
Energy-Efficient Image Processing using Binary
Neural Networks with Hadamard Transform

Jaeyoon Park[0000−0001−8382−0474] and Sunggu Lee[0000−0003−3858−0779]

Pohang University of Science and Technology (POSTECH), South Korea
{jaeyoonpark,slee}@postech.ac.kr

Abstract. Binary neural networks have recently begun to be used as a
highly energy- and computation-efficient image processing technique for
computer vision tasks. This paper proposes a novel extension of exist-
ing binary neural network technology based on the use of a Hadamard
transform in the input layer of a binary neural network. Previous state-of-
the-art binary neural networks require floating-point arithmetic at sev-
eral parts of the neural network model computation in order to maintain
a sufficient level of accuracy. The Hadamard transform is similar to a
Discrete Cosine Transform (used in the popular JPEG image compres-
sion method) except that it does not include expensive multiplication
operations. In this paper, it is shown that the Hadamard transform can
be used to replace the most expensive floating-point arithmetic portion
of a binary neural network. In order to test the efficacy of this proposed
method, three types of experiments were conducted: application of the
proposed method to several state-of-the-art neural network models, ver-
ification of its effectiveness in a large image dataset (ImageNet), and
experiments to verify the effectiveness of the Hadamard transform by
comparing the performance of binary neural networks with and without
the Hadamard transform. The results show that the Hadamard trans-
form can be used to implement a highly energy-efficient binary neural
network with only a miniscule loss of accuracy.

Keywords: Binary neural network · Hadamard transformation · DCT.

1 Introduction

Although deep neural networks have resulted in highly accurate image classifica-
tion, object recognition, and other computer vision tasks, such networks typically
involve excessive amounts of numerical computation with excessive memory stor-
age requirements, making them difficult to use in energy or computation capa-
bility constrained environments. A popular neural network compression method
that can be used in such cases is binarization, in which 32-bit floating point
parameters are approximated using single-bit numbers.

Binary Neural Networks (BNNs) are neural networks that use extensive levels
of binarization throughout the network to achieve extreme network compression
with a concomitant but relatively small loss of accuracy. In order to maintain

4711

2 J. Park et al.

acceptable accuracy levels, such BNNs typically use a mixture of highly accurate
numbers (such as 32-bit floating point) and highly inaccurate binary numbers for
different types of parameters and/or different layers of the neural network. For
example, binarization of AlexNet [14] through the method proposed by Hubara
et al. [10], which is one of the early BNNs, can reduce the model size by 32 times
at the cost of a 28.7% reduction in accuracy [25] on the ImageNet dataset [2].
Later research works on BNNs attempted to reduce this extremely high accuracy
gap. The current state-of-the-art (SOTA) BNN [16] has approximately the same
model size as [10] with only a 1.9% reduction in accuracy on the ImageNet
dataset when compared to the equivalent non-binarized neural network model.
A standard method for measuring the inference cost of a neural network has
been proposed by Zhang et al. [31]. Referred to as arithmetic computation effort
(ACE), it counts the number of multiply-accumulate (MAC) operations, which
are the most computationally expensive operations used in a neural network,
weighted by the bit-widths of the operands used in those MAC operations.

In almost all previous state-of-the-art (SOTA) BNN models, the input layer
uses floating-point arithmetic. This is because binarization of the input layer
severely degrades the accuracy of a BNN [16–19, 25]. However, due to its use
of floating-point arithmetic, the input layer has been found to be the major
contributor to the computation cost of a SOTA BNN. For example, when using
the popular SOTA BNN referred to as ReActNet [16], the input layer contributes
to approximately 65% out of the entire network ACE.

Previous studies on CNN have found that input layer extracts abstract fea-
tures such as colors and various edge directions in images [7, 29]. The filters
of input layer resemble the Gabor filter [20] which analyzes specific frequency
components in each local area, so that can detect edge of image. The discrete
cosine transform (DCT), which is the encoding method used in the popular
JPEG compression format, also computes in a similar manner. Using this fact,
Guegeun et al. proposed to feed discrete cosine transformed data directly into a
CNN, without first decoding that JPEG compressed image into a raw image [7].
This enabled the first few layers of the neural network to be pruned without any
accuracy loss.

The Hadamard transform, which is also known as theWalsh-Hadamard trans-
form, is similar transformation to the DCT. The main difference is that the
Hadamard transform is multiplication-free, and it only requires add/subtract
operations [23].

