
PU-Transformer: Point Cloud Upsampling
Transformer

Shi Qiu1,2, Saeed Anwar1,2, and Nick Barnes1

1 Australian National University
2 Data61-CSIRO, Australia

{shi.qiu, saeed.anwar, nick.barnes}@anu.edu.au

Abstract. Given the rapid development of 3D scanners, point clouds
are becoming popular in AI-driven machines. However, point cloud data
is inherently sparse and irregular, causing significant difficulties for ma-
chine perception. In this work, we focus on the point cloud upsampling
task that intends to generate dense high-fidelity point clouds from sparse
input data. Specifically, to activate the transformer’s strong capability
in representing features, we develop a new variant of a multi-head self-
attention structure to enhance both point-wise and channel-wise rela-
tions of the feature map. In addition, we leverage a positional fusion
block to comprehensively capture the local context of point cloud data,
providing more position-related information about the scattered points.
As the first transformer model introduced for point cloud upsampling, we
demonstrate the outstanding performance of our approach by comparing
with the state-of-the-art CNN-based methods on different benchmarks
quantitatively and qualitatively.

1 Introduction

3D computer vision has been attracting a wide range of interest from academia
and industry since it shows great potential in many fast-developing AI-related
applications such as robotics, autonomous driving, augmented reality, etc. As
a basic representation of 3D data, point clouds can be easily captured by 3D
sensors [1,2], incorporating the rich context of real-world surroundings.

Unlike well-structured 2D images, point cloud data has inherent properties of
irregularity and sparsity, posing enormous challenges for high-level vision tasks
such as point cloud classification [3,4,5], segmentation [6,7,8], and object detec-
tion [9,10,11]. For instance, Uy et al. [12] fail to classify the real-world point
clouds while they apply a pre-trained model of synthetic data; and recent 3D
segmentation and detection networks [8,13,14] achieve worse results on the dis-
tant/smaller objects (e.g., bicycles, traffic-signs) than the closer/larger objects
(e.g., vehicles, buildings). If we mitigate point cloud data’s irregularity and spar-
sity, further improvements in visual analysis can be obtained (as verified in [15]).
Thus, point cloud upsampling deserves a deeper investigation.

As a basic 3D low-level vision task, point cloud upsampling aims to gener-
ate dense point clouds from sparse input, where the generated data should re-
cover the fine-grained structures at a higher resolution. Moreover, the upsampled

2475

2 S. Qiu et al.

PU-Transformer TailPU-Transformer Head PU-Transformer Body

…

N × 3 𝑟N × 3

MLP
Transformer

Encoder
Transformer

Encoder
MLPShuffle

𝑙−1
Positional

Fusion
Norm

Shifted Channel
Multi-head

Self-Attention
Norm MLP 𝑙

Overall architecture of PU-Transformer

Transformer Encoder

𝑙 𝑙′

1 … 𝐿

(the 𝑙-th)

Fig. 1: The details of PU-Transformer. The upper chart shows the overall architecture
of the PU-Transformer model containing three main parts: the PU-Transformer head
(Sec. 4.1), body (Sec. 4.2), and tail (Sec. 4.3). The PU-Transformer body includes a
cascaded set of Transformer Encoders (e.g., L in total), serving as the core component
of the whole model. Particularly, the detailed structure of each Transformer Encoder is
shown in the lower chart, where all annotations are consistent with Line 3-5 in Alg. 1.

points are expected to lie on the underlying surfaces in a uniform distribution,
benefiting downstream tasks for both 3D visual analysis [16,17] and graphic mod-
eling [18,19]. Following the success of Convolution Neural Networks (CNNs) in
image super-resolution [20,21,22] and Multi-Layer-Perceptrons (MLPs) in point
cloud analysis [3,6], previous methods tended to upsample point clouds via com-
plex network designs (e.g., Graph Convolutional Network [23], Generative Ad-
versarial Network [24]) and dedicated upsampling strategies (e.g., progressive
training [25], coarse-to-fine reconstruction [26], disentangled refinement [27]). As
far as we are concerned, these methods share a key to point cloud upsampling:
learning the representative features of given points to estimate the distribution
of new points. Considering that regular MLPs have limited-expression and gen-
eralization capability, we need a more powerful tool to extract fine-grained point
feature representations for high-fidelity upsampling. To this end, we introduce
a succinct transformer model, PU-Transformer, to effectively upsample point
clouds following a simple pipeline as illustrated in Fig. 1. The main reasons for
adopting transformers to point cloud upsampling are as follows:

Plausibility in theory.As the core operation of transformers, self-attention [28]
is a set operator [29] calculating long-range dependencies between elements re-
gardless of data order. On this front, self-attention can easily estimate the point-
wise dependencies without any concern for the inherent unorderedness. However,
to comprehensively represent point cloud features, channel-wise information is
also shown to be a crucial factor in attention mechanisms [5,11]. Moreover, such
channel-wise information enables an efficient upsampling via a simple periodic
shuffling [30] operated on the channels of point features, saving complex de-
signs [26,24,27,25] for upsampling strategy. Given these facts, we propose a
Shifted Channel Multi-head Self-Attention (SC-MSA) block, which strength-
ens the point-wise relations in a multi-head form and enhances the channel-wise
connections by introducing the overlapping channels between consecutive heads.

