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Abstract. With the development of deep learning and computational
pathology, whole-slide images (WSIs) are widely used in clinical diagno-
sis. A WSI, which refers to the scanning of conventional glass slides into
digital slide images, usually contains gigabytes of pixels. Most existing
methods in computer vision process WSIs as many individual patches,
where the model infers the patches one by one to synthesize the fi-
nal results, neglecting the intrinsic WSI-wise global correlations among
the patches . In this paper, we propose the PATHology TRansformer
(PathTR), which utilizes the global information of WSI combined with
the local ones. In PathTR, the local context is first aggregated by a self-
attention mechanism, and then we design a recursive mechanism to en-
code the global context as additional states to build the end to end model.
Experiments on detecting lymph-node tumor metastases for breast can-
cer show that the proposed PathTR achieves the Free-response Receiver
Operating Characteristic Curves (FROC) score of 87.68%, which out-
performs the baseline and NCRF method with +8.99% and +7.08%,
respectively. Our method also achieves a significant 94.25% sensitivity
at 8 false positives per image.

1 Introduction

Pathology is the gold standard of clinical medicine, especially for cancer diagno-
sis. With the rapid development of digital slide scanners, digital pathology, where
glass slides are digitized into whole slide images (WSIs), has emerged as a po-
tential new trend. To distinguish the hierarchical morphological characteristics
such as glands, cells, stroma, and nucleus, pathology slides are usually scanned
with magnification at 200 multiple or 400 multiple, which produces extra large
digital images of gigapixels.

Although the images can be stored and rendered in a multi-resolution pyra-
mid manner, it brings considerable challenges to computer vision algorithms.
⋆ These authors contributed equally to this work.
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(a) A WSI is a very large gigapixel image with comprehensive pathological information
that can be viewed in multiple scales. In a whole-slide-scale global view, it is difficult
to recognize the details of tumor cells such as the shape of nucleus, which only presents
a very small field of view at a high-resolution scale.

(b) Left: in a small patch that fits the regular neural network size (e.g. 224x224),
although the details of nucleus are magnified can be viewed clearly, it is difficult to
judge whether it contains tumor cells due to the lack of context patches surrounding
it. Center: providing the context patches makes the task easier to detect tumor cells in
the current patch. Right, the ground truth of the tumor area, which labeled as yellow.

Fig. 1: Overview of the challenges in tumor localization in gigapixel WSIs.

Taking a common task of tumor localization as an example, where the algo-
rithm is to point out the suspicious locations in WSIs as boxes or heatmap, the
input WSI usually is with a high resolution like 100, 000 x 100, 000 pixels. It is
hard to infer such a high-resolution image by deep learning models.

There are several works[1,2,3,4,5] first divide WSIs into many patches. A
deep learning model is used to classify patches, and these patch-level classifica-
tion results are then organized into a heatmap to assist pathologists in tumor
localization. The limitation of these methods is that the receptive field obtained
by each patch is small, so the model may not be able to obtain enough spatial
information (see Fig 1).

Some research works [6] referring to use both local and global spatial con-
texts only involve patch-level globel contexts, without utilizing the spatial context
information all-over the WSI which reflects more structural disease characteris-
tics. Some methods explore the effectiveness of local spatial information, such as
[2] and its derivatives [3,4,5]. These methods aggregate some local patch infor-
mation, and the results show that the model can obtain more accurate diagnosis
results. In NCRF [2], neural conditional random fields are introduced to corre-
late the tumor probabilities of a central patch and its surrounding eight patches.

3604



PathTR 3

This method effectively improves the tumor detection results on WSI and ob-
tains a smoother heatmap. Some other derivative works, such as [3,4], try to
change the local patch of fixed position to the local patch of deformable position
as deformable convolution did. In [5], Shen et al. explored the patch sampling
strategy, and by modifying the patch sampling strategy, they obtained higher
performance and faster inference speed on tumor localization. However, how the
more global context can be exploited has not been explored.

Vision Transformers exhibit remarkable ability to reflect contextual relevance
in computer vision area. By introducing a self-attention mechanism, different
input tokens can perceive each other’s information. Several works in Sec 2 use
the Transformer to handle local and global contexts for video and language data.
Inspired by them, our model utilizes Transformer to tackle with the large-scale
WSI spatial context for tumor localization.