In this paper, we propose a new input layer using the Hadamard transform
for an energy-efficient BNN. The proposed layer is fed with raw images, and
it can replace conventional expensive floating-point MAC operations with light
8-bit add/subtract and logical operations. The input layer is expected to reduce
energy consumption of BNN, which can be measured by ACE metric, and to
achieve acceptable level of accuracy degradation. Experiments were conducted
to reveal a possibility of proposed input layer for BNN. First of all, a general-
ity of the layer was tested by applying it on binarized versions of two widely
used CNN architectures, MobileNetV1 [9] and ResNet-18 [8], on a small image

4712

Energy-Efficient Image Processing using Binary Neural Networks 3

dataset, i.e., CIFAR-10. Secondly, accuracy drop evaluation was performed on
ReActNet [16], which is the SOTA BNN in terms of the accuracy gap from its
real-valued counterpart. The test was conducted using the ImageNet dataset,
which consists of large-scale real images, so that the practicality of new layer for
real-world problem can be demonstrated. Lastly, the proposed input layer struc-
ture with trainable weight filters, instead of the Hadamard Transformation, was
investigated on ReActNet to validate the efficacy of the Hadamard transform for
BNNs.

2 Related Work

2.1 Binary Neural Networks

Parameter quantization is one of the methods of compressing convolutional neu-
ral networks. It is a method representing weight parameters and activations of
neural network, which are normally 32-bit floating point numbers, with fewer
number of N -bit width, such as 8, 4, and 2-bit. A size of the compressed net-
work can be reduced by 32/N times, and an improvement of inference speed can
be obtained [24].

A binary neural network is a special case of quantization with a single-bit
precision, which is the smallest bit width in computer system. The process of
quantization is binarization and it can be simply implemented using signum
function, which outputs the sign bit of input values. An exceptional advantage
of BNN over other quantized neural networks is in a convolution operation. The
convolution operation with the 1-bit operands requires bit-wise logical opera-
tor, which is fast and energy-efficient, instead of expensive and relatively slow
floating-point MAC unit [25]. Binary convolution refers to the convolution with
operands of single-bit precision. Therefore, BNN can save massive energy con-
sumption and reduce the size of deep neural network. Although early studies on
BNN achieved comparable level of accuracy on tiny image dataset [10], such as
MNIST [3] and SVHN [21], training results of BNNs on large-scale image showed
poor image classification accuracy [25]. So until recently, most BNN studies have
tried to mitigate the accuracy degradation.

Authors in [25], proposed that binarization error from real-valued operands
to its binarized version can be reduced by introducing scaling factor. [15] de-
signed a convolution layer with multiple binary convolution bases. The multiple
outputs from the multiple bases are accumulated to enhance representability
of BNN. [18] suggested adding high-precision values before binarization to the
output of binary convolution via short-cut and it improved model capacity. [17]
proposed that activations with high-precision should be binarized not simply
by their signs but by a threshold, which determines a value to be +1 or -1.
The author implemented signum function with trainable parameters to learn
the appropriate threshold during training time. The network with the method
achieved the smallest accuracy loss, which is caused by binarization of original
full-precision network.

4713

4 J. Park et al.

In addition to increasing the accuracy of BNNs, there is a study to reduce
inference cost of BNN. [31] presented an energy-efficient convolution block for
BNN. They also proposed arithmetical computing efficiency(ACE), which is a
metric to measure efficiency of neural network. It calculates energy consumption
on neural network inference by counting the number of MAC operations and
weighting the bit width of operands. Table 4 shows a summary of the accuracy
of this method as well as the previous methods described in this section.

2.2 Input Layer of Convolutional Neural Networks

CNN consists of convolutional layers which extract features of spatial data. Each
layer receives an data in the form of feature maps, extracts specific features,
and passes them to subsequent layer. What features to be extracted are deter-
mined through training process. More specifically, filters of convolutional layer
are shaped differently by training dataset. Interestingly, input layer of the neu-
ral network captures general features, such as color and texture. It is relatively
independent of the dataset used for training [29]. Subsequent layers are learned
to extract more detailed features based on the general features.

It is known that the general filters in the input layer resemble the Gabor
filter in image processing [7, 29]. The Gabor filter is mainly used to extract
edge and texture of image [20]. Parameters in the filter, such as angle, width,
and repetition period of edge to be extracted from an image, can be selected
by engineer. The general filters of input layer, which are acquired from network
training, are similar to a set of several the Gabor filters with various combinations
of parameters.

