the domain identification label is no
longer one value. The output feature using the input image includes information
from multiple domains by pasting an image of another domain on the input
image using OCDC. Thus, the conventional single identification label cannot
correctly discriminate the domain. By adaptively changing the label based on
the OCDC, the discriminator makes it possible to discriminate the domain even
if there is information on different domains in the image.

3.2 Object aware Cross-Domain CutMix (OCDC)

For domain adaptation to data with a large gap between domains such as RGB
and infrared images, we propose a method of aligning domains at the image
level in addition to the conventional method of aligning domains using features.
A method based on data augmentation called DomainMix augmentation [39]
was proposed: as a method for reducing the domain gap at the image level. This
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method reduces the difference in appearance between images by simply con-
necting different domains without using a deep generative model. Mixup [46],
BC-learning [37], CutMix [45], and CutDepth [16] are data augmentation meth-
ods to be mixed at the image level. These studies mention that mixing images
can generate features that interpolate two images. By mixing them at the image
level, the features between the domains in the input image can be brought closer
to each other.

However, the background area without objects occupies most of the image,
and the objects that should align the domains are only part of the image. Thus,
in Mixup or CutMix, which uses the entire image or mixes random regions,
respectively, the gap in the background domain is small, but the gap in the
domain of the object to be detected is not always small. Therefore, we propose
an OCDC to cut out the object area existing in one domain and paste it onto
the other domain. The domain gap is reduced at the image level by cutting out
the object area from the source and target and pasting them together.

The pasting process is performed for each training iteration. The images of
the source domain and that of the target domain included in the batch are used.
The object to be detected is cut out from those images based on the ground truth
coordinates. The object image cut out from the image of the source domain is
pasted onto the image of the target domain selected at random. On the other
hand, the image cut out from the object image of the target domain is pasted
onto the image of the source domain selected at random. The ground truth labels
for detection loss are updated by adding the ground truth label of the pasted
image of another domain to that of the image where the image of another domain
is pasted.

If the object images are pasted while the objects already exist, the origi-
nally existing objects will be hidden. The loss of object detection becomes large
because it is difficult to detect such hidden objects. Therefore, we decide the
pasting position of the image based on the overlap between the image to be
pasted and the object of the image to which the object image is pasted. If the
area where the object is hidden increases more than a certain percentage after
pasting the image, the pasting position is reselected when deciding the pasting
position. This prevents the original object from being hidden after pasting.

Additionally, to train the position and label of an object, the object detection
model pastes an object image to a real-world location. For example, if the domain
is adapted between the images of the in-vehicle camera, which is installed at
almost the same position, the coordinates before and after pasting do not change
significantly. Alternatively, the object image is pasted at the same position as
the position before pasting or at a slightly shifted position.

The domain adaptation for object detection that has been used so far has
insufficient consideration for object detection. On the other hand, our method
using cutting out the position of objects is a new point of view that the domain
gap of the object to be recognized can be reduced. In addition, we argue that it
causes problems in adversarial learning and propose a solution. In the following
subsections, each proposed method is explained concretely.
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3.3 OCDC-based Discriminator Label (OCDCDL)

In domain adaptation using adversarial learning such as a method [14], features
calculated from the source or target domains are input into the discriminator.
In our proposed OCDC, the information of another domain is included in a part
of the feature because the image of another domain is pasted on the part of
the input image. Therefore, when one value is used for the domain identification
label of the discriminator as in the conventional method, the loss of the area
where the image of another domain is pasted cannot be calculated correctly.

The discriminator is trained so that neither of the two domains can be dis-
criminated. We append the discriminator D after the backbone F . The input
image of the source domain and the target domain are IS and IT , respectively.
D outptus a domain prediction map of each pixel D(·)h,w. The source domain
identification label and target domain identification label are d = 0 and d = 1,
respectively. Eq. 1 is a adversarial loss Ladv and Eq. 2 is an overall loss L.

Ladv(F (I)) = −Σh,w[d logD(F (I))h,w + (1− d) log(1−D(F (I))h,w)], (1)

min
F

max
D

L(IS , IT ) = Ldet(IS)+Ldet(IT )+λadv[Ladv(F (IS))+Ladv(F (IT ))], (2)

where Ldet(·) is the detection loss, and λadv is a weight that determines the loss
balance. We set λdisc is 0.1 in our experiments.