2476

PU-Transformer: Point Cloud Upsampling Transformer 3

Feasibility in practice. Since the transformer model was originally invented
for natural language processing; its usage has been widely recognized in high-
level visual applications for 2D images [31,32,33]. More recently, Chen et al. [34]
introduced a pre-trained transformer model achieving excellent performance on
image super-resolution and denoising. Inspired by the transformer’s effectiveness
for image-related low-level vision tasks, we attempt to create a transformer-based
model for point cloud upsampling. Given the mentioned differences between 2D
images and 3D point clouds, we introduce the Positional Fusion block as a re-
placement for positional encoding in conventional transformers: on the one hand,
local information is aggregated from both the geometric and feature context of
the points, implying their 3D positional relations; on the other hand, such local
information can serve as complementary to subsequent self-attention operations,
where the point-wise dependencies are calculated from a global perspective.

Adaptability in various applications. Transformer-based models are consid-
ered as a luxury tool in computer vision due to the huge consumption of data,
hardware, and computational resources. However, our PU-Transformer can be
easily trained with a single GPU in a few hours, retaining a similar model com-
plexity to regular CNN-based point cloud upsampling networks [35,25,27]. More-
over, following a patch-based pipeline [25], the trained PU-Transformer model
can effectively and flexibly upsample different types of point cloud data, includ-
ing but not limited to regular object instances or large-scale LiDAR scenes (as
shown in Fig. 3, 4 and 6). Starting with the upsampling task in low-level vision,
we expect our approach to transformers will be affordable in terms of resource
consumption for more point cloud applications. Our main contributions are:

– To the best of our knowledge, we are the first to introduce a transformer-
based model3 for point cloud upsampling.

– We quantitatively validate the effectiveness of the PU-Transformer by signif-
icantly outperforming the results of state-of-the-art point cloud upsampling
networks on two benchmarks using three metrics.

– The upsampled visualizations demonstrate the superiority of PU-Transformer
for diverse point clouds.

2 Related Work

Point Cloud Networks: In early research, the projection-based methods [36,37]
used to project 3D point clouds into multi-view 2D images, apply regular 2D
convolutions and fuse the extracted information for 3D analysis. Alternatively,
discretization-based approaches [38] tended to convert the point clouds to vox-
els [39] or lattices [40], and then process them using 3D convolutions or sparse
tensor convolutions [41]. To avoid context loss and complex steps during data
conversion, the point-based networks [3,6,4] directly process point cloud data via
MLP-based operations. Although current mainstream approaches in point cloud
upsampling prefer utilizing MLP-related modules, in this paper, we focus on an

3The project page is: https://github.com/ShiQiu0419/PU-Transformer.

2477

https://github.com/ShiQiu0419/PU-Transformer

4 S. Qiu et al.

advanced transformer structure [28] in order to further enhance the point-wise
dependencies between known points and benefit the generation of new points.
Point Cloud Upsampling: Despite the fact that current point cloud research
in low-level vision [35,42] is less active than that in high-level analysis [3,8,9],
there exists many outstanding works that have contributed significant devel-
opments to the point cloud upsampling task. To be specific, PU-Net [35] is a
pioneering work that introduced CNNs to point cloud upsampling based on a
PointNet++ [6] backbone. Later, MPU [25] proposed a patch-based upsampling
pipeline, which can flexibly upsample the point cloud patches with rich local de-
tails. In addition, PU-GAN [24] adopted the architecture of Generative Adversar-
ial Networks [43] for the generation problem of high-resolution point clouds, while
PUGeo-Net [44] indicated a promising combination of discrete differential geome-
try and deep learning. More recently, Dis-PU [27] applies disentangled refinement
units to gradually generate the high-quality point clouds from coarse ones, and
PU-GCN [23] achieves good upsampling performance by using graph-based net-
work constructions [4]. Moreover, there are some papers exploring flexible-scale
point cloud upsampling via meta-learning [15], self-supervised learning [45], de-
coupling ratio with network architecture [46], or interpolation [47], etc. As the
first work leveraging transformers for point cloud upsampling, we focus on the
effectiveness of PU-Transformer in performing the fundamental fixed-scale up-
sampling task, and expect to inspire more future work in relevant topics.
Transformers in Vision: With the capacity in parallel processing as well as
the scalability to deep networks and large datasets [48], more visual transform-
ers have achieved excellent performance on image-related tasks including either
low-level [49,34] or high-level analysis [32,33,31,50]. Due to the inherent gaps be-
tween 3D and 2D data, researchers introduce the variants of transformer for point
cloud analysis [51,52,53,54,55], using vector-attention [29], offset-attention [56],
and grid-rasterization [57], etc. However, since these transformers still operate
on an overall classical PointNet [3] or PointNet++ architecture [6], the im-
provement is relatively limited while the computational cost is too expensive for
most researchers to re-implement. To simplify the model’s complexity and boost
its adaptability in point cloud upsampling research, we only utilize the general
structure of transformer encoder [32] to form the body of our PU-Transformer.