Based on this fact, there are studies that apply the image processing tech-
nique to CNN’s input layer. For example, discrete cosine transform(DCT) is
proved its usefulness as an input layer by [7]. The paper showed that using DCT
as input layer, instead of conventional trainable input layer, can achieve better
accuracy for ResNet-50 architecture. In addition, the authors attempted to train
input layer with a regularizer, whose role is guiding the filters of input layer to
resemble DCT. But they concluded that training DCT-like filter is hard and
inefficient.

In case of BNN, all of the aforementioned methods for increasing the accuracy
of the BNN are not applied to input layer. This is because binarization of input
layer directly can degrades model’s performance severely [30], while the improve-
ment of execution time is small [25]. Recently, [30] suggested to transform input
image with thermometer encoding, which contains division, ceiling and rounding
operations, so it can avoid direct binarization of input layer. Alternatively, [31]
proposed 8-bit quantization for input layer rather than binarization.

2.3 Hadamard Transform

The Hadamard transform is used as a feature extractor in the field of image
and video processing. In [5], specific basis vectors of the Hadamard transform
is selected to detect shot boundary of videos. The transform can be used for

4714

Energy-Efficient Image Processing using Binary Neural Networks 5

image compression [28, 6, 4]. [4] suggested image compression method by taking
advantage of simple and efficient property of the Hadamard transform. A recent
study on CNN proposed a layer with Hadamard transform, which is designed
to replace 1 x 1 convolution layer of neural networks, to achieve faster network
inference [22].

3 Hadamard Transform as an Input Layer

3.1 Hadamard Matrix

Hadamard transform is one of the linear image transforms [26]. The transform
is an operator capable of processing 2D images and has averaging property [23].
And the transformed image can be inversely transformed into the original spatial
domain. Hadamard transform can perform the same function as DCT more effi-
ciently. This is because they are both orthogonal transforms [26] but Hadamard
transform uses Hadamard matrix, whose entries are +1 and -1, making the op-
eration simpler.

Hadamard matrix(H) is in square array form, and the matrix of N=2n order
can be obtained using the Kronecker product(1). When N=1, the entry is one
with 1, and for N=2n ≥ 2, the Hadamard matrix can be derived by recursively
utilizing the matrix of N=2(n−1) order. For example, when N=4, the Hadamard
matrix H4 consists of four H2, and the H2 holds four H1 which is one 1 with
appropriate sign of entries according to equation(1).

H2n = H2 ⊗H2n−1 =

[
H2n−1 H2n−1

H2n−1 −H2n−1

]
(1)

H1 =
[
1
]

H2 =

[
1 1
1 −1

]
H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 −→ordered

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 (2)

The matrix has several properties. The first property is that the matrix is
symmetric. Second, each row is orthogonal to each other. Third, how many times
the sign of the entries of the row changes is called sequency, and the Hadamard
matrix of N order consists of rows with sequency from 0 to N−1. If the rows are
ordered in ascending, it is exactly same as the Walsh matrix [23]. In this paper,
we refers to Hadamard matrix as the matrix with the rows of the ascending
ordered.

3.2 Hadamard Transform

Two-dimensional image can be processed with Hadamard transform using Eq.(4).
In the equation, the original image in spatial domain is denoted by s(x, y) and
transformed image is represented by G(u, v). The size of processed image is the

4715

6 J. Park et al.

(a) Discrete cosine transform (b) Hadamard transform

Fig. 1: Visualized 2D kernels of (a) DCT and (b) Hadamard transform for block
size of 8. Ordered Hadamard matrix is used to obtain (b).

number of 2D kernels of Hadamard transform. The 2D kernels can be obtained
by outer product of rows and columns of Hadamard matrix. For example, from
the ordered H4, the first two kernels are 4× 4 as they are in (5). In a same way,
DCT on 2D image can be done using Eq.(3) and the kernels from the DCT can
be obtained. Fig. 1 shows that the two kernel sets from DCT and Hadamard
transform are similar to each other. Additionally, transformed images using the
transforms are illustrated in Fig. 2 to provide qualitative comparison.