We proposed the Transformer-based model, PathTR, to combine local and
global context within an end-to-end framework, especially to solve the large-
scale context overflow issue. In our model, different patches’ features are first
extracted by the CNN backbone network. Then the features of a central patch
and its surrounding features are further input into a Transformer encoder af-
ter adding positional encoding. At each layer of the Transformer Encoder, the
context between different patches are accumulated through the self-attention
layer. Through this simple approach, the local spatial context is more effectively
utilized, and the tumor localization performance is effectively improved as de-
scribed in Table 3. The next question is how to obtain larger spatial context
information, even the spatial context information of the entire WSI. One of the
simplest ways is that all the information on the entire WSI is input into the
Transformer to obtain global perception. However, this method is difficult to
implement because too many patches need to be input.

We further design a recursive mechanism to aggregate context over the entire
WSI similar to RNN concept. During model initialization, as shown in Figure 2,
we add several additional hidden states for global information aggregation in
addition to the input patch features. These hidden states are designed as tokens
of the same dimension as the input local contextual features. After each round of
Transformer outputs, we update these hidden states to continuously aggregate
the global context. Due to the introduction of the recursive mechanism, the
order of patch input will affect the encoding of the hidden state. How serialize
the patches on 2D space into a 1D sequence may affect the performance of the
model. We further explored how the model’s results are affected by different
serialization methods, including row-wise, column-wise, and zigzag serialization.
The results show that our model is robust to input order and achieves similar
performance under different serialization methods.

We evaluated our model on the Camelyon 16 [7] tumor localization task,
and the results show that our method significantly outperforms previous work,
achieving FROC scores of 87.68%. It is worth noting that by introducing global
context, our method can achieve 94.25% sensitivity under 8 average false posi-
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tives per WSI. This result will be very beneficial for clinical applications, which
are very sensitive to false positive numbers.

Overall, our main contributions are as follows:

1. We explored how to better utilize the local and global context information in
WSI by introducing the self-attention mechanism and the recursive context
management mechanism. The recursive mechanism encodes the local context
into a hidden state, thereby obtaining the global WSI perception capability
for the first time in the tumor localization task;

2. We explored the influence of input order, position encoding and other factors
on this method, and the results show that our model is very robust to input
order and other factors;

3. Our method achieves significant progress on the tumor localization task
on the Camelyon 16 dataset, and reaches the state-of-the-art results. We
hope our work can bring the clinical application of AI one step further in
histopathology-assisted diagnosis.

2 Related Works

Tumor Localization Since IEEE International Symposium on Biomedical
Imaging (ISBI) held the Camelyon challenge[7] in 2016, which first released a
dataset of histopathological images with detailed annotations, there have been
many excellent works trying to solve tumor localization and achieved good per-
formance. Wang et al.[1] won the Camelyon 2016 championship, and then Liu et
al.[8] from Google Brain achieved better performance under the same pipeline.
And in [9], it was applied to the real world, and the possibility of its appli-
cation in clinical practice was explored. Many subsequent methods used the
same pipeline to explore under different settings and different tasks, for exam-
ple. However, the pipeline used in the above method has the disadvantage of lack
of context. Liu et al.[2] from Baidu Research used Conditional Random Field
(NCRF) to explore spatial local context aggregation for the first time. Some
follow-up work[10,11,12,13,14,15] used this method and explored this method on
different tasks. Basically, these methods have not taken broader-concept context
correlation into consideration, either in the context size or the feature-domain
point of view.