However, because the features near the boundary of the area where the object
of another domain is pasted using OCDC are a mixture of the features of the two
domains, it is difficult to distinguish which domain is near this boundary. Thus,
the loss near the boundary of the trained discriminator is smaller than that in
other regions. However, information from different domains is rarely mixed at
a position far from the boundary of the pasted object. Therefore, the loss of
discriminator in the feature is large in that area.

Furthermore, we adaptively determine the domain identification label based
on the position and domain of the image pasted by OCDC. After the pasting
process, the RGB domain label is replaced with the domain identification label
corresponding to the infrared image region, and the infrared domain label is
replaced with the domain identification label corresponding to the RGB image
region.

4 Experiments

We evaluate the effectiveness of the proposed methods using RGB images [20,5]
and thermal infrared images [12,15] with a large domain gap. In these experi-
ments, there are differences in both the spectrum and the captured scene. We
compare the performance with a large amount of RGB images and a small
amount of thermal infrared images. All datasets are labeled. Additionally, to
verify the generalization performance of the proposed method, we evaluate the
performance using real images [4] and simulation images [17].
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4.1 Comparison Methods

We explain the comparison method used for each experimental setting. In our
experiment, images of the target domain are used for evaluation. Source-only
and target-only labels in the tables of experimental results show the evaluation
results when the model is trained using only the image of the source or target
domains, respectively. The fine-tuning label shows the results using a pre-trained
model and fine-tuning using target domain data. The target samples label shows
the number of target domain data using fine-tuning. The Domain-Adversarial
Training of Neural Networks (DANN) [9], one of the adversarial learning meth-
ods, is used as the baseline of the adversarial learning method. DANN label
shows the detection results using domain adaptation with DANN. We use Faster
R-CNN [32] as the detection network and VGG16 [35] for the backbone. In do-
main adaptation, the model parameters are pre-trained in the source domain.
The height size is 600 of the image resolution, but if the maximum width size
is more than 1,000, we set it to 1,000 while maintaining the aspect ratio. Ours
label shows the result using the proposed method, which uses the OCDC and
OCDCDL. The optimizer is SGD; the learning rate, the weight decay, and the
momentum are 0.001, 0.0005, and 0.9, respectively. The batch size is one. The
evaluation metrics are the average precision at an intersection over union (IoU),
which threshold is 0.5. The front of the arrow indicates the source domain, and
the tip of the arrow indicates the target domain. The results of each experiment
are shown in Table 1.

BDD100k → FLIR: The BDD100k dataset [20] is collected based on six
types of weather conditions, six different scenes, and three categories of time of
data; the number of images is 100,000. This dataset is annotated in ten cate-
gories. FLIR ADAS dataset [12] is an image captured by a FLIR Tau2 camera,
and the number of images is 10,228. Only thermal infrared images from this
dataset are used. In our experiment, the training data includes 36,728 images la-
beled as daytime from the BDD100k dataset as the source domain data and 8,862
thermal infrared images used as training splits from the FLIR ADAS dataset.
The categories person, bicycle, and car, which are common categories.

The detection accuracy of source-only is the lowest because this does not
use knowledge of the target domain. In target-only, mAP is 72.1 % using all
target data named Full. However, performances considerably deteriorates when
the amount of data decreased. In fine-tuning, performances are higher than the
performances of target-only because fine-tuning models had a knowledge that
performance improves somewhat even in different domains. The performances of
DANN are higher than fine-tuning because of the effects of domain adaptation.
There is no significant performance degradation due to negative transfer, but the
effect of domain adaptation can be confirmed. The performances of the proposed
method tend to improve overall, but in particular, the performance of the person
label outperformed DANN.

