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Abstract. Recently, the deep learning-based object detection methods
have achieved a great success. However, the performance of such tech-
niques deteriorates on the images captured under adverse weather con-
ditions. To tackle this problem, a detection-driven enhancement network
(DENet) which consists of three key modules for object detection is pro-
posed. By using Laplacian pyramid, each input image is decomposed to
a low-frequency (LF) component and several high-frequency (HF) com-
ponents. For the LF component, a global enhancement module which
consists of four parallel paths with different convolution kernel sizes is
presented to well capture multi-scale features. For HF components, a
cross-level guidance module is used to extract cross-level guidance infor-
mation from the LF component, and affine transformation is applied in
a detail enhancement module to incorporate the guidance information
into the HF features. By cascading the proposed DENet and a common
YOLO detector, we establish an elegant detection framework called DE-
YOLO. Through experiments, we find that DENet avoids heavy com-
putation and faithfully preserves the latent features which are beneficial
to detection, and DE-YOLO is effective for images captured under both
the normal condition and adverse weather conditions. The codes and pre-
trained models are available at: https://github.com/NIvykk/DENet.

1 Introduction

Recently, the convolutional neural network (CNN)-based object detection meth-
ods, including the two-stage detectors [1–4] and the one-stage detectors [5–8],
have achieved remarkable performance on benchmark datasets [9, 10]. However,
existing object detection models are usually trained on high-quality images. In
real applications such as autonomous driving, images may be captured under
adverse weather conditions, such as low-light and foggy conditions. Due to the
large domain shift between the training and testing images, these object detec-
tion models may fail to provide reliable results under adverse weather conditions.
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2 Qin et al.

To address this problem, one straightforward solution is to fine-tune the pre-
trained object detection models on the target domain. However, it is expensive
to collect a new dataset with handcrafted annotations on the target domain.
Moreover, the fine-tuned models may suffer from a performance drop on the
source domain. Therefore, such a solution is impracticable.

An alternative approach is to apply the unsupervised domain adaptation
(UDA). The UDA-based methods [11–19] adopt the strategy of adversarial train-
ing, and attempt to learn robust domain-invariant features from both the labeled
images on the source domain and the unlabeled low-quality images on the target
domain. Such a strategy improves the performance on the target domain, while
maintains a satisfactory detection results on the source domain. In addition, by
using the UDA-based methods, there is no need to collect a large-scale anno-
tated dataset for the new target domain. Despite the above advantages, if the
gap between the two domains is too large, it is still hard for the UDA-based
methods to align the features from the two different distributions.

As another potential solution, multi-task learning (MTL) is utilized by some
methods [20, 21]. Compared with the UDA-based methods, the MTL-based meth-
ods achieve a better performance on the target domain. However, the accuracy
of this type of methods usually decreases on the source domain.

Intuitively, it is possible to improve the performance of detection under ad-
verse weather conditions by utilizing the advanced image enhancement tech-
niques [22–32] beforehand. However, in order to establish a sophisticated non-
linear mapping from a low-quality image to the corresponding high-quality ver-
sion, many enhancement models have a large model size. Applying such a com-
plex model before the detector is harmful for real-time detection. Although there
are some lightweight models which require short running time, they can only
bring limited improvement to the performance of object detection as they are
designed only for the human visual system. Another limitation lies in that many
enhancement models are trained by using the enhancement loss, which measures
the distance between the enhanced image and a clean ground-truth (GT). On
one hand, a clean GT image may not be available in real applications. On the
other hand, such a loss function treats each pixel equally and does not pay more
attention to the structured features that are beneficial to object detection.