F (u, v) =

N−1∑
x=0

N−1∑
y=0

s(x, y) exp

(
−2πi

N
(ux+ vy)

)
(3)

G(u, v) =

N−1∑
x=0

N−1∑
y=0

s(x, y)g(u,v)(x, y) (4)

g(1, 1) =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 g(1, 2) =

1 1 1 1
1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1

 (5)

The characteristic of Hadamard transform is that no multiplication is re-
quired, which results in efficient computation. Secondly, the energy before and
after transformation is preserved (6). And the computational result using the
zero sequency kernel(g(1, 1)) means the average brightness of the spatial domain
image (7). It is the same operation with average pooling layer in neural networks.
Moreover, the energy of most images is concentrated in this area, and for the

4716

Energy-Efficient Image Processing using Binary Neural Networks 7

(a) Original image

(b) Discrete cosine transform

(c) Hadamard transform

Fig. 2: (a) Original image from ImageNet dataset and its transformed images
using (b) Hadamard transform and (c) DCT.

higher sequency kernels, relatively small amount of energy is held [23], which
enables image compression [6, 28, 4].

N−1∑
x=0

N−1∑
y=0

|s(x, y)|2 =
1

N2

N−1∑
u=0

N−1∑
v=0

|G(u, v)|2 (6)

G(0, 0) =
1

N2

N−1∑
x=0

N−1∑
y=0

s(x, y) (7)

3.3 Proposed Input Layer

As DCT can be used as input layer of CNN [7], and the DCT and Hadamard
transform are functionally same, it is possible to use kernels of Hadamard trans-
form input layer of the BNN. However, there are several considerations to ma-
terialize it.

Assume that there is a single-channel 2D image. Hadamard transform pro-
cesses on N by N size blocks of image in the spatial domain, where the blocks
are non-overlapped. In terms of convolution operation, this is same as window-
ing weight filters with stride step of N and producing N2 output channels.
However, to utilize Hadamard transform in input layer, the transform must be
implemented to overlap the N by N block size. This is to provide feature maps
of particular dimension, which can be different from structures of existing BNNs
but can not be covered with stride N , for subsequent layer. At the same time,
the overlapping should properly extracts features without hurting network’s per-
formance. It has been proved that overlapping 2D kernels on the spatial domain
image, which is called modified DCT(MDCT) [27], can extract features well in
CNN [11, 27]. Considering the same functionality of DCT and Hadamard, it is
possible to adopting the MDCT manner on Hadamard transform.

4717

8 J. Park et al.

Fig. 3: Hadamard transform in proposed input layer. The operation can be done
for each channels with same N2 kernels. The number of kernels can be vary
depending on order of Hadamard matrix. The transformed images are concate-
nated in channel-wise.

In addition, an input image with 3-channels is normally fed into neural net-
work. Therefore, the kernels should be applied to each channel, which can be
regarded as grouped convolution [14], and the transform will eventually output
3xN2 channels. The process is depicted in Fig.3. However, the aforementioned
particular dimension for subsequent layer also includes the number of channels(or
depth). Therefore, the channel of 3xN2 size need to flexibly modified depending
on possible BNN structures. To address this issue, pointwise binary convolu-
tion with shortcut [17], which operates in bit-wise operators, is followed by the
Hadamard transform. When the dimension of shortcut and output of pointwise
convolution is not matched, channel-wise zero padding can used for the shortcut.
This proposed input layer is illustrated in Fig.4.

Moreover, it is not necessary to have N2 kernels for transformation in the
input layer. Hadamard transform preserves the energy of the pre-transformed
spatial domain, while the high-sequency kernels could result fewer energy por-
tions. Even if these high-sequency kernels are discarded, the energy of the spatial
domain does not change significantly. This concept is used in one of the lossy
compression method, JPEG. Thus, the number of operations can be reduced by
ignoring insignificant energy loss. For example, when N = 4, the number of 2D
kernels to preserve entire energy is 16. However, our experiments witnessed that
no accuracy drop occurred using 10 kernels of low frequencies.