3 Methodology

3.1 Overview

As shown in Fig. 1, given a sparse point cloud P ∈ RN×3, our proposed PU-
Transformer can generate a dense point cloud S ∈ RrN×3, where r denotes
the upsampling scale. Firstly, the PU-Transformer head extracts a preliminary
feature map from the input. Then, based on the extracted feature map and the
inherent 3D coordinates, the PU-Transformer body gradually encodes a more
comprehensive feature map via the cascaded Transformer Encoders. Finally, in
the PU-Transformer tail, we use the shuffle operation [30] to form a dense feature
map and reconstruct the 3D coordinates of S via an MLP.

2478

PU-Transformer: Point Cloud Upsampling Transformer 5

Algorithm 1: PU-Transformer Pipeline

input: a sparse point cloud P ∈ RN×3

output: a dense point cloud S ∈ RrN×3

PU-Transformer Head
1 F0 = MLP(P)

PU-Transformer Body
2 for each Transformer Encoder do

l = 1 ... L
the l-th Transformer Encoder

3 Gl = PosFus(P, Fl−1);

4 Gl
′ = SC-MSA

(
Norm(Gl)

)
+ Gl;

5 Fl = MLP
(
Norm(Gl

′)
)
+ Gl

′;

6 end for
PU-Transformer Tail

7 S = MLP
(
Shuffle(FL)

)

In Alg. 1, we present the basic operations that are employed to build our
PU-Transformer. As well as the operations (“MLP” [3], “Norm” [58], “Shuf-
fle” [30]) that have been widely used in image and point cloud analysis, we
propose two novel blocks targeting a transformer-based point cloud upsampling
model i.e., the Positional Fusion block (“PosFus” in Alg. 1), and the Shifted-
Channel Multi-head Self-Attention block (“SC-MSA” in Alg. 1). In the rest of
this section, we introduce these two blocks in detail. Moreover, for a compact
description, we only consider the case of an arbitrary Transformer Encoder; thus,
in the following, we discard the subscripts that are annotated in Alg. 1 denoting
a Transformer Encoder’s specific index in the PU-Transformer body.

3.2 Positional Fusion

Usually, a point cloud consisting of N points has two main types of context: the
3D coordinates P ∈ RN×3 that are explicitly sampled from synthetic meshes or
captured by real-world scanners, showing the original geometric distribution of
the points in 3D space; and the feature context, F ∈ RN×C , that is implicitly en-
coded by convolutional operations in C-dimensional embedding space, yielding
rich latent clues for visual analysis. Older approaches [35,25,24] to point cloud
upsampling generate a dense point set by heavily exploiting the encoded features
F , while recent methods [44,23] attempt to incorporate more geometric infor-
mation. As the core module of the PU-Transformer, the proposed Transformer
Encoder leverages a Positional Fusion block to encode and combine both the
given P and F4 of a point cloud, following the local geometric relations between
the scattered points.

Based on the metric of 3D-Euclidean distance, we can search for neighbors
∀pj ∈ Ni(pi) for each point pi ∈ R3 in the given point cloud P, using the
k-nearest-neighbors (knn) algorithm [4]. Coupled with a grouping operation,
we thus obtain a matrix Pj ∈ RN×k×3, denoting the 3D coordinates of the
neighbors for all points. Accordingly, the relative positions between each point

4equivalent to “Fl−1” in Alg. 1

2479

6 S. Qiu et al.

and its neighbors can be formulated as:

∆P = Pj − P, ∆P ∈ RN×k×3; (1)

where k is the number of neighbors. In addition to the neighbors’ relative posi-
tions showing each point’s local detail, we also append the centroids’ positions
in 3D space, indicating the global distribution for all points. By duplicating P
in a dimension expanded k times, we concatenate the local geometric context:

Ggeo = concat
[
dup
k

(P);∆P
]
∈ RN×k×6. (2)

Further, for the feature matrix Fj ∈ RN×k×C of all searched neighbors, we
conduct similar operations (Eq. 1 and 2) as on the counterpart Pj , computing
the relative features as:

∆F = Fj −F , ∆F ∈ RN×k×C ; (3)

and representing the local feature context as:

Gfeat = concat
[
dup
k

(F);∆F
]
∈ RN×k×2C . (4)

After the local geometric context Ggeo and local feature context Gfeat are con-
structed, we then fuse them for a comprehensive point feature representation.
Specifically, Ggeo and Gfeat are encoded via two MLPs, MΦ and MΘ, respec-

tively; further, we comprehensively aggregate the local information, G ∈ RN×C′5,
using a concatenation between the encoded two types of local context, followed
by a max-pooling function operating over the neighborhoods. The above opera-
tions can be summarized as:

G = max
k

(
concat

[
MΦ(Ggeo);MΘ(Gfeat)

])
. (5)

Unlike the local graphs in DGCNN [4] that need to be updated in every
encoder based on the dynamic relations in embedding space, both of our Ggeo

and Gfeat are constructed (i.e., Eq. 2 and 4) and encoded (i.e., MΦ and MΘ in
Eq. 5) in the same way, following fixed 3D geometric relations (i.e., ∀pj ∈ Ni(pi)
defined upon 3D-Euclidean distance). The main benefits of our approach can be
concluded from two aspects: (i) it is practically efficient since the expensive knn
algorithm just needs to be conducted once, while the searching results can be
utilized in all Positional Fusion blocks of the PU-Transformer body; and (ii) the
local geometric and feature context are represented in a similar manner following
the same metric, contributing to fairly fusing the two types of context. A detailed
behavior analysis of this block is provided in the supplementary material.

Overall, the Positional Fusion block can not only encode the positional in-
formation about a set of unordered points for the transformer’s processing, but
also aggregate comprehensive local details for accurate point cloud upsampling.

5equivalent to “Gl” in Alg. 1

2480

PU-Transformer: Point Cloud Upsampling Transformer 7

Algorithm 2: Shifted Channel
Multi-head Self-Attention (SC-MSA)

input: a point cloud feature map: I ∈ RN×C′

output: the refined feature map: O ∈ RN×C′

others: channel-wise split width: w
channel-wise shift interval: d, d < w
the number of heads: M

1 Q = Linear(I) # Query Mat Q ∈ RN×C′

2 K = Linear(I) # Key Mat K ∈ RN×C′

3 V = Linear(I) # Value Mat V ∈ RN×C′

4 for m ∈ {1, 2, ...,M} do
5 Qm = Q[: , (m − 1)d : (m − 1)d + w];
6 Km = K[: , (m − 1)d : (m − 1)d + w];
7 Vm = V[: , (m − 1)d : (m − 1)d + w];

8 Am = softmax(QmKm
T);

9 Om = AmVm;

10 end for
11 obtain: {O1,O2, ...,OM}
12 O = Linear

(
concat

[
{O1,O2, ...,OM}

])

…

…1 2 𝐶′

𝑤

ቊ

Query Matrix

 ∈ ℝ𝑁×𝐶′

𝑤

ቊ

𝑤

ቊ

𝑤

ቐ𝑁

…1 2 𝑀

ቊ

Query Matrix

 ∈ ℝ𝑁×𝐶′

𝑤

ቊ

𝑤

ቊ

𝑤

ቐ𝑁

ቊ𝑑

shifting along

MSA SC-MSA

…

the channels

Fig. 2: Examples of how regular
MSA [28] and our SC-MSA generate
the low-dimensional splits of query ma-
trix Q for multi-head processing (the
same procedure applies to K and V).

3.3 Shifted Channel Multi-head Self-Attention

Different from previous works that applied complex upsampling strategies (e.g.,
GAN [24], coarse-to-fine [26], task-disentangling [27]) to estimate new points,
we prefer generating dense points in a simple way. Particularly, PixelShuffle [30]
is a periodic shuffling operation that efficiently reforms the channels of each
point feature to represent new points without introducing additional parameters.
However, with regular multi-head self-attention (MSA) [28] serving as the main
calculation unit in transformers, only point-wise dependencies are calculated in
each independent head of MSA, lacking integration of channel-related informa-
tion for shuffling-based upsampling. To tackle this issue, we introduce a Shifted
Channel Multi-head Self-Attention (SC-MSA) block for the PU-Transformer.