To tackle the limitations of the above methods, a detection-driven enhance-
ment network (DENet) is proposed in this paper. Such a network is designed for
the detection task, and is able to identify and pay special attention to those la-
tent features that are important to object detection. In DENet, we use Laplacian
pyramid [33] to decompose the input image into a low-frequency (LF) compo-
nent and several high-frequency (HF) components. Usually, the weather-specific
information, such as contrast and illumination, are more related to the LF com-
ponent. Therefore, to alleviate the effects of adverse weather on detection, it
is important to well capture and refine the multi-scale information in the LF
component. To this end, a global enhancement module (GEM) which consists of
four parallel paths with different convolution kernel sizes is designed for the LF
component. Due to the reason that weather-specific information interacts with
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objects, we extract cross-level guidance information from the LF component,
and then apply affine transformation to incorporate the guidance information
into the features of each HF component, so that the HF information, such as
edges and textures, can be well depicted. To avoid the disadvantages of the nor-
mal enhancement loss function, we assume that clean GT image is not available.
DENet is combined with a normal YOLOv3 model and the detection loss is di-
rectly used for training. As there is no need to establish an accurate mapping to
the clean GT image for each pixel, a lightweight design of DENet still leads to
satisfactory detection results.

In summary, our contributions are threefold: 1) An extremely lightweight
enhancement model (with only 45K parameters) called DENet is proposed. For
effective and efficient enhancement, a Laplacian-pyramid-based structure is ap-
plied in DENet, where a GEM is designed for enhancing the LF component,
and a detail enhancement module (DEM) is developed to refine the HF com-
ponents adaptively. 2) By cascading DENet and a common detector such as
YOLOv3 [7], an elegant end-to-end detection framework called DE-YOLO (cas-
caded detection-driven enhancement and YOLO) is obtained. When training
DE-YOLO, we only use the normal detection loss, and does not require high-
quality GT images. 3) Compared with different types of state-of-the-art (SOTA)
methods, the proposed method is able to provide the most faithful detection
results under both the normal condition and the adverse weather conditions,
while requires very limited running time.

2 Related Work

2.1 UDA-based and MTL-based Methods

Recently, some researchers have proposed to apply the UDA-based methods to
improve the performance of detection under adverse weather conditions. Chen et
al. [11] introduced image-level and instance-level domain classifiers for the two-
stage detector faster R-CNN [3]. Following this work, many two-stage-detector-
based methods [12–15] have been proposed. For the one-stage detector, MS-
DAYOLO [16] employed multi-scale image-level domain classifiers. Based on MS-
DAYOLO, multi-scale instance-level domain adaptation and consistency regu-
larization are introduced in DAYOLO [17], which result in a better performance.
Sindagi et al. [18] proposed a domain adaptive object detection framework based
on the prior knowledge of degradation models.

Some MTL-based methods have also been proposed. For example, Huang et
al. [20] designed a framework which jointly learns three tasks, including visibility
enhancement, object classification and localization. Cui et al. [21] explored the
physical noise model under low-light condition, and trained a model to simul-
taneously predict the degradation parameters of images and detect objects, so
that the intrinsic feature representation can be well extracted.

Note that except the basic detector, no extra parameters are needed in the
testing phase of the UDA-based and MTL-based methods. Therefore, applying
these two types of methods has no influence on the detection speed.
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2.2 Image Enhancement Methods

Image enhancement methods can be used to improve the visual quality of the
images taken under adverse weather conditions. For the low-light condition,
many CNN-based low light image enhancement (LLIE) methods have been de-
veloped, including the retinex-based methods [22–24], the adversarial-learning-
based methods [25], the mapping-based models [26], the unsupervised-learning-
based methods [27, 28], etc. For the foggy condition, the typical CNN-based
defogging methods include the mapping-based methods [29, 30] which directly
predict the clean images, and the degeneration-based models [31, 32] which at-
tempt to estimate the transmission map of a hazy input.