4 Evaluation

Experiments on proposed input layer have three parts. First of all, a generality
of proposed layer is validated. We took two representative used BNNs, whose
full-precision networks are based on ResNet and MobileNetV1 respectively, and
tested the proposed input layer on them. Also, the experiment includes compar-
ison between Hadamard transform to DCT as input layer. Next, in order to test

4718

Energy-Efficient Image Processing using Binary Neural Networks 9

Fig. 4: Structures of conventional and proposed input layer. The Hadamard
transform in proposed structure is performed by grouped convolution with 8-bit
integer. Output dimension of the operation depends on Kbasis ≤ N2, which is
the number of 2-d kernels of Hadamard transform. In this paper, we used N=4
and Kbasis=10. The binary pointwise convolution can be operated by bitwise
XNOR and bit count. And shortcuts may requires channel-wise zero padding to
match the dimension of the binary pointwise convolution.

practicality of proposed layer, we replaced input layer of ReActNet [16], which
showed the best performance regarding accuracy degradation in this field, with
the proposed layer. The network with proposed layer was tested on real-world
large scale images, the ImageNet [2]. Lastly, we replaced the kernels of Hadamard
from the proposed input layer with binarized filters through training. Datasets
used in the experiments are CIFAR-10 [13] and ImageNet [2]. CIFAR-10 is a rep-
resentative small image(32x32) dataset and has 10 categories in it. The dataset
consists 50K training images and 10K test images. ImageNet contains 1.2M
training images and 50K validation images each of which can be categorized in
1K classes. Unlike CIFAR-10, the image sizes are different from one another, so
they are normally resized to fit a particular size(e.g. 224x224) for training and
validation. Image classification accuracy and energy consumption of the MAC
operation are considered to compare the efficacy of proposed input layer. To
measure the energy consumption, we used ACE which is proposed by [31]. The
metric counts the number of MAC operations and each operation are weighted
by bit width of the operands. ACE for different precision is summarized in the
Table 1.

4.1 Generality of the Hadamard Transform as an Input Layer

Implementation Details. We implemented two BNNs based on ResNet and
MobileNet, which are widely used in BNN studies so far [15, 19, 17, 30, 31], and
trained them with CIFAR10 [13]. The binarization techniques, which are used

4719

10 J. Park et al.

Table 1: ACE metric [31]

Precision
float int

32 16 bfloat 16 32 8 4 4 1

ACE 1024 256 256 1024 64 16 4 1

in this experiment, follow ReActNet [17]. On top of them, minor modifications
of BNN models were processed. Specifically, when experimenting with a ResNet
model, the ResNet-18 structure was used instead of ResNet-20, which has 3x3
kernel size at input layer. The same structure was used in [1]. Afterward we
refer to this network as ReActNet-18. And when testing MobileNetV1 based
BNN, we took the structure proposed by ReActNet [16] and reduced the stride
step of input layer from 2 to 1. The MobileNet-based BNN will be referred to
ReActNet-A, regardless of stride size at input layer.

There are three differences between baseline input layer and proposed input
layer. For the baseline, kernel size is 3x3 and standard 2d convolution is used.
In other words, group size is 1. And operands are high-precision with 32-bit
floating point. On the other hand, proposed input layer has a kernel size of 4x4,
and the grouped convolution with group size of the input channel(RGB channels
for conventional input image). Each groups take 10 2D kernels of Hadamard
transform. And binary point wise convolution is followed by the transform, to
flexibly control the number of output channels.

Two-stage training strategy, which is widely used in BNN training [19, 18,
17, 31], is adopted for training the BNNs. In the first step, only activations
are binarized, and weights remain 32-bit floating point number. In the second
step, the previously trained model becomes the initial state, and then additional
binarization function for weights are added in the network. Thus in this step,
both activations and weights are binarized. Adam [12] optimizer was used, and
hyperparameters were set as follows. Training 100K steps for each stage with
256 epochs, batch size of 128 and learning rate of 5e-4. Weight decay is used in
the first stage of learning, but not in the second stage[16].

Results. ReActNet-18 with conventional input layer, shows accuracy of 93.49%
on CIFAR10. ACE for the network is 2.36G and the input layer accounts for
76.63% out of the entire network ACE. On the other hand, in the case of using
the proposed layer, the accuracy dropped by 1.17% resulting in accuracy level of
92.51%. The network saved 75.13% of ACE compared to baseline. In ReActNet-
A, the trend were same as the ResNet-18. The accuracy of the baseline is 90.74%,
and the ACE is 1.31G. The baseline input layer occupies 69.18% of entire ACE.
However, when the input layer is replaced with the proposed layer, accuracy level
is 89.60% which is loss of 1.39% point, and the ACE is decreased by 66.70% com-
pared to the baseline. Additionally to compare Hadamard transform with DCT,

4720

Energy-Efficient Image Processing using Binary Neural Networks 11

we implemented proposed input layer with DCT instead of Hadamard trans-
form. As the two transformations are same in terms of functionality, accuracy
levels achieved with DCT are similar to with Hadamard transform. However,
DCT consumes more energy than Hadamard transform because the latter is
multiplication-free. The results are summarized in Table 2.