Context Aggregation Context Aggregation has been widely used in many
tasks in the field of large-volume text and video[2,10,11,13,16,17,18,19,20], and
have achieved excellent performance. The tumor localization task in gigapixel
pathology images explored brings new challenges of a large spatial size of con-
texts. In [21], Alexander et al.tried to use local and global to get global context
of staining. Chomphuwiset et al.[22] uses Bayes networks to classify the patches
around. In [23], the superpixel algorithm was used for segmentation and classifi-
cation in low resolution as a global context. Our work analyze the characteristics
of pathology images and introduce the framework to aggregate local and global
morphological features as context, which has good potential to generalize.
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3 Method
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Fig. | An overview of base model and our proposed PathTR. We sample from WSI to spatially adjacent patches, then extract the feature representations of 
these patches through a convolutional neural network, and then perform context correlation between patches through the Transformer. At the same time, we 
also save the features of all the inferred patches as the global context. The global context also participates in the spatial context correlation between patches to 
obtain better tumor localization performance. 
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Fig. 2: An overview of our proposed PathTR. We sample WSIs into spa-
tially adjacent patches, extract the feature representations of these patches
through a convolutional neural network, and then perform context aggregation
between patches through the Transformer[24]. We also save the features of all
the inferred patches into the global memory. The global memory tokens also
participate in the spatial context aggregation between patches to improve tumor
localization performance.

In this section, we first describe the pipeline we use for tumor localization
on WSIs, and focus on how PathTR improves the pipeline. In particular, we
introduced how our proposed local context module and global memory module
aggregate the local context and the global memory into different patches. The
overall structure of the model can be represented as shown in Figure 2.

3.1 Preliminary

Pipeline of Tumor Localization Since most areas in the pathological images
are background areas, and the background areas does not contain any tissue.
We only randomly sample the normal patches and tumor patches from the fore-
ground of the pathological image. To obtain the foreground mask, we use Otsu’s
method[25]. After obtaining the foreground mask, some points are sampled in
the foreground area and use these points as the center point to crop out some
patches in the normal area and the tumor area, and then train a binary classifier
to diagnose the patches.

In the test phase, the trained model is tested by the sliding window manner
on the foreground of the WSIs in the test set to obtain the tumor probability of
each patch, and organize the probabilities of all patches into a heatmap as the
output.

Problem Formulation The above classifier treats the tumor probabilities
of different patches as independent of each other. So independently calculates
the probability of each patch.

p(xi = tumor) = f(xi), xi ∈ X (1)
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where p(xi = tumor) represents the probability that a patch is a tumor, and
X is the set of all patches. This inductive bias, which assumes that all patches
are independent, is not that reasonable in pathological images, because whether
each patch is a tumor is not only related to the current patch, but also to the
surrounding patches, as shown in the Figure 1b. In [2], which introduces a neural
conditional random field after CNN to correlate the context of P patches around
a patch at probability level. They try to fit the conditional probability function
Eq. (2).

p(xi|x1, . . . , xi−1, xi+1, . . . , xP ) = f(x1, . . . , xP ),

P = p, x1, . . . , xP ∈ X
(2)

This enables some local context information, there are two issues in doing
so. First, the window size of the local context P is difficult to determine in
advance. If an excessive P is introduced, it will cause the model to be unable to
infer due to hardware limitations. If the introduced P is too small, it will lead
to inaccurate results because of a lack of context. Secondly, it performs context
post-fusion after obtaining the probabilities of each patch at the probability level,
which loses a lot of information about the patches’ features.

To alleviate these two issues, we try to introduce local and global contexts
at the feature level for feature aggregation. That is to say, our goal is to try to
fit the Eq. (3).

p(xi|x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xn),

x1, . . . , xn ∈ X
(3)

3.2 Local and Global Context Aggregation

Different from the traditional pipeline sampling process, some non-adjacent
patches may be randomly sampled. In PathTR, some windows are sampled in
WSIs, and each window contains P patches (specifically, P = 9 in our experi-
ment). When training, each sample is a window instead of a patch, that is to say,
PathTR input x ∈ RN×P×C×W×H , where N , C, W , and H represent batch size,
number of channels, width and height respectively. By this way, we can easily
introduce local context. Similar to recurrent neural network (RNN), we retain
the features of all the inferred patches into the global memory module to obtain
a larger context. By introducing local context and global memory mechanism,
we have solved the problems faced by models such as NCRF[2] above.