2.3 Joint Enhancement and Detection Methods

Only a few joint enhancement and detection (JED) methods have been put
forward. Liu et al. [34] proposed a joint low-light enhancement and face detection
method, which establishes a reverse mapping to properly model the degradation
of images, and a dual-path fusion architecture to fuse the features extracted
from both the enhancement and face detection phases. However, this method
requires both pair and unpair training data. Liu et al. [35] presented a JED
framework called IA-YOLO, which uses a CNN-based predictor to learn the
hyperparameters for the filters in a fully differentiable image processing (DIP)
module. However, the filters in the DIP module are handcrafted and cascaded
in a fixed order, which may limit the ability of DIP module. Different from IA-
YOLO, our DENet decomposes the input image into LF and HF components
and enhances each component adaptively. Such a structure can provide more
flexibility to adaptively suppress the effects of weather-specific information and
refine the latent features of objects.

3 Proposed Method

As shown in Fig. 1, our pipeline contains a DENet and a normal object detection
model YOLOv3. DENet is responsible for adaptively enhancing the input low-
light/foggy images, so that the weather-specific information can be well removed
and the latent discriminative features can be well preserved. To reduce computa-
tional complexity and guarantee a reliable enhancement, a Laplacian-pyramid-
based structure is applied in DENet (Sec. 3.1). Afterwards, the enhanced im-
ages are fed to YOLOv3 for detection. By training the cascaded DENet and
YOLOv3 models in an end-to-end manner with the normal detection loss, a
joint enhancement-detection framework DE-YOLO is obtained.

3.1 Laplacian-pyramid-based Enhancement

By using Laplacian pyramid decomposition [33], an input image I with a res-
olution of h × w can be decomposed into an LF component and several HF

2816



DENet 5

DEM

DEM

DEM

CGM

GEM

YOLOv3

D
et

ec
tio

n 
L

os
s

DENet

Ground Truth

DENet OutputInput

DE-YOLO

Detection Output

Fig. 1: Architecture of the proposed framework (in our setting, the number of decom-
position levels in Laplacian pyramid is 4).

components. The LF component and the HF component at the ith decomposi-
tion level in Laplacian pyramid (1 ≤ i < N) are respectively calculated by

L = GN (I) (1)

Hi = Gi(I)−B(Gi+1(I) ↑2) (2)

where N is the total number of decomposition levels; B(.) denotes blurring the
input by using a 2D Gausssian kernel with a size of 5 × 5; ↑2 stands for up-
sampling an image by a factor of 2; Gi(I) ∈ R

h

2i−1 × w

2i−1 ×3 represents the ith
level of image in Gaussian pyramid [36], which can be defined by

Gi(I) =

{
I, i = 1

B(Gi−1(I)) ↓2, 2 ≤ i ≤ N
(3)

where ↓2 denotes down-sampling an image by a factor of 2. From Equs. (1)∼(3),
it is obvious that the decomposition is fully reversible.

As can be observed from Equ. (3), the image at the Nth level in Gaussian
pyramid has been blurred N − 1 times and has the lowest resolution. Thus
L in Laplacian pyramid is an LF component, which is likely to contain global
illumination and large-scale structure. On the other hand, according to Equ. (2),
Hi consists of HF residual details and has a larger resolution. From a high
decomposition level to a low decomposition level, coarse to fine levels of image
details are respectively stored in {Hi}.

By taking advantage of Laplacian pyramid decomposition and reconstruc-
tion, a lightweight but very effective DENet is proposed. Since the LF component
in Laplacian pyramid reveals global illumination, we design a GEM (Sec. 3.2)
in DENet to improve the contrast and restore the visibility in the LF compo-
nent. Note that the LF component in Laplacian pyramid has a small resolution,
leading to a low computational burden in GEM. Thus using Laplacian pyramid
decomposition and building GEM for the LF component is beneficial to the de-
tection speed of DE-YOLO. When enhancing the global contrast/illumination, it
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Fig. 2: The structure of GEM. “Conv 3 × 3, 32” stands for a convolutional layer with
a kernel size of 3 × 3 and 32 output channels. For simplicity, the activation function
LReLU is omitted.

is also necessary to enhance the local details accordingly. We notice that the HF
components in Laplacian pyramid contain coarse-to-fine local details and those
details are highly related to the LF component. Therefore, a DEM (Sec. 3.3) is
deployed at each HF level to efficiently and effectively enhance the local details
by incorporating the guidance information extracted from a cross-level guidance
module (CGM) (Sec. 3.3). Finally, the enhanced LF and HF components are
used to progressively reconstruct the enhanced image.

