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Abstract. Deep convolutional neural networks (CNNs) have obtained
remarkable performance in single image super-resolution (SISR). How-
ever, very deep networks can suffer from training difficulty and hardly
achieve further performance gain. There are two main trends to solve
that problem: improving the network architecture for better propagation
of features through large number of layers and designing an attention
mechanism for selecting most informative features. Recent SISR solu-
tions propose advanced attention and self-attention mechanisms. How-
ever, constructing a network to use an attention block in the most ef-
ficient way is a challenging problem. To address this issue, we propose
a general recursively defined residual block (RDRB) for better feature
extraction and propagation through network layers. Based on RDRB we
designed recursively defined residual network (RDRN), a novel network
architecture which utilizes attention blocks efficiently. Extensive experi-
ments show that the proposed model achieves state-of-the-art results on
several popular super-resolution benchmarks and outperforms previous
methods by up to 0.43 dB.

Keywords: Super-Resolution, Recursively Defined Residual Network,
Recursively Defined Residual Block

1 Introduction

The main purpose of super-resolution (SR) is to reconstruct high-resolution im-
age (HR) from given low-resolution counterpart (LR). SR is an ill-posed problem
since the mapping between LR and HR images is ambiguous (one-to-many). Re-
covering missing details is a challenging task, especially for a high upscale factor.
Despite being a difficult problem, SR plays an important role in various image
processing tasks with applications in face recognition, medical imaging, surveil-
lance, digital zoom, etc. While many existing SR methods reconstruct HR image
from several LR images, in this paper we focus on single image super-resolution

(SISR).

* Supported by Huawei.
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Fig. 1. Number of parameters and performance on Mangal09 with upscale factor x4
(BI model)

In recent years, convolutional neural networks (CNNs) have achieved remark-
able results in many computer vision tasks, including SISR. Deep CNNs have
shown improvement over the traditional algorithms. Network depth in existing
solutions has been significantly increased from three layers in SRCNN [5] to more
than 400 in recent works [35,25]. However, very deep networks can suffer from
training difficulties and hardly achieve any extra performance gain. A further
increase in CNN depth does not lead to an improvement in quality and makes
them unsuitable for various applications. The difficulty of training can be ex-
plained by the fact that network is not able to efficiently use information from
intermediate layers. This issue can be partially solved using residual learning [§].
Combining features from different layers through skip connections is a fruitful
idea in SISR. Additional connections along the network’s depth could help to
learn more powerful feature representations, making training more stable and
accelerating convergence.

Another approach to address the training difficulty is related to the mech-
anism of attention. Recently, this direction has become very popular and prof-
itable for SISR. The intuition behind attention is a simulation of the human
vision system, which can focus on the most informative parts of an image and
ignore the irrelevant information. Recent works show that attention can effec-
tively reduce the width and depth of a network while maintaining comparable
or better performance due to enhanced discriminative learning ability [35].

In this paper, we combine both approaches. The design of recursively defined
residual block (RDRB) is shown in Figure 2. It consists of two parts: basic block
(Fig. 2-a) and recursive block (Fig. 2-b). We have found that enhanced spatial
attention (ESA) introduced in [20] is very effective for the super-resolution task,
and we take advantage of its benefits even more than in the original paper. We
include ESA in the basic block, which is repeated in the final architecture mul-
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Fig. 2. Architecture of the proposed recursively defined residual block (RDRB) and
network (RDRN). RDRB is defined in a recurrent manner. (a) We define basic block
RDRBqy as a convolution layer followed by ESA block from [20]. (b) Each subsequent
block RDRB; can be defined using the architecture of previous block RDRB;_1 ac-
cording to the scheme. (c¢) Full network architecture

tiple times. Compared to previous work, our RDRB contains more connections
between intermediate layers. It combines hierarchical cues along the network
depth to obtain richer feature representations. Experiments show that the effect
of the proposed RDRB is more visible for lower upscale factors (x2, x3). For
the upscale factor x2, the RDRB-based model outperforms all recent solutions
without any bells and whistles. It can be explained by the recurrent nature of
RDRB. Shallow features are propagated to all levels of RDRB via long skip
connections from input. For lower upscale factors, they contain more relevant
information, as fewer details will be missed compared to higher upscale factors.
Finally, to further improve RDRB, especially for large upscale factors, we insert
non-local sparse attention [24] into the block.

Based on RDRB we design recursively defined residual network (RDRN) as
shown in Figure 2-c. Following [19], we add batch normalization (BN) and apply
adaptive deviation modulator (AdaDM) to the final model. For training, we
use intermediate supervision (IS) loss, which improves convergence and allows
to simultaneously train several models of different computational complexity
without a large overhead.

The proposed RDRN shows superior performance on the most popular SR
benchmarks. Our model produces better visual quality, recovers more details and
outperforms current state-of-the-art solutions with a significant margin of up to
0.43 dB.