Local Context Aggregation Features extract network backbone is uti-
lized, denoted as ffeat(x) : RN×C×W×H → RN×M , to extract the features of
these images, where M is the feature dimension. When patches are in ffeat, there
is no correlation between different patches of different batches. Technically, x will
be reshaped into x ∈ RNP×C×W×H . After obtaining the features of all patches,
we use the features aggregation network, denoted as faggr(x) : RN×M → RN×M

to aggregate the features of different patches in the local context.
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The features obtained by the P patches of the ith inference as an input tokens
sequence, and add positional encoding,

zi = [ffeat(x
i
1); ffeat(x

i
2); . . . ; ffeat(x

i
P )] + Epos,

ffeat(x
i
p), Epos ∈ RP×M ,

(4)

input it into the feature aggregation network faggr(x), which is a Transformer
encoder[24] in our implementation. For each Transformer encoder layer, it is
aggregated of multi-head self-attention (MSA) and multilayer perceptron (MLP),
and uses layer normalization to normalize the intermediate results, as described
in Eqs. (5) to (7). The self-attention in each layer provides the ability to aggregate
the local context as Eq. (5).

hi = MSA(LN(zi−1)) + zi−1, i = 1 . . . L (5)
li = MLP (LN(hi)) + hi, i = 1 . . . L (6)

faggr(z
i) = lL, (7)

where zi = [zi1; z
i
2; . . . , z

i
n], and finally output the fused features faggr(x) ∈

RNP×M . Refer to [24] for details of Transformer.
Global Context Aggregation The local context size P is required to

determine whether a patch is a tumor is difficult to determine in advance. In
order to make full use of the context, we have introduced a global memory module
to record and aggregate the global contexts continuously. In pathological images,
it is unrealistic to increase the size of the local context P unlimitedly, since its size
is limited by the hardware. The local context in pathological images is far more
important than the global context, but the global context has a role that cannot
be ignored. Because global information may describe the overall information such
as tissue and stain distribution of WSI. We save the global context by storing
the inferred local context in the global memory module. That is, after the local
context of the current patch is inferred by the model, the output tokens are
encoded into the global memory module and wait to participate in the follow-up
inferences. At the time of the ith inference, the information of (i− 1)P patches
has been saved in the global memory module. With the patches in the local
context module, a total of iP features of patches will be involved. This process
can be formalized as follows:

yi, z
i+1
global = faggr(z

i) = faggr([z
i
local; z

i
global]), (8)

where zilocal = [zi1; z
i
2; . . . , z

i
n], and yi, z

i+1
global ∈ RNP×M . Finally, we use a linear

classifier to classify each patch embedding yi.
The local context module and global memory module together constitute

the core of PathTR. In order to illustrate how PathTR aggregate patches in
different windows, context are progressively aggregated through the attention
mechanism. For the patches currently input into the local context module, first
use the feature network ffeat(x) to get their feature tokens, and then aggregate
through self-attention in Transformer[24]. Finally, the tokens in the local context
module will aggregate the information in all past patches encoded in the global
memory.
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3.3 Robustness

Since our model uses self-attention and recursion, our model may be sensitive
to positional encoding or input order of images. We design different positional
encodings and image serializations to verify the robustness of our model.

Positional Encoding Since Transformer[24] is not sensitive to spatial lo-
cation, we have adopted the method of adding positional encoding to solve this
problem as the convention. We tried three different position encoding methods
to test our model. The first is the simplest version, which does not add any
positional encoding. The second is to set a learnable parameter Epos ∈ RP×M .
The third follows [24], we use sine positional encoding to encode, as follows:

Epos(pos, 2i) = sin(
pos

temp2i/dmodel
) (9)

Epos(pos, 2i+ 1) = cos(
pos

temp2i/dmodel
) (10)

Serialization The windows have to be converted into a sequence to input
into PathTR. Obviously, the aggregation context in the global memory module
is related to the input order of patches. In order to ensure that the most relevant
context is aggregation in the global memory module as much as possible when
judging whether a patch is a tumor, we tested three serializations to input win-
dows into PathTR, including row-wise serialization, column-wise serialization,
and zigzag serialization. Row-wise serialization and column-wise serialization re-
spectively represent the input of sampled windows into PathTR row by row and
column by column. In order to make every time input into the global context in
PathTR center around the local context as much as possible, we imitated the
JPEG encoding process[26] and adopted zigzag serialization to achieve this goal.
This method ensures spatially adjacent patches are still as close as possible after
the serialization. As shown in Figure 3.