3.2 Global Enhancement Module for the LF Component

The structure of GEM is shown in Fig. 2. Unlike the common low-level vision
tasks, the goal of our DENet is not to obtain an enhanced image which is close to
the clean GT for human eyes. Thus there is no need to establish a sophisticated
mapping from the low-quality image domain to the GT domain. This enables
the structure of GEM to be simple enough.

In the front end of GEM, two convolutional layers are first used to extract
features from the LF component with a dimension of h

2N−1 × w
2N−1 × 3. As GEM

is built to enhance the global structure and contrast/illumination in images, it
is reasonable to use different sizes of kernels to well capture multi-scale infor-
mation, which is similar to the idea of the well-known Inception architecture
[37]. Here we use four parallel convolutions with 1 × 1, 3 × 3, 5 × 5 and 7 × 7
filters, respectively. Since the resolution of the LF component is rather small, a
kernel size of 7× 7 is enough to cover a very large region in the original image.
Therefore, environment-specific knowledge such as the lighting condition or the
fog spreading over the whole image can be well depicted. To further reduce the
computational complexity and the number of parameters, the output features of
each parallel path are compressed to 8 channels. Through experiments we found
that such a lightweight setting still leads to satisfactory detection results. After-
wards, the features from four parallel paths are concatenated and further fused
by two 3 × 3 convolutional layers. To improve the performance of GEM, skip
connection is applied, so that this structure can focus on learning the residual
between the input LF component L and the corresponding enhanced output L.
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Fig. 3: The structures of CGM and DEM. The activation function LReLU is omitted.

3.3 Detail Enhancement Module for the HF Components
To enhance the HF components which contain coarse-to-fine local details in
Laplacian pyramid, DEM and CGM are established, the structures of which are
given in Fig. 3 (a) and (b), respectively.

CGM is used to extract the guidance information from the LF component. To
embed the differences between the unprocessed component L and the enhanced
component L, both L and L are fed to CGM. In the front end of CGM, L and
L are concatenated. Then a 3 × 3 convolutional layer extracts 32 feature maps
from the concatenated two components. Since the LF component is spatially
correlated to the HF components, a spatial attention module [38] is utilized
to localize the positions where LF and HF components are highly correlated.
Finally, another 3× 3 convolutional layer is used to further refine the 32 feature
maps and generate the guidance G with a dimension of h

2N−1 × w
2N−1 × 3.

DEM is utilized to enhance the HF components under the guidance provided
by CGM. Since the resolutions of the LF and each HF component are different,
before entering DEM, the cross-level guidance information is upsampled by using
bilinear interpolation. Note that the resolution of the HF component becomes
larger as the decomposition level goes lower. As a result, building a sophisticated
enhancement module for each HF component could induce intense computation,
which significantly reduces detection speed. To efficiently and effectively enhance
the HF components, we use a simple residual block, and apply affine transforma-
tion [39] to incorporate the guidance information into the extracted HF features.
The affine transformation is defined as

M(Fi | αi, βi) = αi ⊙ Fi + βi (4)

where Fi stands for the extracted HF feature; ⊙ denotes the element-wise multi-
plication; αi and βi are the scaling and shifting parameters at the ith decompo-
sition level, respectively, which are learned by feeding the upsampled guidance
information G to two different 3× 3 convolutional layers.