As Alg. 2 states, at first, we apply linear layers (denoted as “Linear”, and
implement as a 1× 1 convolution) to encode the query matrix Q, key matrix K,
and value matrix V. Then, we generate low-dimensional splits of Qm,Km,Vm for
each head. Particularly, as shown in Fig. 2, regular MSA generates the indepen-
dent splits for the self-attention calculation in corresponding heads. In contrast,
our SC-MSA applies a window (dashed square) shift along the channels to ensure
that any two consecutive splits have an overlap of (w−d) channels (slashed area),
where w is the channel dimension of each split and d represents the channel-wise
shift interval each time. After generating the Qm,Km,Vm for each head in the
mentioned manner, we employ self-attention (Alg. 2 steps 8-9) to estimate the
point-wise dependencies as the output Om of each head. Considering the fact
that any two consecutive heads have part of the input in common (i.e., the over-
lap channels), thus the connections between the outputs {O1,O2, ...,OM} (Alg. 2
step 11) of multiple heads are established. There are two major benefits of such
connections: (i) it is easier to integrate the information between the connected
multi-head outputs (Alg. 2 step 12), compared to using the independent multi-

2481

8 S. Qiu et al.

head results of regular MSA; and (ii) as the overlapping context is captured
from the channel dimension, our SC-MSA can further enhance the channel-
wise relations in the final output O, better fulfilling an efficient and effective
shuffling-based upsampling strategy than only using regular MSA’s point-wise
information. These benefits contribute to a faster training convergence and a
better upsampling performance, especially when we deploy fewer Transformer
Encoders. More practical evidence is provided in the supplementary material.

It is worth noting that SC-MSA requires the shift interval to be smaller than
the channel-wise width of each split (i.e., d < w as in Alg. 2) for a shared
area between any two consecutive splits. Accordingly, the number of heads in
our SC-MSA is higher than regular MSA (i.e., M > C ′/w in Fig. 2). More
implementation detail and the choices of parameters are provided in Sec. 4.2.

4 Implementation

4.1 PU-Transformer Head

As illustrated in Fig. 1, our PU-Transformer model begins with the head to
encode a preliminary feature map for the following operations. In practice, we
only use a single layer MLP (i.e., a single 1× 1 convolution, followed by a batch
normalization layer [59] and a ReLU activation [60]) as the PU-Transformer
head, where the generated feature map size is N × 16.

4.2 PU-Transformer Body

To balance the model complexity and effectiveness, empirically, we leverage five
cascaded Transformer Encoders (i.e., L = 5 in Alg. 1 and Fig. 1) to form the PU-
Transformer body, where the channel dimension of each output follows: 32 →
64 → 128 → 256 → 256. Particularly, in each Transformer Encoder, we only
use the Positional Fusion block to encode the corresponding channel dimension
(i.e., C ′ in Eq. 5), which remains the same in the subsequent operations. For all
Positional Fusion blocks, the number of neighbors is empirically set to k = 20
as used in previous works [4,23].

In terms of the SC-MSA block, the primary way of choosing the shift-related
parameters is inspired by the Non-local Network [61] and ECA-Net [62]. Specif-
ically, a reduction ratio ψ [61] is introduced to generate the low-dimensional
matrices in self-attention; following a similar method, the channel-wise width
(i.e., channel dimension) of each split in SC-MSA is set as w = C ′/ψ. Moreover,
since the channel dimension is usually set to a power of 2 [62], we simply set the
channel-wise shift interval d = w/2. Therefore, the number of heads in SC-MSA
becomes M = 2ψ − 1. In our implementation, ψ = 4 is adopted in all SC-MSA
blocks of PU-Transformer.

4.3 PU-Transformer Tail

Based on the practical settings above, the input to the PU-Transformer tail (i.e.,
the output of the last Transformer Encoder) has a size of N × 256. Then, the

2482

PU-Transformer: Point Cloud Upsampling Transformer 9

periodic shuffling operation [30] reforms the channels and constructs a dense
feature map of rN × 256/r, where r is the upsampling scale. Finally, another
MLP is applied to estimate the upsampled point cloud’s 3D coordinates (rN×3).