(a) Row-wise Seri-
alization.

(b) Column-wise
Serialization.

(c) Zigzag Serial-
ization.

Fig. 3: Serialization.
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4 Experiments

4.1 Dataset

We conducted the experiments based on the Camelyon 16 dataset[7], which
includes 160 normal and 110 tumor WSIs for training, 81 normal and 49 tumor
WSIs for testing. † Table 1 describes the distribution of the Camelyon 16 WSIs.
All WSIs were annotated carefully by the experienced pathologist, from which
we can get pixel-level ROIs from the annotation mask. We conducted all the
experiments on the largest scale, 40X magnification. Otsu algorithm[25] had
been applied to exclude the background regions of each training WSI. Following
the setting in [2]. We just randomly selected foreground patches during the
training stage. Normal_001 to Normal_140 and Tumor_001 to Tumor_100
were selected for training, while other WSIs in the rest of the training set was
used for validation. We also applied hard negative samples mining to select more
patches from the tissue boundary regions as [2].

Table 1: Number of WSIs in the Camelyon 16 dataset[7]. Tumor means the
number of slides including tumor regions in the training set. And Normal means
the slides without any tumor region in the training set. Two slides in the test
set are excluded because of the errors of annotations following [8]. So there are
only 128 slides will be used in test set.

Institution Tumor Normal Test

Radboud UMC 90 70 80
UMC Utrcht 70 40 50
Total 160 110 130

4.2 Implementation Details

We implement PathTR with PyTorch-1.8.0 and train the model with NVIDIA
GeForce GTX 1080 Ti GPU. As our implementation is based on the open-source
codebase[2], the methods such as patches generation and non-maximum sup-
pression are similar to the NCRF[2]. At training time, we fetch 768× 768 pixel
windows from the training set, which are cropped as 3×3 grid of 256×256 pixel
patches to feed the ResNet[27] backbone during the forward propagation. We
train with Adam with a weight decay of 10−4 and initial learning rates of 10−3.
Our Transformer model is loaded with pre-trained weights from [28]. As shown
in the Table 4, we report results with two different backbones: a ResNet-18 and
a ResNet-34[27].

The Transformer encoder[24] is trained with a default dropout of 0.1. At
training time, we try to select numbers of Transformer[24] encoder layers as
6 for default. And we compare the performance with sine, learned, and none

† The need for informed consent was waived by the institutional review board of
Radboud University Medical Center (RUMC).[7]
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positional encoding in ablation experiments. At the test stage, we use variant
window grid size (baseline is 3 × 3) to aggregate the context at different scales
of the surrounding regions. And we apply three types of serialization methods
as described in Section 3.3, which are referred to as row-wise, column-wise and
zigzag serialization.

In the ablation experiments, we use a training schedule of 20 epochs with a
learning rate drop by a factor of 10 after 10 epochs, where a single epoch is a
pass over all training patches once. Training the baseline model for 20 epochs on
two 1080Ti GPUs takes about 24 hours, with 5 patches per GPU (hence a total
batch size of 10). PathTR takes 0.01s per patch and about one hour per WSI
at the inference time. So the total inference time of 130 WSIs in the test set is
about 5 days using just one 1080Ti GPU.

4.3 Evaluation

Besides comparing the average accuracy and AUC with other methods, we also
adopt the two important metrics, Free-response Receiver Operating Characteris-
tic Curves (FROC) and sensitivity@nFP in the performance evaluation, because
in clinical diagnosis the false negative rate is worth more attention [29].

The calculation of FROC score[29] is similar to that of Area Under Curve
(AUC). We need to report the coordinates and confidence of tumors. If the
coordinates are not in any tumor, it is judged as a false positive. If the reported
coordinates successfully hit a tumor, it is considered as a successful judgment
that a certain tumor exists. We can get the number of false positives and the
tumor recall rate under different confidence thresholds. The FROC score[29] then
be defined as the average sensitivity in the case of an average of 1/4, 1/2, 1, 2,
4, and 8 false positives for all WSIs on the test set.