4 Experiments and Analysis
4.1 Implementation Details
In our experiment, to facilitate a fair and comprehensive evaluation, the classical
YOLOv3 [7] is applied as the detector. The image size for training and testing
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is 544× 544. During training, data augmentations such as random filp, random
scale and HSV augment are used. The batch size is set to 8 and the initial
learning rate is 10−4. Adam optimizer [40] with Cosine learning rate schedule is
used to train DE-YOLO for 150 epochs, and the early stopping strategy is used
to avoid overfitting. The proposed DE-YOLO is implemented with the Pytorch
framework, and all the experiments are carried out on a single NVIDIA GeForce
RTX 2080 Ti GPU.

4.2 Preparation of Datasets

The low-light and foggy weather conditions are evaluated, and the used datasets
are summarized in Table 1. For low-light condition, exclusively dark (ExDark) [41]
is used, which contains 7363 low-light images, where 12 object categories for de-
tection are annotated. For foggy weather, the real-world task-driven testing set
(RTTS) is chosen. It consists of 4322 images captured under real-world foggy
condition, and 5 object categories are annotated. Besides, the unannotated re-
alistic hazy images (URHI ) dataset which contains 4807 unannotated natural
hazy images is also used for training the UDA-based methods. Both RTTS and
URHI are subsets in the RESIDE dataset [42].

Moreover, the well-known dataset PASCAl VOC [9] is used to generate syn-
thetic low-light and foggy images. Note that although each synthetic degraded
image has a corresponding GT high-quality version, the GT images are not used
for training IA-YOLO and our DE-YOLO. To obtain synthetic low-light images,
the original RGB images in VOC are degraded by gamma transformation:

g(I) = Iγ (5)

For each image in VOC, γ is randomly selected from a range of [1.5, 5]. How-
ever, only 10 out of 20 categories in VOC dataset match with the 10 categories
in ExDark dataset. Therefore, we first filter out the unmatched categories in
VOC, and obtain two sub-sets called VOC_train_I and VOC_test_I for train-
ing and testing, respectively. Then all the images in VOC_test_I are degraded
by Equ. (5), resulting in a synthetic low-light testing set VOC_lowlight_test.
By randomly degrading 2/3 images in VOC_train_I, a hybrid training set
VOC_hybrid_train_I is built.

Similarly, to generate synthetic foggy images, we build VOC_train_II and
VOC_test_II by filtering out the VOC categories that do not match with RTTS
dataset. Based on the atmospheric scattering model [43–45], the foggy datasets
VOC_hybrid_train_II and VOC_foggy_test are obtained by:

J = Ie−λd+A(1− e−λd) (6)

where J denotes the synthetic foggy image, A is the global atmospheric light
and is set as 0.5 in our experiment, λ = 0.05 + 0.01 ∗ k, k is a random integer
number which ranges from 0 to 9. The scene depth of a pixel is computed by
d = −0.04× ρ+

√
max(h,w), with ρ denoting the Euclidean distance from the

current pixel to the central one, h and w being the height and width of the target
image, respectively.
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Table 1: Overview of the used datasets. NLI and LLI are short for normal-light and
low-light images, respectively.

Dataset Type Images Instances Categories

VOC_train_I NLI 12334 29135 10
VOC_test_I NLI 3760 8939 10
VOC_hybrid_train_I NLI + synthetic LLI 12334 29135 10
VOC_lowlight_test synthetic LLI 3760 8939 10
ExDark (training) realistic LLI 4800 - -
ExDark (testing) realistic LLI 2563 6450 10

VOC_train_II fog-free 8111 19561 5
VOC_test_II fog-free 2734 6604 5
VOC_hybrid_train_II fog-free + synthetic foggy 8111 19561 5
VOC_foggy_test synthetic foggy 2734 6604 5
URHI (training) realistic foggy 4807 - -
RTTS (testing) realistic foggy 4322 29577 5