In summary, the main contributions of our paper are:
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4 A. Panaetov et al.

— We propose a novel recursive scheme for block architecture definition. Using
that scheme we build a general recursively defined residual block (RDRB)
for more accurate image SR.

— Based on RDRB we design a novel network architecture (RDRN). Exten-
sive experiments on public datasets demonstrate that the proposed model
outperforms current state-of-the-art SR methods.

— We introduce intermediate supervision loss. Training with IS helps to ob-
tain additional performance gain and allows to simultaneously train several
models of different computational complexity.

2 Related Work

Super-resolution algorithms can be categorized into two types: traditional and
deep learning based methods. In this section, we will focus on the second category
as the most successful in computer vision.

Dong et al.[5] proposed the first three-layer convolutional neural network
(SRCNN) to learn the mapping from LR to HR directly. This pioneering work
achieved superior performance against the previous traditional methods.

Following this work, many networks achieved better performance using deeper
and wider architectures [12,13]. SRCNN used interpolated image as input, how-
ever, it is more efficient to upscale the feature maps at the end of the network.
To address this issue, Shi et al. proposed ESPCN [27] with a sub-pixel layer,
which is widely used in modern SISR networks. As in the case of the classifica-
tion task, a further increase in depth and width of plain architecture leads to
quality degradation. However, residual blocks [8] and dense connections [9] allow
to train more powerful networks, and Lin et al. proposed a very deep and wide
EDSR [17] based on a modified residual block. Dense connections were used in
RDN [36] to utilize hierarchical features from all convolutional layers.

Following [17], most of the recent SISR works do not use batch normalization
(BN) [11], as it harms network’s performance. However, Liu et al. [19] showed
that normalization layers reduce the standard deviation of feature pixels (the
main reason for quality degradation) and proposed adaptive deviation modu-
lator (AdaDM) to solve that issue. AdaDM can successfully enable BN layers,
significantly improving performance and allowing to train larger models.

Attention mechanism is used as a simulation of the human vision system that
focuses on the most informative parts of an image, ignores irrelevant informa-
tion and enhances discriminative learning ability. Recently, attention has been
successfully applied to the SISR problem, and attention-based methods have
shown superiority over pure CNN solutions. Zhang et al. [35] proposed channel
attention (CA) to adaptively rescale each feature channel-wise by modeling the
interdependencies across feature channels. Such CA mechanism improves the
representational ability of residual channel attention network (RCAN).

Liu et al. [20] designed lightweight and powerful enhanced spatial attention
(ESA). Dai et al. [3] introduced second-order attention network (SAN) to adap-
tively refine features using second-order feature statistics. Niu et al.[25] presented
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RDRN: Recursively Defined Residual Network for Image Super-Resolution 5

a new holistic attention network (HAN), which consists of a layer attention
module (LAM) and a channel-spatial attention module (CSAM) and models the
holistic interdependencies among layers, channels, and positions. Zhang et. al.
[37] proposed a context reasoning attention network (CRAN) that can adap-
tively modulate the convolution kernel according to the global context enhanced
by semantic reasoning.

Attention could be considered as an additional tool to improve the expressive-
ness and convergence of CNNs. An alternative is the self-attention mechanism
[30], which was introduced for natural language processing models. Recent work
has shown that even pure transformers can achieve SOTA results on computer
vision tasks [7]. However, hybrid models that contain both convolution and self-
attention show outstanding results as they integrate the advantages of both
approaches. Following this new trend, Liang et al [16] introduced the SwinIR
architecture based on Swin Transformer [21]. SwinIR has improved upon all
previous methods by a significant margin.

3 Proposed Method

In this section, we first present the overview of RDRN. Then we give a detailed
description of the proposed RDRB. We proceed with outlining the technical part
of training, including the loss function and implementation details. Finally, we
provide arguments about the advantages of the proposed method and differences
from other approaches.

3.1 Network Architecture

As shown in Figure 2, RDRN can be divided into three parts: shallow feature
extractor, RDRB deep feature extractor and reconstruction head. Let us denote
Ik and Igp the low resolution input and the output of RDRN. Following [35,
3,25], we use only one convolutional layer to extract the shallow features Fgp
from LR input:

Fsp = Hsp(ILR), (1)

where Hgp denotes the convolution operation. The extracted shallow feature
map Fsp is used as input to the deep feature extractor:

FDTF = HgDRB(FSF)7 (2)

where T is the recursion depth and H%p, 5 stands for RDRB feature extraction
model, which will be introduced in the next subsection. RDRB is the core of the
proposed network. Finally, the extracted deep features Fpr are combined with
the shallow features to stabilize training, after which they are processed by the
reconstruction module:

Isz;% = HTEC(FSFa FgF)a (3)

4114



6 A. Panaetov et al.

where H,... denotes the reconstruction head that consists of a convolutional layer
and a sub-pixel layer [27]. The long skip connection propagates low-frequency in-
formation directly to the reconstruction module, which can help the deep feature
extractor to focus on the extraction of high-frequency information [16].