5 Experiments

5.1 Settings

Training Details: In general, our PU-Transformer is implemented using Ten-
sorflow [63] with a single GeForce 2080 Ti GPU running on the Linux OS. In
terms of the hyperparameters for training, we heavily adopt the settings from
PU-GCN [23] and Dis-PU [27] for the experiments in Tab. 1 and Tab. 2, respec-
tively. For example, we have a batch size of 64 for 100 training epochs, an initial
learning rate of 1 × 10−3 with a 0.7 decay rate, etc. Moreover, we only use the
modified Chamfer Distance loss [25] to train the PU-Transformer, minimizing
the average closest point distance between the input set P ∈ RN×3 and the
output set S ∈ RrN×3 for efficient and effective convergence.
Datasets: Basically, we apply two 3D benchmarks for our experiments:

– PU1K: This is a new point cloud upsampling dataset introduced in PU-
GCN [23]. In general, the PU1K dataset incorporates 1,020 3D meshes for
training and 127 3D meshes for testing, where most 3D meshes are collected
from ShapeNetCore [64] covering 50 object categories. To fit in with the
patch-based upsampling pipeline [25], the training data is generated from
patches of 3D meshes via Poisson disk sampling. Specifically, the training
data includes 69,000 samples, where each sample has 256 input points (low
resolution) and a ground-truth of 1,024 points (4× high resolution).

– PU-GAN Dataset: This is an earlier dataset that was first used in PU-
GAN [24] and generated in a similar way as PU1K but on a smaller scale. To
be concrete, the training data comprises 24,000 samples (patches) collected
from 120 3D meshes, while the testing data only contains 27 meshes. In ad-
dition to the PU1K dataset consisting of a large volume of data targeting the
basic 4× upsampling experiment, we conduct both 4× and 16× upsampling
experiments based on the compact data of the PU-GAN dataset.

Evaluation Metrics: As for the testing process, we follow common practice
that has been utilized in previous point cloud upsampling works [25,24,27,23].
To be specific, at first, we cut the input point cloud into multiple seed patches
covering all the N points. Then, we apply the trained PU-Transformer model to
upsample the seed patches with a scale of r. Finally, the farthest point sampling
algorithm [3] is used to combine all the upsampled patches as a dense output
point cloud with rN points. For the 4× upsampling experiments in this paper,
each testing sample has a low-resolution point cloud with 2,048 points, as well
as a high-resolution one with 8,196 points. Coupled with the original 3D meshes,
we quantitatively evaluate the upsampling performance of our PU-Transformer
based on three widely used metrics: (i) Chamfer Distance (CD), (ii) Hausdorff
Distance [65] (HD), and (iii) Point-to-Surface Distance (P2F). A lower value
under these metrics denotes better upsampling performance.

2483

10 S. Qiu et al.

Table 1: Quantitative comparisons (4× Upsampling) to state-of-the-art methods on the
PU1K dataset [23]. (“CD”: Chamfer Distance; “HD”: Hausdorff Distance; “P2F”:
Point-to-Surface Distance. “Model”: model size; “Time”: average inference time per
sample; “Param.”: number of parameters. ∗: self-reproduced results, –: unknown data.)

Methods
Model Time Param. Results (×10−3)
(MB) (×10−3s) (×103) CD ↓ HD ↓ P2F ↓

PU-Net [35] 10.1 8.4 812.0 1.155 15.170 4.834
MPU [25] 6.2 8.3 76.2 0.935 13.327 3.551

PU-GACNet [66] – – 50.7 0.665 9.053 2.429
PU-GCN [23] 1.8 8.0 76.0 0.585 7.577 2.499
Dis-PU∗ [27] 13.2 10.8 1047.0 0.485 6.145 1.802

Ours 18.4 9.9 969.9 0.451 3.843 1.277

Table 2: Quantitative comparisons to state-of-the-art methods on the PU-GAN
dataset [24]. (All metric units are 10−3. The best results are denoted in bold.)

Methods
4× Upsampling 16× Upsampling

CD ↓ HD ↓ P2F ↓ CD ↓ HD ↓ P2F ↓
PU-Net [35] 0.844 7.061 9.431 0.699 8.594 11.619
MPU [25] 0.632 6.998 6.199 0.348 7.187 6.822

PU-GAN [24] 0.483 5.323 5.053 0.269 7.127 6.306
PU-GCN∗ [23] 0.357 5.229 3.628 0.256 5.938 3.945

Dis-PU [27] 0.315 4.201 4.149 0.199 4.716 4.249

Ours 0.273 2.605 1.836 0.241 2.310 1.687

5.2 Point Cloud Upsampling Results

PU1K: Table 1 shows the quantitative results of our PU-Transformer on the
PU1K dataset. It can be seen that our approach outperforms other state-of-the-
art methods on all three metrics. In terms of the Chamfer Distance metric, we
achieve the best performance among all the tested networks, since the reported
values of others are all higher than ours of 0.451. Under the other two metrics,
the improvements of PU-Transformer are particularly significant: compared to
the performance of the recent PU-GCN [23], our approach can almost halve the
values assessed under both the Hausdorff Distance (HD: 7.577→3.843) and the
Point-to-Surface Distance (P2F: 2.499→1.277).