4.3 Object Detection on Low-light Images

For the low-light condition, DSNet, IA-YOLO and proposed DE-YOLO is trained
on VOC_hybrid_train_I. The Baseline methods YOLOv3(N) and YOLOv3(L)
are obtained by training the normal YOLOv3 model [7] on VOC_train_I and
VOC_hybrid_train_I, respectively. The LLIE methods, including MBLLEN [26],
KinD [22], EnlightenGAN [25] and Zero-DCE [27], are used to preprocess the
low-light images before applying YOLOv3(N) for detection. The pre-trained
models of the four LLIE methods provided by their authors are directly ap-
plied. For the UDA-based methods, MS-DAYOLO [16] and DAYOLO [17] are
re-trained on VOC_train_I on the source domain with labels and the training
set of ExDark on the target domain without labels. Since a synthetic low-light
dataset is proposed together with MAET in [21], MAET is trained on its own
synthetic low-light dataset.

Table 2 shows comparisons among different methods on three testing datasets.
The performance is evaluated by using the mean average precision (mAP) at
an intersection over union (IoU) threshold of 0.5 (mAP50). From Table 2 we
have the following observations: 1) Training YOLOv3(L) on the hybrid dataset
achieves better performance than YOLOv3(N) on low-light testing datasets.
However, when testing on normal-light dataset VOC_test_I, YOLOv3(L) is
worse than YOLOv3(N), which suggests that YOLOv3(L) cannot be well gen-
eralized from one dataset to another. 2) Simply using the four LLIE methods
(MBLLEN, KinD, EnlightenGAN, Zero-DCE) before YOLOv3 cannot signifi-
cantly improve the performance of YOLOv3(N). 3) The two UDA-based meth-
ods MS-DAYOLO and DAYOLO bring limited improvements over YOLOv3(N)
on two low-light testing datasets. As the UDA-based methods are trained on
the target domain without labels, the performance is less satisfactory when the
domain gap is large. 4) The two MTL-based methods achieve higher mAP than
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Table 2: Performance comparisons on low-light images (mAP50 (%)).
Method VOC_test_I VOC_lowlight_test ExDark

Baseline YOLOv3(N) [7] 72.22 56.34 43.02
YOLOv3(L) [7] 66.95 62.91 45.58

LLIE

MBLLEN [26] - 58.36 43.49
KinD [22] - 52.57 39.22
EnlightenGAN [25] - 53.67 39.42
Zero-DCE [27] - 56.49 40.40

UDA MS-DAYOLO [16] 72.01 58.20 44.25
DAYOLO [17] 71.58 58.82 44.62

MTL DSNet [20] 61.82 64.57 45.31
MAET [21] 69.49 58.23 47.10

JED IA-YOLO [35] 72.53 67.34 49.43
DE-YOLO (ours) 73.17 67.81 51.51

UDA-based and LLIE-based approaches on the ExDark dataset, yet fall behind
UDA-based approaches on the normal-light dataset VOC_test_I. 5) The two
JED-based approaches are superior to other types of methods, and the proposed
DE-YOLO yields the best performance among all the competing methods on
all the three datasets. Particularly, on realistic low-light dataset ExDark, DE-
YOLO surpasses YOLOv3(L) and the second best method IA-YOLO by 5.93%
and 2.08%, respectively. Moreover, DE-YOLO achieves a even better perfor-
mance than YOLOv3(N) on normal-light images, which well demonstrates the
generalization ability of DE-YOLO.

The detection results obtained by different methods are visualized in Figs. 4
and 5. For the GT results, we just show the GT labels on the original low-
light images. Although the LLIE methods and the JED method IA-YOLO are
able to enhance the brightness of images, significant noises and artifacts can be
observed from their results. On the contrary, DENet can suitably enhance the
underexposed regions in images, while suppressing different kinds of artifacts and
noises. Therefore, the detection results of DE-YOLO have fewer false-positive
and false-negative results.