There are several choices for loss function to optimize the model, such as /1,
{5, perceptual, adversarial loss. We found that for the proposed method, ¢; loss
is the most suitable one, and we minimize the following loss function:

m

1 & ; ; 1 i i
LH(6) = > N Hprw Uir) = sl = o > sk = Tanll ()

=1 =1

where H:p, p vy ©, and m denote the function of the proposed RDRN, the set of
learned parameters, and the number of training pairs, respectively. Following [18]
we fine-tune the model using /5 loss. More details are provided in the experiments
section.

3.2 Recursively Defined Residual Block (RDRB)

As discussed above, recursively defined residual block is the core of RDRN,
and here we give the overall description of the proposed block architecture. The
definition will be done in a recursive manner. First, we define basic block RDRBg
as a convolutional layer followed by ESA block introduced in [20]:

Fpp=Hyprp(Fsr) = ESA(convsys(Fsp) + Fsr). (5)

We found that ESA mechanism is highly effective for the super-resolution task,
and we take advantage of its benefits even more than in the original paper. We
include ESA in the basic block, which is repeated in our architecture multiple
times.

Finally, we use induction to define RDRB; for any natural t:

Fhr =Hpprp(Fsr), (6)

FE}T = HF%DRB(FEF)> (7)

Hbyprp(Fsp) = ESA (FSF + convixi (concat(FB_Fl’ FBFU)))> (8)

The scheme of building RDRBy and RDRB, is depicted in Figure 2. Same as in
the basic block, ESA is included in RDRB;. It’s worth noticing that we don’t
share weights in any part ot the model. To avoid any misunderstanding about
the definition of the proposed RDRB, we provide PyTorch implementation of
the basic block and the recursive step in the supplementary.
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RDRN: Recursively Defined Residual Network for Image Super-Resolution 7

3.3 Intermediate Supervision (IS)

As shown in Figure 2, for ¢ > 0 each RDRB; contains two additional auxiliary
outputs. Each of these intermediate outputs is paired with a reconstruction head
and an additional loss. The final loss function is a weighted sum of the original
loss and all intermediate losses (due to recursive definition of the block we have
2T+1 _ 2 additional loss terms):
2T+1_9
L(©) =woLT(6) + 3 wili(6), (9)
i=1

where w; denotes the weight and L;(©) is the loss based on the intermediate
output. The computational overhead for IS training is minimal, because the size
and complexity of the added heads is much smaller than the size and complexity
of RDRB. Using IS loss function gives two advantages. First, it allows to simul-
taneously train several models of different computational complexity using the
output of intermediate reconstruction head. Second, as proved in the ablation
study, training with IS enables us to achieve a performance gain.

3.4 Implementation Details

Here we specify the implementation details of RDRN. We use RDRBj5 in our
final architecture. Following [19], we add batch normalization (BN) [11] and
adaptive deviation modulator (AdaDM) to every 3 x 3 convolution. Finally,
starting from recursion level 3 we add non-linear spatial attention block [24]
after ESA. According to our experiments, both tricks improve the final score
and allow us to outperform SwinIR [16].

Experiments show that for IS training it is better to zero out the weights
for losses based on auxiliary outputs from RDRB; and RDRB; and set the
remaining weights to one.

3.5 Discussion

In our research we aim to follow the best practices from recent work. The mo-
tivation is two-fold: to outperform current SoTA models and to design general
method for architecture definitions which can be used by other researchers. We
conducted a large number of experiments and devised the following recipe:

— Following [18], we use advanced two-stage training procedure.

— We apply batch normalization [11] and add AdaDM to the model as in [19].

— We have an attention mechanism both inside the basic block and between
blocks.

We explored deformable convolution [38] for image SR. In all experiments it im-

proves the final score but doubles the training time, and we decided to postpone
this direction for future research.
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8 A. Panaetov et al.

The main novelty of our work is the proposed architecture of RDRB and
RDRN. We present the concept of building a network that utilizes multiple
connections between different blocks. It is not limited to one specific architecture:
the basic block can be replaced with any other block and the merging of two
blocks can vary as well. The proposed architecture significantly differs from the
ones presented in prior works.

Difference from Residual Feature Aggregation Network (RFANet).

RFANet [20] utilizes skip-connection only on block level while blocks are
connected consequently. The intuition behind RDRN is that combining of hier-
archical cues along the network depth allows to get richer feature representations.
Compared to RFANet, our architecture is able to combine features at deeper lay-
ers. In ablation study we have comparison of residual-block (RB) from RFANet
and RDRBg under the same conditions. We also show in Table 1 the benefits
of our recursive way of building the network compared to plain connection of
blocks in RFANet.