Table 2: Results on CIFAR10
Network Input layer Accuracy ∆Acc.(%p) ACE(1e9) ∆ ACE

ReActNet-18
Baseline 93.94% - 2.36 -
DCT 92.97% -0.97 1.06 -55.18%

Proposed 92.51% -1.43 0.59 -75.13%

ReActNet-A
Baseline 90.74% - 1.31 -
DCT 89.41% -1.33 0.91 -30.67%

Proposed 89.35% -1.39 0.44 -66.70%

4.2 BNN with Proposed Input Layer on ImageNet

Implementation Details. The baseline for this experiment is exactly same as
proposed in [16]. Stride step is 2 for both baseline and proposed input layer.
The two-stage strategy was applied on this experiment. The proposed network
was trained with 256 epochs, batch size of 256 and learning rate of 5e-6 for each
stage as the authors in [16] suggested. Weight decay was set 5e-6 and used only
for the first step.

Results. The baseline has a validation accuracy of 70.5% and ACE of 16.96G,
where input layer alone accounts for 65.42%. However, with the proposed input
layer, the ACE decrease by 63.08% at the cost of 1.38% of accuracy loss which
is summarized in Table 3. Compared to ReActNet’s real-valued counter part,
it was finally reduced by 3.28% point. The gap is superior to FracBNN [30],
which showed the second best result in the accuracy gap. As a result, the SOTA
BNN with the proposed input layer still showed the smallest accuracy gap from
real-valued counterpart and achieved better energy-efficiency. This result is sum-
marized in Table 4.

4.3 Hadamard Transform vs. Trained Binary Weights

As mentioned in Section 3, using the Hadamard transform as an input layer
means using the transform’s 2D kernels as weight filters. Since the filters consist
of only +1 and -1, the convolution operation consists of only add/sub without
multiplication. Thanks to this, we were able to implement energy-efficient BNNs.

4721

12 J. Park et al.

Table 3: Results on ImageNet
Network Input layer Accuracy ∆Acc.(%p) ACE(1e9) ∆ ACE

ReActNet-A
Baseline 70.5% - 16.9 -
Proposed 69.12% -1.39 6.26 -63.08%

Table 4: Top-1 accuracy of BNNs on ImageNet.
Network Method Top-1 accuracy(%) Gap(%)

AlexNet
Full-precision 56.6 -
BinaryNet [10] 27.9 -28.7
XNOR-Net [25] 44.2 -12.4

ResNet-18

Full-precision 69.3 -
ABC-Net (5 bases) [15] 65.0 -4.3

ABC-Net (1 base) 42.7 -28.6
Bi-RealNet [18] 56.4 -12.9
ReActNet [17] 65.5 -3.8

PokeBNN
Full-precision 79.2 -

PokeBNN-1.0 [31] 73.4 -5.8

FracBNN
Full-precision 75.6 -
FracBNN [30] 71.8 -3.8

ReActNet-A
Full-precision 72.4 -

ReActNet(Adam) [16] 70.5 -1.9
Ours 69.12 -3.28

However, this result can be attributed not to the kernels of Hadamard, but to
filters composed of +1 and -1. To make it clear, we created the same structure
as the proposed input layer and trained binarized weights from the scratch.

The experiment was conducted on ReActNet-A with CIFAR10 dataset. The
result showed that training filter was less accurate than proposed input layer and
the training curve was largely fluctuated as illustrated in Fig.5. If the learning
process is unstable, the final accuracy can be deteriorated [16]. In general, it is
a phenomenon that occurs when the sign of binarized weights changes only at a
few steps, because the real-valued weights before binarization are close to zero
during the training time[16]. Empirically, this case can be solved by lowering
the learning rate, but BNN already uses a much lower learning rate than full-
precision network learning, so overall learning time can be increased to achieve
the same result.

4722

Energy-Efficient Image Processing using Binary Neural Networks 13

Fig. 5: Training curves of ReActNet-A on CIFAR10. The blue line is the network
with training input layer with binary weights, which is unstable. The orange line
is the network with the proposed input layer. Unlike the blue line, the accuracy
of proposed network increases without fluctuation even the filters are binary
values.