4.4 Main Results

The proposed PathTR achieves the accuracy and AUC on par with other the
state-of-the-art methods (Table 2). We further evaluate the FROC scores[29]
of PathTR with local context module and global memory module setups and
compare them with that of the baseline and of NCRF[2]. In addition, the test
time augmentation is taken to improve the FROC score of our model on the test
set following NCRF[2]. That is, in the test stage, the input patch is flipped or
rotated, then PathTR is used for inference on augmented patches, and finally the
multiple probability values are averaged to obtain the final tumor probability.
Due to the introduction of spatial context, our method reduces false positive
regions well, our method achieves a significant improvement in FROC score.

Table 3 shows the comparison with the Vanilla Pipeline and NCRF[2]. Our
FROC score reaches 87.68% with test time augmentation and 94.25% sensitivity
at 8 false positives per WSI. For comparison, a human pathologist attempting
exhaustive search achieved 73.2% sensitivity.[8]

In order to compare the results from different models, the FROC curves
of baseline, NCRF[2] and PathTR are presented in Figure 4a. In Figure 4b, the
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Table 2: Performance Comparison of ACC and AUC.

Methods ACC(%) AUC

Baseline 96.79 0.9435
NCRF[2] 97.97 0.9725
Google[8] - 0.9670

TransPath[6] 89.91 0.9779
PathTR 98.19 0.9757

improvement brought by different modules in PathTR are shown. With any false
positives, the sensitivity has improved after the introduction of our local context
module and global memory module.

Table 3: Performance comparison with the state of the art. We test
the results of adding a local context module and a global memory module to
the baseline. At the same time we use test time augmentation to get better
performance. We show the sensitivity achieved by our model at different false
positives, as well as the FROC score. All models use grid size of 3 × 3, sine
positional encoding, and row-wise input sequence, and with 6-layer Transformer
encoder[24].

Methods Local Global Sensitivity (%) FROC (%)@.25FPs @.5FPs @1FP @2FPs @4FPs @8FPs

Vanilla Pipeline[2] 66.98 71.90 77.20 81.80 84.95 89.28 78.69
NCRF[2] ✓ 68.14 74.33 79.20 84.07 87.61 90.27 80.60
Wang et al.[1] 77.3 77.8 81.3 82.7 82.7 82.7 80.74
MSC-Net[4] ✓ - - - - - - 80.78
DCRF[3] ✓ - - - - - - 80.17
DP-FTD[5] ✓ - - - - - - 81.7
DCRF-FTD[5] ✓ - - - - - - 82.1
Ours (without global context) ✓ 72.57 80.53 86.73 88.94 91.15 92.92 85.47
Ours ✓ ✓ 76.55 83.63 88.94 90.27 92.48 94.25 87.68

4.5 Ablation Study

Local and Global Module The local context module and global memory mod-
ule are the core modules of PathTR aiming to aggregate a larger context, The
local context module contains some spatially adjacent patches and completes the
context aggregation in the Transformer[24]. The global memory module implic-
itly encodes the information of all past patches. we conduct ablation experiments
in order to investigate the necessity of local context module and global memory
module with different backbone networks.

As shown in Table 3, by introducing the local context module, the FROC is
raised from the baseline 78.69% up to 84.59%, which is an improvement of 5.90%,
proving the important role of local context feature-level fusion. Then introducing
the global memory module receives a further improvement of 1.47% and reaches
86.06%. It demonstrates that global memory module can also contribute further
improvement with a careful design.
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(a) FROC of baseline, NCRF and
PathTR results.
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Fig. 4: FROC of baseline, with local context and global memory module.

We also explored whether the local context module and global memory mod-
ule can achieve consistent improvements under different backbones. As shown in
Table 4, we use ResNet-18 and ResNet-34 as the backbone.

Transformer Layers For aggregating the features from all patches of each
window, we have taken Transformer encoder[24] to aggregate the local context
and global memory. We set Transformer layers[24] from 2 to 8 with the interval
of 2, since the experimental is too expensive for us. Table 5 shows the sensitivity
at 8 false positives and FROC with different numbers of layers.