Difference from Non-Local Sparse Network (NLSN). NLSN [24] is a
recent, state-of-the-art SR method. The model achieved remarkable results after
it was updated with BN and AdaDM [19]. The original architecture of NLSN is
plain and made of residual blocks and non-local sparse attention (NLSA) blocks.
The main difference is again coming from more effective way of merging informa-
tion from different layers. Our smaller RDRN,4 model has similar performance
with NLSN and 72% less FLOPs (Table 6).

Difference from Deep Recursive Residual Network (DRRN). The ar-
chitecture of the recursive block (RB) from [28] is defined by a recursive scheme,
similarly to the proposed RDRB. The key differences between the two approaches
are as follows. First, according to the definition of RB, the weights of the same
sub-blocks are shared, while RDRB does not reuse weights. However, weights
sharing can be an effective way to reduce the number of parameters, and we
save this direction for future research. Second, DRRN contains sequences of RB
blocks. In contrast, our model is based on one large RDRB. Our recursive defi-
nition helps to stack blocks together with additional skip connections, granting
extra performance gain.

4 Experiments

In this section, we compare RDRN to the state-of-the-art algorithms on five
benchmark datasets. We first give a detailed description of experiment settings.
Then we analyze the contribution of the proposed neural network. Finally, we
provide a quantitative and visual comparison with the recent state-of-the-art
methods for the most popular degradation models.

4.1 Implementation and trainings details

Datasets and metrics. We train our models on DF2K dataset, which combines
DIV2K [29] and Flickr2K together as in [37,16,19]. For testing, we choose five
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RDRN: Recursively Defined Residual Network for Image Super-Resolution 9

Table 1. Ablation study on the advantage of RDRB

Model / PSNR Setb Setl4 B100 Urban100 Mangal00
RFANet(RB) 32.65 29.00 27.86 27.11 31.73
RFANet(RDRBy) 32.67 29.02 27.86 27.16 31.81
10.02 10.02 0.00 10.05 10.08
RDRN(RB) 32.73 29.02 27.86 27.14 31.80
+0.08 +0.02 0.00 +0.03 +0.07

standard datasets: Set5 [2], Set14 [32], B100 [22], Urban100 [10], and Mangal09 [23].
We train and test RDRN for three degradation methods. Degraded data is ob-
tained by bicubic interpolation (BI), blur-downscale (BD) and downscale-noise
(DN) models from Matlab. We employ peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [31] to measure the quality of super-resolved images.
All SR results are evaluated on Y channel after color space transformation from
RGB to YCbCr. Metrics are calculated using Matlab.

Training settings. The proposed network architecture is implemented in
PyTorch framework, and models are trained from scratch. In our network, patch
size is set to 64 x 64. We use Adam [14] optimizer with a batch size of 48 (12 per
each GPU). The initial learning rate is set to 107*. After 7.5 x 10° iterations it
is reduced by 2 times. Default values of 51 and Py are used, which are 0.9 and
0.999, respectively, and we set e = 1078, During training we augment the images
by randomly rotating 90°, 180°, 270° and horizontal flipping.

For all the results reported in the paper, we train the network 9 x 10° itera-
tions with ¢; loss function. After that we fine-tune the model 1.5 x 10% iterations
with a smaller learning rate of 10~5 using MSE loss. Complete training procedure
takes about two weeks on a server with 4 NVIDIA Tesla V100 GPUs.

4.2 Ablation study

Impact of the architecture. To highlight the advantages of the proposed ar-
chitecture, we compare RDRN and RFANet [20]. For comparison we use vanilla
RFANet with 32 RFA blocks and 64 channels. Each RFA block consists of
4 residual blocks (RB). First, we demonstrate that adding ESA to our basic
block RDRBy, is beneficial. For that purpose we train RFANet(RDRBy), chang-
ing RB to RDRBy. As shown in Table 1, our basic block gives a performance
gain to RFANet. Second, we show that the proposed recurrent scheme of build-
ing a network is better than stacking RFA blocks. We train RDRN(RB) using
RB instead of RDRBj to demonstrate that. Even when using the same basic
block, RDRN(RB) still outperforms RFANet(RFA, RB). For fair comparison,
we change the depth of both networks to keep the computation complexity for
all models similar.

Impact of Intermediate Supervision (IS). To show the impact of using
IS during training, we train the same network with and without IS. Table 2
demonstrates the effectiveness of the proposed loss function. Experiments show
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10 A. Panaetov et al.