When the target samples are Full, the number of each object is large, so
even if the object areas are small, there are enough numbers to improve the
performance by domain adaptation. However, in the case of Full, there is only
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Table 1: Results on BDD100k → FLIR, Caltech → KAIST, and SIM10K →
Cityscapes

Method Target Samples FLIR KAIST Cityscapes
Person Bicycle Car mAP Person Car

Source-only — 39.9 24.9 68.2 44.4 2.8 43.1
Full 74.2 57.9 84.1 72.1 67.0 60.3
1/2 71.5 56.0 82.3 69.9 67.6 58.1
1/4 66.7 48.7 78.5 64.6 63.0 54.3

Target-only 1/8 61.4 41.4 75.4 59.4 58.7 52.0
1/16 57.0 42.5 71.8 57.1 57.1 48.3
1/32 51.3 34.9 67.3 51.2 51.3 45.2
1/64 44.4 32.0 63.6 46.7 47.4 41.1
Full 75.0 60.5 86.3 73.9 63.4 58.1
1/2 74.8 58.3 86.1 73.1 63.4 58.1
1/4 72.4 53.1 85.4 70.1 63.5 57.8

Fine-tuning 1/8 69.1 47.8 82.9 66.6 63.2 56.8
1/16 64.6 45.4 79.5 63.2 61.7 55.7
1/32 65.9 46.7 83.3 65.3 59.5 52.5
1/64 64.5 41.2 82.0 62.6 57.1 49.8
Full 78.1 63.8 87.0 76.3 69.4 62.0
1/2 77.6 63.1 87.2 76.0 71.7 61.0
1/4 75.2 56.5 86.2 72.6 70.4 58.6

DANN 1/8 72.4 58.8 84.5 71.9 69.1 59.6
1/16 70.6 55.8 83.8 70.1 66.9 55.2
1/32 69.4 53.8 82.3 68.5 57.0 54.1
1/64 67.7 51.8 81.9 67.1 54.5 52.3
Full 77.8 63.5 86.9 76.1 68.4 63.6
1/2 78.3 62.6 87.2 76.1 73.3 61.8
1/4 76.9 59.9 86.9 74.5 72.4 60.0

Ours 1/8 75.4 60.9 85.7 74.0 69.7 59.6
1/16 72.2 57.9 84.5 71.5 67.5 57.4
1/32 71.1 53.8 82.0 69.3 59.1 56.5
1/64 68.5 51.6 82.3 67.5 57.1 54.2

a difference of 0.3 points, so the conventional domain adaptation does not have
a difference drastically. In particular, in this experimental result, it should be
noted that the target samples, which are our targets, are smaller than 1/2,
rather than the detection result of Full. Under these conditions, the our method
has higher performance than the conventional method in almost all cases. We
confirmed about 4 point improvements over DANN even if there is a few data.
For example, if we consider person label, this is because the percentage of people
in the dataset was high, and the overall percentage of pasting person’s images
onto another domain based on the input image was high.

Caltech → KAIST: The Caltech Pedestrian dataset [5] is a dataset that
contains labeled images of pedestrians captured using an in-vehicle camera.
42,782 images from this dataset are used for the images. The KAIST Multi-
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spectral Pedestrian dataset [15] is a dataset captured using the FLIR A35 mi-
crobolometer LWIR camera and contains 95,000 images labeled for pedestrians.
The thermal infrared image of this dataset is used. In KAIST, 7,688 thermal in-
frared images are used for training, and 2,252 thermal infrared images are used
for testing. This is based on the procedure in the paper [48]. In this experiment,
only person is used as the category.

Source-only detection accuracy is extremely low because the appearance of
RGB and thermal infrared images differs significantly. Target-only and fine-
tuning detection accuracy deteriorated as the target sample decreased, as demon-
strated in the FLIR experiment. Particularly, fine-tuning detection accuracy was
lower than target-only detection accuracy by pre-training in the source domain.
However, the performance degradation is suppressed when the target samples de-
crease. DANN and the proposed method perform better than target-only when
there are many target samples. Performance is higher than fine-tuning when
the number of samples decreased. The proposed method showed more than two
points higher performance than DANN when target samples are 1/32 and 1/64.
This experiment shows that the proposed method is more effective in single-
class object detection than in multi-class object detection. In single-class object
detection, when an image of another domain is pasted on an image of another
domain, the image is rarely pasted to the detected object. Therefore, few oc-
clusion problems due to pasting occurred in the BDD100k → FLIR experiment.
Since the proposed method has a remarkable effect when the number of targets
is small, it is expected to be effective in applications that are often used, such
as pedestrian detection.