Table 4: Performance of global and local modules with different patch feature
extraction backbone. Sensitivity is shown at 8 false positives per slide (same
below). The FROC of baseline is reproduced by us, which is 78.25% in [2]

Methods Backbone Sensitivity (%) FROC (%)

baseline ResNet-18 89.28 78.69
+ Local ResNet-18 93.36 84.59
+ Global ResNet-18 93.81 86.06
baseline ResNet-34 - 74.44
+ Local ResNet-34 91.40 84.54
+ Global ResNet-34 91.59 82.74

Running time and computational cost We test the inference times
and FLOPs(on Nvidia GTX 1080Ti) of the Baseline, NCRF and PathTR to
compare the computation overhead, as shown in Table 6. All input sizes are
fixed as 9× 3× 224× 224 (9 patches with 224× 224 pixels).

Context Size The implementation of PathTR determines that the size of
local context and global memory are identical. We call this as context size. In
PathTR, the capacity of local context depends on the context size we take (in
other words, the number of grids). The feature space of global memory will also
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Table 5: Performance comparison with different numbers of Transformer encoder
layers (using the same sine positional encoding and row-wise serialization).[24]

Methods TF Layers Sensitivity (%) FROC (%)

Local 2 90.10 84.14
Local 4 90.97 84.07
Local 6 93.36 84.59
Local 8 89.39 82.70
+ Global 2 90.47 85.56
+ Global 4 91.03 85.74
+ Global 6 93.81 86.06
+ Global 8 93.36 84.36

Table 6: Speed Comparison.

Methods Params (M) Inference Time
(patches/second) GFLOPs

Baseline 11.18 144 16.367
NCRF 11.18 120 16.367

PathTR 30.09 73 16.709

increase with the increase of context size. With the increase of context size, there
can be a wider context in the local context, and global memory can encode more
global semantics. We tested three context sizes of 2×2, 3×3 and 3×6, as shown
in Table 7. The results show that larger context size generates better but not
significant performance gain.

Table 7: Performance of global memory module with different context size at
test stage.

Methods Context Size Sensitivity (%) FROC (%)

PathTR 2×2 91.79 85.20
PathTR 3×3 93.81 86.06
PathTR 3×6 92.18 86.10

Robustness Because of the recursive mechanism used in our model, all the
local context is aggregated in global memory, and different input sequences may
result in different results. Three serialization methods were used in our ablation
experiments, as described in Section 3.3. The results are shown in Table 8. The
three serialization methods achieved similar results, with Zigzag serialization
slightly higher than row-wise and column-wise. This suggests that PathTR is
not sensitive to input order, and that global memory plays a different role in the
model than local context. Probably retaining more high-level semantic informa-
tion, such as WSIs staining, instead of low-level semantic information, such as
morphology.
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Table 8: Performance of PathTR with variant serialization method. Zigzag seri-
alization gains a slight FROC increment than other methods.

Methods Serialization Sensitivity (%) FROC (%)

PathTR Row-wise 93.81 86.06
PathTR Column-wise 92.79 85.91
PathTR Zigzag 93.80 86.20

The location of each patch in the local context is indispensable for clinical
diagnosis, thus the order of tokens is needed to be fed into the local context and
global memory tokens.

Two types of positional encoding are utilized in PathTR. Sine positional en-
coding is used to generate fixed position information. Learned positional encod-
ing is added to allow the Transformer[24] to learn a set of appropriate positional
information representations during the training process. The results are shown
in Table 9.

Table 9: Performance of global and local modules with different positional en-
coding (all with 6-layer Transformer).

Methods PE Sensitivity (%) FROC (%)

Local None 90.76 82.20
Local Learned 91.59 83.33
Local Sine 93.36 84.59
Local + Global None 91.50 83.30
Local + Global Learned 92.04 86.43
Local + Global Sine 93.81 86.06

5 Conclusion

This paper presents the PathTR method for tumor localization in gigapixel
pathology images. We first introduce the Local Context Module to aggregate
the local context surrounding a center patch. And then we bring in the global
context of the whole slide images by introducing a recursive mechanism. The
proposed PathTR can make full use of the locality of the image while retaining
the global context, thus achieving a significant analysis capability of gigapixel
images. We hope that our work can inspire more vision tasks that require analysis
of gigapixel images to achieve better performance.
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