Table 2. Ablation study on the advantage of IS

Model / PSNR Set5 Setl4 B100 Urban100 Mangal00
RDRN,4 32.68 29.00 27.84 27.07 31.77
RDRN,4-IS 32.71 29.01 27.85 27.07 31.83
10.03 10.01 10.01 0.00 1.0.06
RDRN5 32.67 28.99 27.86 27.09 31.86
RDRN5-1S 32.73 29.05 27.88 27.19 31.97
+0.06 +0.06 +0.02 +0.10 +0.11

that IS provides a bigger gain for larger models. It corresponds with the intuition
that it is harder to train a larger model using SGD, and IS helps to propagate
gradients better. Using IS allows to simultaneously train several SISR models of
different computational complexity.

4.3 Results with Bicubic (BI) Degradation Model

We compare the proposed algorithm with the following 11 state-of-the-art meth-
ods: SRCNN [4], RDN [36], RCAN [35], SAN [3], NLSN [24], DRLN [1], HAN
[25], RFANet[20], CRAN [37], SwinIR [16] and NLSN* [19]. We take all results
from the original papers. Following [17,3, 35,25, 16], we provide a self-ensemble
model and denote it RDRN+.

Quantitative results. Table 3 reports the quantitative comparison of x2,
x 3, x4 SR. Compared to the existing methods, RDRN scores best in all scales of
the reconstructed test sets. Even without self-ensemble, our model outperforms
other solutions at upscale factors 2x and 3x. For 4x SR, RDRN achieves the best
PSNR values, however, SSIM score of competitors on several datasets is higher.
The effect of the proposed method is more significant for lower upscale factors.
This can be explained by the RDRB design. Shallow features are propagated
for all levels of RDRB using long skip connections from input. For lower upscale
factors, shallow features contain more important information as less information
will be missed compared to higher upscale factors.

Visual results. We give visual comparison of various competing methods
on Urbanl00 dataset for x2 SR in Figure 3. Our model obtains better visual
quality and recovers a more detailed image. Most compared methods recover
grid textures of buildings with blurring artifacts, while RDRN produces sharper
images. The proposed method can maintain a regular structure in difficult cases
where previous approaches fail. To further illustrate the analysis above, we show
such cases for x2 SR in Figure 4. The recovered details are more faithful to the
ground truth.

4.4 Results with Bicubic Blur-Downscale (BD) Degradation Model

Following [36, 35, 20, 1, 25, 37], we provide results for blur-downscale degradation,
where HR image is blurred by a 7x7 Gaussian kernel with standard deviation
o = 1.6 and then downscaled by bicubic interpolation with scaling factor x3 .
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Table 3. Quantitative results with BI degradation model. The best and second best
results are highlighted in bold and underlined

Methods Scale Setb Setl4 B100 Urban100 Mangal09
PSNR|SSIM [PSNR|SSIM [PSNR|[SSIM [PSNR|SSIM [PSNR|SSIM

Bicubic X2 33.66 (0.9299 |30.24 [0.8688 |29.56 |0.8431 |26.88 (0.8403 [30.80 [0.9339
SRCNN [4] X2 36.66 (0.9542 |32.45 [0.9067 |31.36 |0.8879 |29.50 |0.8946 [35.60 [0.9663
RDN [36] X2 [38.24 (0.9614 |34.01 |0.9212 |32.34 |0.9017 |32.89 [0.9353 [39.18 |0.9780
RCAN [35] X2 |38.27(0.9614 [34.12 (0.9216 [32.41 |0.9027 |33.34 (0.9384 (39.44 |0.9786
SAN [3] X2 |38.31(0.9620 [34.07 [0.9213 [32.42 |0.9028 |33.10 (0.9370 [39.32 |0.9792
NLSN [24] X2 38.34 (0.9618 |34.08 [0.9231 |32.43 |0.9027 |33.42 |0.9394 [39.59 [0.9789
DRLN [1] X2 38.27 (0.9616 |34.28 [0.9231 |32.44 |0.9028 |33.37 |0.9390 [39.58 |0.9786
HAN [25] X2 |38.27(0.9614 [34.16 (0.9217 (32.41 |0.9027 |33.35 (0.9385 [39.46 |0.9785
RFANet[20] X2 |38.26 |0.9615 [34.16 [0.9220 (32.41 |0.9026 |33.33 (0.9389 (39.44 |0.9783
CRAN [37] X2 38.31 (0.9617 |34.22 [0.9232 |32.44 |0.9029 |33.43 |0.9394 [39.75 [0.9793
SwinlR [16] X2 38.42 (0.9623 |34.46 |0.9250 |32.53 |0.9041 [33.81 [0.9427 [39.92 |0.9797
NLSN* [19] X2 38.43 (0.9622 |34.40 [0.9249 |32.50 |0.9036 |33.78 |0.9419 [39.89 [0.9798

RDRN(ours) X2 38.54 10.9627 |34.67 |0.9261 |32.53 |0.9043 |34.12 (0.9442 (40.35 [0.9807
RDRN+ (ours) |x2 38.59(0.9629/34.76/0.9265|32.56|0.9046/34.27|0.9452(40.48/0.9810