4.4 Object Detection on Foggy Images

Table 3 presents the detection results on foggy images. Similar to the settings
on low-light images, YOLOv3(N) and YOLOv3(F) are the YOLOv3 [7] models
trained on VOC_train_II and VOC_hybrid_train_II, respectively. Three rep-
resentative defogging methods including GridDehazeNet [29], DCPDN [31] and
MSBDN [30] are adopted to pre-process the foggy images before detection. The
two UDA-based methods MS-DAYOLO [16] and DAYOLO [17] are re-trained
on VOC_train_II on the source domain with labels and URHI on the target
domain without labels. The MTL-based method DSNet [20] and the JED-based
methods IA-YOLO [35] and DE-YOLO are re-trained on VOC_hybrid_train_II.
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(a) YOLOv3(L) [7] (b) MBLLEN [26] (c) KinD [22] (d) EnlightenGAN [25]

(e) Zero-DCE [27] (f) IA-YOLO [35] (g) DE-YOLO (ours) (h) GT

Fig. 4: Detection results obtained on image 2015_00402 from ExDark. MBLLEN,
KinD, Zero-DCE, EnlightenGAN and IA-YOLO all generate significant noises. Al-
though DE-YOLO is darker than the other methods, the image is clear and the con-
trast is suitable.

(a) YOLOv3(L) [7] (b) MBLLEN [26] (c) KinD [22] (d) EnlightenGAN [25]

(e) Zero-DCE [27] (f) IA-YOLO [35] (g) DE-YOLO (ours) (h) GT

Fig. 5: Detection results obtained on image 2015_00542 from ExDark. Compared with
other methods, DE-YOLO well suppresses artifacts and enhances the contrast of image.
Besides, DE-YOLO is the only method that properly detects all the objects.

It can be seen from Table 3 that: 1) Although GridDehazeNet, DCPDN and
MSBDN are worse than YOLOv3(F), applying the three defogging methods sig-
nificantly improve the performance of YOLOv3(N). 2) Similar to the low-light
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Table 3: Performance comparisons on foggy images (mAP50 (%)).
Method VOC_test_II VOC_foggy_test RTTS

Baseline YOLOv3(N) [7] 83.41 46.53 41.87
YOLOv3(F) [7] 79.06 78.87 49.45

Defogging
GridDehazeNet [29] - 72.09 46.03
DCPDN [31] - 73.38 44.43
MSBDN [30] - 72.04 45.90

UDA MS-DAYOLO [16] 81.69 65.44 42.94
DAYOLO [17] 80.12 66.53 44.15

MTL DSNet [20] 71.49 81.71 49.86

JED IA-YOLO [35] 84.05 83.22 52.36
DE-YOLO (ours) 84.13 83.56 53.70

condition, the UDA-based methods are better than YOLOv3(N), but they are
worse than YOLOv3(F) on the two foggy datasets. 3) Compared with the defog-
ging and the UDA-based methods, DSNet achieves higher mAP values on the two
foggy datasets. However, it suffers from a drop in mAP on the fog-free dataset
VOC_test_II. 4) The proposed DE-YOLO achieves the best detection results
on all the three testing sets. In particular, on the realistic foggy dataset RTTS,
DE-YOLO provides mAP values 4.25% and 1.34% higher than YOLOv3(F) and
IA-YOLO, respectively.

The qualitative comparisons among different methods on the image from
RTTS are given in Fig. 6. For the GT result, the GT labels are directly showed
on the original hazy image. We can find that DE-YOLO is able to deliver images
with suitable contrast, which helps to increase the number of true-positive results
and the confidences of the detected objects.

4.5 Ablation Study

Table 4 compares the contributions of GEM, DEM and CGM in DENet, and
the results are reported on ExDark. Note that for the variant model which does
not have CGM, the affine transformation in DEM is removed. Therefore, such a
variant of DEM becomes a normal residual block. As can be seen, firstly, apply-
ing GEM leads to a mAP improvement of 2.79% over the normal YOLOv3(L).
Secondly, additionally using DEM results in a even better performance. Finally,
the best performance can be achieved by utilizing all the three modules, which
demonstrates that these modules are complementary to each other.