PU-GAN Dataset:We also conduct point cloud upsampling experiments using
the dataset introduced in PU-GAN [24]. under more upsampling scales. As shown
in Table 2, we achieve best performance under all three evaluation metrics for the
4× upsampling experiment. However, in the 16× upsampling test, we (CD: 0.241)
are slightly behind the latest Dis-PU network [27] (CD: 0.199) evaluated under
the Chamfer Distance metric: the Dis-PU applies two CD-related items as its
loss function, hence getting an edge for CD metric only. As for the results under
Hausdorff Distance and Point-to-Surface Distance metrics, our PU-Transformer
shows significant improvements again, where some values (e.g., P2F in 4×, HD
and P2F in 16×) are even lower than half of Dis-PU’s results.

2484

PU-Transformer: Point Cloud Upsampling Transformer 11

Table 3: Ablation study of the PU-Transformer’s components tested on the PU1K
dataset [23]. Specifically, models A1-A3 investigate the effects of the Positional Fusion
block, models B1-B3 compare the results of different self-attention approaches, and
models C1-C3 test the upsampling methods in the tail.

models
PU-Transformer Body

PU-Transformer Tail
Results (×10−3)

Positional Fusion Attention Type CD ↓ HD ↓ P2F ↓
A1 None SC-MSA Shuffle 0.605 6.477 2.038
A2 Ggeo SC-MSA Shuffle 0.558 5.713 1.751
A3 Gfeat SC-MSA Shuffle 0.497 4.164 1.511

B1 Ggeo & Gfeat SA [61] Shuffle 0.526 4.689 1.492
B2 Ggeo & Gfeat OSA [56] Shuffle 0.509 4.823 1.586
B3 Ggeo & Gfeat MSA [28] Shuffle 0.498 4.218 1.427

C1 Ggeo & Gfeat SC-MSA MLPs [35] 1.070 8.732 2.467
C2 Ggeo & Gfeat SC-MSA DupGrid [25] 0.485 3.966 1.380
C3 Ggeo & Gfeat SC-MSA NodeShuffle [23] 0.505 4.157 1.404

Full Ggeo & Gfeat SC-MSA Shuffle 0.451 3.843 1.277

Overall Comparison: The experimental results in Table 1 and 2 indicate the
great effectiveness of our PU-Transformer. Moreover, given quantitative compar-
isons to CNN-based (e.g., GCN [67], GAN [43]) methods under different metrics,
we demonstrate the superiority of transformers for point cloud upsampling by
only exploiting the fine-grained feature representations of point cloud data.

5.3 Ablation Studies

Effects of Components: Table 3 shows the experiments that replace PU-
Transformer’s major components with different options. Specifically, we test
three simplified models (A1-A3) regarding the Positional Encoding block out-
put (Eq. 5), where employing both local geometric Ggeo and feature Gfeat con-
text (model “Full”) provides better performance compared to the others. As for
models B1-B3, we apply different self-attention approaches to the Transformer
Encoder, where our proposed SC-MSA (Sec. 3.3) block shows higher effective-
ness on point cloud upsampling. In terms of the upsampling method used in the
PU-Transformer tail, some learning-based methods are evaluated as in models
C1-C3. Particularly, with the help of our SC-MSA design, the simple yet efficient
periodic shuffling operation (i.e., PixelShuffle [30]) indicates good effectiveness
in obtaining a high-resolution feature map.
Robustness to Noise: As the PU-Transformer can upsample different types
of point clouds, including real scanned data, it is necessary to verify our model’s
robustness to noise. Concretely, we test the pre-trained models by adding some
random noise to the sparse input data, where the noise is generated from a stan-
dard normal distribution N (0, 1) and multiplied with a factor β. In practice, we
conduct the experiments under three noise levels: β = 0.5%, 1% and 2%. Table 4
quantitatively compares the testing results of state-of-the-art methods. In most
tested noise cases, our proposed PU-Transformer achieves the best performance,
while Dis-PU [27] shows robustness under the CD metric as explained in Sec. 5.2.

2485

12 S. Qiu et al.

Table 4: The model’s robustness to random noise tested on the PU1K dataset [23],
where the noise follows a normal distribution of N (0, 1) and β is the noise level.