Bicubic X3 30.39 [0.8682 |27.55 |0.7742 |27.21 |0.7385 |24.46 (0.7349 (29.95 [0.8556
SRCNN [4] X3 32.75 ({0.9090 |29.30 |0.8215 |28.41 |0.7863 |26.24 (0.7989 (30.48 [0.9117
RDN [36] X3 34.71 [0.9296 |30.57 |0.8468 |29.26 |0.8093 |28.80 (0.8653 (34.13 [0.9484
RCAN [35] X3 34.74 10.9299 |30.65 |0.8482 |29.32 |0.8111 |29.09 (0.8702 (34.44 [0.9499
SAN [3] X3 34.75 [0.9300 |30.59 |0.8476 |29.33 |0.8112 |28.93 (0.8671 (34.30 [0.9494
NLSN [24] X3 34.85 [0.9306 |30.70 |0.8485 |29.34 |0.8117 |29.25 (0.8726 [34.57 [0.9508
DRLN [1] X3 34.78 (0.9303 |30.73 |0.8488 |29.36 |0.8117 |29.21 (0.8722 [34.71 |0.9509
HAN [25] X3 34.75 (0.9299 |30.67 |0.8483 |29.32 |0.8110 |29.10 (0.8705 (34.48 [0.9500
RFANet[20] X3 34.79 (0.9300 |30.67 |0.8487 |29.34 |0.8115 |29.15 (0.8720 [34.59 [0.9506
CRAN [37] X3 34.80 [0.9304 |30.73 |0.8498 |29.38 |0.8124 |29.33 (0.8745 (34.84 [0.9515
SwinlR [16] X3 34.97 [0.9318 |30.93 |0.8534 |29.46 |0.8145 |29.75 |0.8826 (35.12 [0.9537
NLSN* [19] X3 34.95 (0.9316 |30.86 |0.8513 |29.45 |0.8141 |29.77 (0.8812 [35.20 [0.9534

RDRN(ours) X3 35.04 {0.9322 |30.99 {0.8530 |29.50 |0.8152 |29.87 (0.8830 (35.44 [0.9543
RDRN+ (ours) |x3 35.10(0.9326/31.04(/0.8539/29.53|0.8158/30.02/0.8848/35.58/0.9549

Bicubic x4 28.42 [0.8104 |26.00 |0.7027 |25.96 |0.6675 |23.14 (0.6577 (24.89 [0.7866
SRCNN [4] x4 30.48 [0.8628 |27.50 |0.7513 |26.90 |0.7101 |24.52 |0.7221 [27.58 |0.8555
RDN [36] x4 |32.47 [0.8990 (28.81 |0.7871 |27.72 |0.7419 |26.61 [0.8028 {31.00 [0.9151
RCAN [35] x4 32.63 [0.9002 |28.87 |0.7889 |27.77 |0.7436 |26.82 (0.8087 (31.22 [0.9173
SAN [3] x4 32.64 [0.9003 |28.92 |0.7888 |27.78 |0.7436 |26.79 (0.8068 (31.18 [0.9169
NLSN [24] x4 32.59 (0.9000 |28.87 |0.7891 |27.78 |0.7444 |26.96 (0.8109 (31.27 [0.9184
DRLN [1] x4 32.63 [0.9002 |28.94 |0.7900 |27.83 |0.7444 |26.98 (0.8119 [31.54 [0.9196
HAN [25] x4 |32.64 [0.9002 [28.90 |0.7890 |27.80 |0.7442 (26.85 [0.8094 [31.42 |0.9177
RFANet[20] x4 32.66 [0.9004 |28.88 |0.7894 |27.79 |0.7442 |26.92 (0.8112 (31.41 [0.9187
CRAN [37] x4 32.72 (0.9012 |29.01 |0.7918 |27.86 |0.7460 |27.13 |0.8167 [31.75 [0.9219
SwinIR [16] x4 32.92 (0.9044 |29.09 |0.7950 |27.92 |0.7489 |27.45 |0.8254 (32.03 [0.9260
NLSN* [19] x4 32.86 (0.9025 |29.11 |0.7940 |27.92 |0.7481 |27.49 |0.8247 (32.09 [0.9251

RDRN(ours) x4 32.94 (0.9039 |29.17 |0.7951 |27.96 |0.7490 |27.49 (0.8241 (32.27 [0.9259
RDRN+ (ours) |x4 33.00(0.9046/29.24(0.7961|28.01|0.7499|27.63|0.8266/32.47/0.9273|

Quantitative results. In Table 4 we compare the proposed RDRN model
with the following super-resolution methods: SPMSR [26], SRCNN [4], FS-
RCNN [6], VDSR [12], IRCNN [33], SRMDNF [34], RDN [36], RCAN [35],
SRFBN [15], SAN [3], HAN [25], FRANet [20] and CRAN [37]. As shown, our
solution achieves consistently better performance than other methods even with-
out self-ensemble (i.e. RDRN+).