In Table 5, the effects of the number of levels of Laplacian pyramid in DENet
is evaluated. Note that when N = 1, Laplacian pyramid decomposition is not
applied, and only GEM is used to enhance the input image. It is obvious that
a larger number of decomposition levels results in more parameters and longer
runtime. We find that the mAP50 increases monotonically with N when N ≤ 4,
and the performance decreases when N > 4.
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(a) YOLOv3(N) [7] (b) YOLOv3(F) [7] (c) GridDehazeNet [29] (d) DCPDN [31]

(e) MSBDN [30] (f) IA-YOLO [35] (g) DE-YOLO (ours) (h) GT

Fig. 6: Detection results obtained by different methods on image BD_ Baidu_074 from
RTTS. Our DE-YOLO detects more vehicles than the other methods.

Table 4: Ablation analysis on different modules of our method. Note that only the
parameters of DENet are measured.

Method GEM DEM CGM Parameters (K) mAP50 (%)
YOLOv3 (L) - - - - 45.58

DE-YOLO
✓ × × 32 48.37
✓ ✓ × 35 49.80
✓ ✓ ✓ 45 51.51

Table 5: The effects of the number of levels of Laplacian pyramid. The runtime is tested
on a single RTX 2080Ti GPU with an image size of 544× 544. Note that the reported
numbers of parameters and runtime values are only measured on DENet.

N Parameters (K) Runtime (ms) mAP50 (%)
1 32 3 46.28
2 38 4 50.09
3 42 5 51.27
4 45 6 51.51
5 49 7 51.16
6 51 8 51.01

4.6 Efficiency Analysis

Table 6 lists the number of parameters and runtime consumed by different
enhancement-based methods. Note that during testing, the UDA-based and
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Table 6: The comparison of efficiency. The runtime is tested on a single RTX 2080Ti
GPU with an image size of 544 × 544. Note that the reported numbers of parameters
and runtime values do not include those required by the YOLOv3 model.

Method Parameters Runtime (ms)

LLIE

MBLLEN [26] 450K 72
KinD [22] 8M 28
Zero-DCE [27] 79K 7
EnlightenGAN [25] 9M 15

Defogging
GridDehazeNet [29] 985K 49
DCPDN [31] 67M 30
MSBDN [30] 31M 51

JED IA-YOLO [35] 165K 9
DENet (ours) 45K 6

MTL-based methods do not require extra parameters and computation. There-
fore, they are excluded from Table 6 for comparison. Since both IA-YOLO and
DE-YOLO include a normal YOLOv3 model, only the image enhancement sub-
networks are compared. It can be found from Table 6 that the proposed DENet
has a very small number of parameters and requires the shortest runtime. Such
a lightweight and fast model is suitable for real-time applications.

5 Conclusion

To enable a faithful detection under adverse weather conditions, an adaptive
image enhancement model DENet was presented. In DENet, the input image is
decomposed by using Laplacian pyramid. After that, the LF component and HF
components are respectively enhanced. To explore the correlation among differ-
ent components, cross-level guidance information is extracted from the LF com-
ponent and then incorporated into the features of the HF components. DENet
is extremely lightweight, and thus is suitable for the applications that require
real-time detection. By training DENet and a common YOLOv3 model in an
end-to-end manner, a JED framework DE-YOLO was obtained. Experiments
showed that DE-YOLO is able to achieve the highest mAP50 value among all the
compared methods under the low-light and foggy conditions. Meanwhile, under
the normal condition with clean input images, the performance of DE-YOLO is
also better than the original YOLOv3, which suggests that the proposed method
has a good generalization ability.
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