SIM10K → Cityscapes: The SIM10K dataset [17] is a composite of 10,000
images generated by the Grand Theft Auto (GTA) game engine and is annotated
with cars and other similar images. The Cityscapes dataset [4] consists of real
images captured in multiple urban areas and segmentation labels. We used the
circumscribed rectangle of the object segmentation label as the bounding box for
evaluation in the car categories. Furthermore, we used 10,000 composite images
from SIM10K as a training set. Note that 2,975 images, which are training
splits from Cityscapes, are used as training data, and 500 images, which are
validation splits, are used as evaluation data. The evaluation is performed using
the common category of car.

Similar to the previous results, the source-only detection accuracy is the
lowest. If the target domain detection accuracy has a large amount of data, the
target-only detection performance is high, but when the amount of data is small,
the performance is significantly reduced. Fine-tuning detection accuracy reduces
performance degradation when the amount of data is small. However, when the
amount of data is small, the performance of DANN improves, so the effect of
domain adaptation can be confirmed. When the target samples were 1/8, the
proposed method and DANN had the same accuracy. Cityscapes are in-vehicle
camera images, and the size of the car in the image is much larger than that of a
person. Therefore, even if the number of data is reduced a little, the vehicle area
can be used for domain adaptation in the same area as the background, so the
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accuracy is not so decrease. In this experiment, we confirmed that the proposed
method is effective not only for domain adaptation between RGB and infrared
images but also for conventional problem settings. This experiment showed that
the proposed method is a general-purpose technique that can be used in various
source and target data domains.

4.2 Ablation Study

This section shows the comparison results under different experimental condi-
tions. In either case, a comparison is made under the evaluation conditions of
BDD → FLIR.

Contribution of Components: We evaluate the effect of OCDC and OCD-
CDL. Table 2 shows the results. For Person, the method using both OCDC and
OCDCDL had high performance. On the other hand, Bicycle and Car have high
performance even with OCDC alone. Our experiment do not consider labels
near the boundaries of objects. Thus, even if a person with a small area makes a
mistake in the discriminator label near the object boundary, the effect on detec-
tion accuracy is small. However, Bicycle and Car have a large area. Therefore,
the performance decrease if the discriminator label near the object boundary is
mistaken. However, in comparison with mAP, our proposed methods have the
highest accuracy and effectiveness.

Region Selection Strategies: We compare the accuracy of whether the
pasting position and scale are the same before and after pasting in OCDC.
Table 3 shows the experimental results. A fixed label indicates position or scale
are the same before and after pasting, and a random label indicates that the
position and scale are set randomly. The detection accuracy in many cases is
higher if the same position is maintained before and after pasting. For example,
in the case of an in-vehicle camera, objects are concentrated on the lower side of
the image. The object detection model trains a set of the position and the class.
To train the relationship between the position and the class, which is unlikely to
occur, does not have a positive effect on the inference result. In our experiment,
by making the pasting position and size the same, the detection model is able
to train the positions and scales that are likely to occur during inference.

4.3 Qualitative Results

Figure 2 is object detection results of FLIR, KAIST, and Cityscapes after domain
adaptation performed in subsection 4.1. At the top of each dataset is the result
when target samples is 1/16, and at the bottom of each dataset is the result
when it is 1/64. The comparison methods are (a) fine-tuning, (b) DANN, and
(c) Ours, respectively, and (d) Ground Truth. The car detection result is shown
in magenta, and the person detection result is shown in cyan.

In the FLIR results, there is no difference in the car detection results, but
there is a difference in the person detection results. In fine-tuning and DANN,
even people with similar reflection intensities in thermal infrared images are not
detected. On the other hand, the proposed method detects objects with similar
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Table 2: Results on contribution of components
Target Samples OCDC OCDCDL Person Bicycle Car mAP