Visual results. We show visual comparison for x3 SR with BD degradation
in Figure 5. The proposed model can recover grid textures and stripes even under
heavy blur conditions. In the provided examples, RDRN reconstructs all stripes
in the correct direction. In contrast, compared models have problems with the
stripes direction and blurred areas.
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HR Bicubic RDN [36] RCAN [35] SAN [3]

Urban100: i DRLN [1] HAN [25] SwinIR [16] RDRN(ours)

Urban100: img 073 (x4) RFANet [20] DRLN [1] HAN [25] SwinIR [16] RDRN(ours)

W R
WA= >\ =
Y S e TR SRa\E

Urbanl00: img_ 092 (7><4) RFANet [20] DRLN [1] HAN [25] SwinIR [16] RDRN(ours)

Fig. 3. Visual comparison for 4x SR with BI model on Urbanl00 dataset.

Bicubic RDN [36]  RCAN [35] SAN [3]

7

Urban100: img 005 (x2) RFANet [20] DRLN [1]

= @ X
HAN [25] SwinIR [16] RDRN(ours)

—
’f(i HR Bicubic RDN [36] RCAN [35] SAN [3]

= =TT e

an100: img_ 100 (x2) RFANet [20] DRLN [1] HAN [25] SwinIR [16] RDRN(ours)

U

=
o

Fig. 4. Visual comparison for 2x SR with BI model on Urbanl00 dataset.

4.5 Results with Bicubic Downscale-Noise (DN) Degradation
Model

We apply our method to super-resolve images with the downscale-noise (DN)
degradation model, which is widely used in recent SISR papers [4,12, 6,33, 33,
36,37]. For DN degradation, HR image is first downscaled with scaling factor
x 3, after which Gaussian noise with noise level 30 is added to it.

Quantitative results. In Table 5 we compare the proposed RDRN model
with the following super-resolution methods: SRCNN [4], FSRCNN [6], VDSR [12],
IRCNN_G [33], IRCNN_C [33], RDN [36], CRAN [37]. As shown, our solution
achieves consistently better performance than the other methods even without
self-ensemble (i.e. RDRN+). For DN degradation we do not provide visual com-
parison, because the results of recent work is not available publicly.
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Table 4. Quantitative results with BD degradation model. The best and second best
results are highlighted in bold and underlined

Method Scale Setb Set14 B100 Urbanl100 Mangal09
’ PSNR|SSIM [PSNR|SSIM [PSNR/SSIM [PSNR|SSIM [PSNR/SSIM
Bicubic X3 28.78 |10.8308 |26.38 [0.7271 [26.33 |0.6918 |23.52 (0.6862 [25.46 [0.8149

SPMSR [26] X3 32.21 |0.9001 |28.89 |0.8105 [28.13 |0.7740 |25.84 (0.7856 (29.64 [0.9003
SRCNN [4] X3 32.05 |0.8944 |28.80 |0.8074 [28.13 |0.7736 |25.70 (0.7770 (29.47 |0.8924
FSRCNN [6] |x3 26.23 |0.8124 |24.44 |0.7106 [24.86 |0.6832 |22.04 (0.6745 (23.04 |0.7927
VDSR [12] X3 33.25 |0.9150 |29.46 |0.8244 [28.57 |0.7893 |26.61 (0.8136 (31.06 [0.9234
IRCNN [33] X3 33.38|0.9182 |29.63 |0.8281 [28.65 |0.7922 |26.77 (0.8154 [31.15 [0.9245
SRMDNF [34] |x3 34.01 |0.9242 |30.11 |0.8364 [28.98 |0.8009 |27.50 |0.8370 (32.97 [0.9391
RDN [36] X3 34.58 |10.9280 |30.53 |0.8447 [29.23 |0.8079 |28.46 (0.8582 (33.97 [0.9465
RCAN [35] X3 34.70|10.9288 |30.63 |0.8462 [29.32 |0.8093 |28.81 (0.8647 (34.38 [0.9483
SRFBN [15] X3 34.66 |0.9283 |30.48 |0.8439 [29.21 |0.8069 |28.48 (0.8581 [34.07 [0.9466
SAN [3] X3 34.75|0.9290 |30.68 |0.8466 [29.33 |0.8101 |28.83 (0.8646 (34.46 |0.9487
HAN [25] X3 34.76 |10.9294 |30.70 |0.8475 [29.34 |0.8106 |28.99 (0.8676 (34.56 [0.9494
RFANet [20] |x3 34.7710.9292 |30.68 |0.8473 [29.34 |0.8104 |28.89 (0.8661 (34.49 [0.9492
CRAN [37] X3 34.90 |10.9302 |30.79 |0.8485 [29.40 |0.8115 |29.17 |0.8706 (34.97 [0.9512
RDRN(ours) |x3 35.07 |10.9317 |31.07 |0.8524 [29.54 |0.8152 |29.72 (0.8792 (35.53 [0.9538
RDRN+(ours) | x3 35.12/0.9320/31.15|0.8533({29.57|0.8157|29.86|0.8812(35.66/0.9543|