5 Conclusion

The input layer of in state-of-the-art binary neural networks (BNNs) typically
use floating-point arithmetic because of the resulting steep drop in accuracy
when quantized and its negligible effect on inference speed. However, from an
energy consumption perspective, the layer consumes an abnormal amount of en-
ergy. To address this issue, we proposed an energy-efficient input layer for binary
neural networks using a Hadamard transform. The proposed input layer has been
tested on ReActNet-A and ReActNet-18, which are MobileNetV1 and ResNet-
18 based BNN respectively. The energy consumption of BNN was measured by
ACE, and with the proposed input layer, the networks’ ACE value was reduced
by up to 75%. In addition, the accuracy degradation caused by this input layer
was less than 1.5%.

Acknowledgements This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT) (No.2019-0-01906, Artificial Intelligence Gradu-
ate School Program(POSTECH))

References

1. Chen, T., Zhang, Z., Ouyang, X., Liu, Z., Shen, Z., Wang, Z.: " bnn-bn=?": Train-
ing binary neural networks without batch normalization. In: Proceedings of the

4723

14 J. Park et al.

IEEE/CVF conference on computer vision and pattern recognition. pp. 4619–4629
(2021)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

3. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141–142 (2012)

4. Diana Andrushia, A., Thangarjan, R.: Saliency-based image compression using
walsh–hadamard transform (wht). In: Biologically rationalized computing tech-
niques for image processing applications, pp. 21–42. Springer (2018)

5. GG, L.P., Domnic, S.: Walsh–hadamard transform kernel-based feature vector for
shot boundary detection. IEEE Transactions on Image Processing 23(12), 5187–
5197 (2014)

6. Ghrare, S.E., Khobaiz, A.R.: Digital image compression using block truncation
coding and walsh hadamard transform hybrid technique. In: 2014 International
Conference on Computer, Communications, and Control Technology (I4CT). pp.
477–480. IEEE (2014)

7. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks
straight from jpeg. Advances in Neural Information Processing Systems 31 (2018)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

9. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

10. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. Advances in neural information processing systems 29 (2016)

11. Ju, S., Lee, Y., Lee, S.: Convolutional neural networks with discrete cosine trans-
form features. IEEE Transactions on Computers (2022)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical Report (2009)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25
(2012)

15. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
Advances in neural information processing systems 30 (2017)

16. Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., Cheng, K.T.: How do adam
and training strategies help bnns optimization. In: International Conference on
Machine Learning. pp. 6936–6946. PMLR (2021)

17. Liu, Z., Shen, Z., Savvides, M., Cheng, K.T.: Reactnet: Towards precise binary
neural network with generalized activation functions. In: European Conference on
Computer Vision. pp. 143–159. Springer (2020)

18. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: Enhanc-
ing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In: Proceedings of the European conference on com-
puter vision (ECCV). pp. 722–737 (2018)

19. Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural net-
works with real-to-binary convolutions. arXiv preprint arXiv:2003.11535 (2020)

4724

Energy-Efficient Image Processing using Binary Neural Networks 15

20. Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detec-
tion. Pattern recognition 25(12), 1479–1494 (1992)

21. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

22. Pan, H., Badawi, D., Cetin, A.E.: Fast walsh-hadamard transform and smooth-
thresholding based binary layers in deep neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4650–
4659 (2021)

23. Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding. Pro-
ceedings of the IEEE 57(1), 58–68 (1969)

24. Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N.: Binary neural networks: A
survey. Pattern Recognition 105, 107281 (2020)

25. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: European conference on
computer vision. pp. 525–542. Springer (2016)

26. Salomon, D.: Data compression: the complete reference. Springer Science & Busi-
ness Media (2004)

27. Ulicny, M., Krylov, V.A., Dahyot, R.: Harmonic convolutional networks based on
discrete cosine transform. Pattern Recognition 129, 108707 (2022)

28. Valova, I., Kosugi, Y.: Hadamard-based image decomposition and compression.
IEEE Transactions on Information Technology in Biomedicine 4(4), 306–319 (2000)

29. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep
neural networks? Advances in neural information processing systems 27 (2014)

30. Zhang, Y., Pan, J., Liu, X., Chen, H., Chen, D., Zhang, Z.: Fracbnn: Accurate
and fpga-efficient binary neural networks with fractional activations. In: The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. pp.
171–182 (2021)

31. Zhang, Y., Zhang, Z., Lew, L.: Pokebnn: A binary pursuit of lightweight accuracy.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12475–12485 (2022)

4725