78.1 63.8 87.0 76.3
Full ✓ 77.8 63.2 86.9 76.0

✓ ✓ 77.8 63.5 86.9 76.1
77.6 63.1 87.2 76.0

1/2 ✓ 78.2 63.2 87.4 76.3
✓ ✓ 78.3 62.6 87.2 76.1

75.2 56.5 86.2 72.6
1/4 ✓ 76.7 61.9 86.8 75.1

✓ ✓ 76.9 59.9 86.9 74.5
72.4 58.8 84.5 71.9

1/8 ✓ 74.4 58.5 85.5 72.8
✓ ✓ 75.4 60.9 85.7 74.0

70.6 55.8 83.8 70.1
1/16 ✓ 72.1 54.9 84.9 70.6

✓ ✓ 72.2 57.9 84.5 71.5
69.4 53.8 82.3 68.5

1/32 ✓ 71.0 54.0 82.6 69.2
✓ ✓ 71.1 53.8 82.0 69.3

67.7 51.8 81.9 67.1
1/64 ✓ 68.1 52.5 81.8 67.5

✓ ✓ 68.5 51.6 82.3 67.5

reflection intensities, even if they are people far away. The proposed method
adapted the domain to information about the reflection intensity of persons,
which is a small area in the image. On the other hand, the conventional methods
did not fully adapt the domain, so some objects could not be detected.

In the KAIST results, the conventional methods did not detect some small
persons. In domain adaptation, it is difficult to adapt information on small ob-
jects because even if the information in a small object is ignored, the loss of
the detection model decreases. However, the proposed method makes it easier
to detect even small objects by explicitly giving information from other domains
to the input image.

In the Cityscapes results, in both 1/16 and 1/64, the farthest car on the left
side was not detected by conventional methods, but the proposed method could
detect the car. This is because it is difficult to adapt the domain of a small
object, which is the same reason as in the case of KAIST. In this experiment, we
clarified the importance of explicitly giving information of other domains to the
input image in domain adaptation of small objects as in the proposed method.
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Table 3: Results on region selection strategies
Target Samples Position Scaling Person Bicycle Car mAP

Full

Fixed Fixed 77.8 63.5 86.9 76.1
Fixed Random 77.9 62.8 87.0 75.9

Random Fixed 76.0 62.5 86.5 75.0
Random Random 76.4 62.2 86.6 75.0

1/2

Fixed Fixed 78.3 62.6 87.2 76.1
Fixed Random 78.3 63.4 87.4 76.4

Random Fixed 77.2 62.5 87.0 75.5
Random Random 77.0 61.2 87.0 75.1

1/4

Fixed Fixed 76.9 59.9 86.9 74.5
Fixed Random 77.3 61.4 86.9 75.2

Random Fixed 75.9 59.8 86.3 74.0
Random Random 76.1 59.4 86.3 73.9

1/8

Fixed Fixed 75.4 60.9 85.7 74.0
Fixed Random 74.6 58.1 85.5 72.7

Random Fixed 73.4 58.6 85.2 72.4
Random Random 73.8 58.0 85.1 72.3

1/16

Fixed Fixed 72.2 57.9 84.5 71.5
Fixed Random 72.1 56.4 84.4 71.0

Random Fixed 71.3 53.9 84.1 69.8
Random Random 70.7 56.3 84.0 70.4

1/32

Fixed Fixed 71.1 53.8 82.0 69.3
Fixed Random 70.2 52.0 82.9 68.4

Random Fixed 70.5 53.4 82.3 68.7
Random Random 69.2 51.9 82.4 67.8

1/64

Fixed Fixed 68.5 51.6 82.3 67.5
Fixed Random 68.4 51.1 81.9 67.1

Random Fixed 67.7 46.9 81.8 65.5
Random Random 66.8 51.1 82.1 66.6

5 Conclusion

We proposed few-shot supervised domain adaptation for object detection in cases
with large domain gaps, such as RGB and thermal infrared images. Although
the number of infrared images is smaller than that of RGB images, the perfor-
mance is improved compared with the conventional domain identification via
OCDC method for reducing the gap between domains for the input image we
proposed and the corresponding change in the domain identification label of
the discriminator (OCDCDL). Furthermore, it was confirmed that the proposed
method is effective by a comparative experiments in which the number of data
was changed, and the versatility of the method was shown by a comparative
experiments using various data.
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BDD100k → FLIR
Target Samples: 1/16

Target Samples: 1/64

Caltech → KAIST
Target Samples: 1/16

Target Samples: 1/64

SIM10K → Cityscapes
Target Samples: 1/16

Target Samples: 1/64

(a) Fine-tuning (b) DANN (c) Ours (d) Ground Truth

Fig. 2: There are the detection results using (a) Fine-tuning, (b) DANN, (c) our
method, and (d) ground truth, respectively. The bounding box colored cyan indi-
cates person, and the bounding box colored magenta indicates car, respectively.
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