RCAN [35]

HR Bicubic RDN [36]
! b LA

Urbanl00: img 046 (x3) RFANet [20] DRLN [1] HAN [25] RDRN(ours)
y - = 3

Al

Bicubic RCAN |[35]

Urbanl00: img 074 (x3) RFANet [20] DRLN [1] HAN [25] RDRN(ours)

Fig. 5. Visual comparison for 3x SR with BD model on Urban100 dataset.

4.6 Model Complexity Analyses

Fig. 1 and Table 6 demonstrate comparison with recent SR works in terms of
model size, FLOPs and performance on Mangal09 dataset. Compared to NLSN,
the number of parameters of our RDRNj is reduced by 18%.

Recursion Depth Analysis. We show comparison of the proposed models
with different recursion depth 7' = 4,5,6. The smaller network RDRN, out-
performs most of the recent methods on Mangal09 dataset with comparable
complexity and number of parameters.

5 Conclusion

In this paper, we propose a recursively defined residual network (RDRN) for
highly accurate image SR. Specifically, recursively defined residual block (RDRB)
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Table 5. Quantitative results with DN degradation model. The best and second best
results are highlighted in bold and underlined

Method Scale Setb Set14 B100 Urbanl100 Mangal09
’ PSNR|SSIM [PSNR|SSIM [PSNR/SSIM [PSNR|SSIM [PSNR/SSIM
Bicubic X3 24.01 |0.5369 |22.87 [0.4724 [22.92 |0.4449 |21.63 |0.4687 [23.01 [0.5381

SRCNN [4] X3 25.01 |0.6950 |23.78 |0.5898 [23.76 |0.5538 |21.90 (0.5737 (23.75 [0.7148
FSRCNN [6] |x3 24.18 |10.6932 |23.02 |0.5856 [23.41 |0.5556 |21.15 |0.5682 (22.39 [0.7111
VDSR [12] X3 25.20|0.7183 |24.00 |0.6112 [24.00 |0.5749 |22.22 (0.6096 (24.20 [0.7525
IRCNN_G [33]|x3 25.70|0.7379 |24.45 |0.6305 [24.28 |0.5900 |22.90 (0.6429 (24.88 [0.7765
IRCNN_ C[33]|x3 27.48 |10.7925 |25.92 |0.6932 [25.55 |0.6481 |23.93 (0.6950 (26.07 [0.8253
RDN [36] X3 28.47 |10.8151 |26.60 |0.7101 [25.93 |0.6573 |24.92 |0.7354 (28.00 [0.8591
CRAN [37] X3 28.7410.8235 |26.77 |0.7178 [26.04 |0.6647 |25.43 |(0.7566 (28.44 [0.8692
RDRN(ours) |x3 28.81 |0.8244 |26.87 |0.7201 [26.11 |0.6674 |25.73 (0.7654 (28.80 [0.8739
RDRN+(ours) |x3 28.84/0.8251/26.90|0.7205(26.12|0.6678/25.82(0.7678/28.88/0.8750|

Table 6. Number of parameters, FLOPs (for 3 x 64 x 64 input) and performance on
Mangal09 with upscale factor x4 (BI model)

Model Parameters, M FLOPs, G PSNR, dB
SwinlR 11.9 54 32.03
RCAN 15.6 65 31.21
SAN 15.9 67 31.18
HAN 16.9 67 31.42
RDRNy (ours) 18.5 62 32.09
NLSN* 44.2 222 32.09
NLSN 44.2 222 31.27
RDRN; (ours) 36.4 123 32.27
RDRNg (ours) 72.2 241 32.39

allows us to build and train a large and powerful network. To stabilize the train-
ing and further improve the quality we apply intermediate supervision (IS) loss
function. Training with IS allows the network to learn more informative fea-
tures for more accurate reconstruction. RDRN achieves superior SISR results
under different degradation models, such as bicubic interpolation (BI), blur-
downscale (BD) and downscale-noise (DN). Extensive experiments demonstrate
that the proposed model outperforms recent state-of-the-art solutions in terms
of accuracy and visual quality. The proposed network architecture is general and
could be applied to other low-level computer vision tasks. The architecture of
the core RDRB block can be simply described by two schemes: basic block and
the recursive block. We implement only simple ideas and believe that the pro-
posed approach could be significantly improved either using manual or automatic
search.

Acknowledgements Authors would like to thank Ivan Mazurenko, Li Jieming
and Liao Guiming from Huawei for fruitful discussions, guidance and support.
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