Methods
β = 0.5% β = 1% β = 2%

CD ↓ HD ↓ P2F ↓ CD ↓ HD ↓ P2F ↓ CD ↓ HD ↓ P2F ↓
PU-Net [35] 1.006 14.640 5.253 1.017 14.998 6.851 1.333 19.964 10.378
MPU [25] 0.869 12.524 4.069 0.907 13.019 5.625 1.130 16.252 9.291

PU-GCN [23] 0.621 8.011 3.524 0.762 9.553 5.585 1.107 13.130 9.378
Dis-PU [27] 0.496 6.268 2.604 0.591 7.944 4.417 0.858 10.960 7.759

Ours 0.453 4.052 2.127 0.610 5.787 3.965 1.058 9.948 7.551

Table 5: Model Complexity of PU-Transformer using different numbers of Transformer
Encoders. (Tested on the PU1K dataset [23] with a single GeForce 2080 Ti GPU.)

Transformer
Parameters Model Size

Training Speed Inference Speed Results (×10−3)
Encoders (per batch) (per sample) CD ↓ HD ↓ P2F ↓
L = 3 438.3k 8.5M 12.2s 6.9ms 0.487 4.081 1.362
L = 4 547.3k 11.5M 15.9s 8.2ms 0.472 4.010 1.284
L = 5 969.9k 18.4M 23.5s 9.9ms 0.451 3.843 1.277
L = 6 2634.4k 39.8M 40.3s 11.0ms 0.434 3.996 1.210

Model Complexity: Generally, our PU-Transformer is a light (<1M parame-
ters) transformer model compared to image transformers [48,33,32] that usually
have more than 50M parameters. In particular, we investigate the complexity
of our PU-Transformer by utilizing different numbers of the Transformer En-
coders. As shown in Table 5, with more Transformer Encoders being applied,
the model complexity increases rapidly, while the quantitative performance im-
proves slowly. For a better balance between effectiveness and efficiency, we adopt
the model with five Transformer Encoders (L = 5) in this work. Overall speak-
ing, the PU-Transformer is a powerful and affordable transformer model for the
point cloud upsampling task.

5.4 Visualization

Qualitative Comparisons: The qualitative results of different point cloud up-
sampling models are presented in Fig. 3 and 4. Since we utilize the self-attention
based structure to capture the point-wise dependencies from a global perspective,
the PU-Transformer’s output can better illustrate the overall contours of input
point clouds producing fewer outliers (as shown in the zoom-in views of Fig. 3).
Particularly, based on the rich local context encoded by our Positional Fusion
block, the PU-Transformer precisely upsamples the real point clouds (compared
in Fig. 4), retaining a uniform distribution and much structural detail.
Upsampling Different Input Sizes: Fig. 5 shows the results of upsampling
different sizes of point cloud data using PU-Transformer. Given a relatively low-
resolution point cloud (e.g., 256 or 512 input points), our proposed model is still
able to generate dense output with high-fidelity context (e.g., the head/foot of

2486

PU-Transformer: Point Cloud Upsampling Transformer 13

(a) Input (b) PU-GAN (c) PU-GCN (d) Dis-PU (e) PU-Transformer (f) Ground-Truth

Fig. 3: Comparisons to state-of-the-art methods (PU-GAN [24], PU-GCN [23], Dis-
PU [27]) in (4×) upsampling synthetic point cloud data using 2048 input points.

(a) Input (b) PU-GAN (c) PU-GCN (d) Dis-PU (e) PU-Transformer

Fig. 4: Comparisons to state-of-the-art methods (PU-GAN [24], PU-GCN [23], Dis-
PU [27]) in (4×) upsampling real point cloud data from ScanObjectNN [12] dataset
and SemanticKITTI [68] dataset.

“Panda”). As the input size increases, the new points are uniformly distributed,
covering the main flat areas (e.g., the body of “Panda”).

Upsampling Real Point Clouds: In addition to Fig. 4, we provide more
upsampling results (4× and 16×) on real point cloud samples (i.e., “chair”,
“office”, “room”, “street”) from ScanObjectNN [12], S3DIS [69], ScanNet [70],
and SemanticKITTI [68], respectively. As Fig. 6 clearly illustrates, by addressing
the sparsity and non-uniformity of raw inputs, not only is the overall quality of
point clouds significantly improved, but also the representative features of object
instances are enhanced. Particularly, the contours of upsampled object instances
(e.g., tables in “office/room”, cars in “street”) are clearly distinct from the
complex surroundings, obtaining high-fidelity details for visual analysis. More
examples for visualization are included in the supplementary material.

2487

14 S. Qiu et al.

In
p

u
ts

P
U

-T
ra

n
sf

o
rm

er

256 points 512 points 1024 points 2048 points

Fig. 5: PU-Transformer’s 4× upsampling
results, given different sizes of input
point cloud data.

(a) Real-scanned Point Clouds

(b) 4× Upsampling Results

(c) 16× Upsampling Results

Fig. 6: PU-Transformer’s 4× and 16×
upsampling results, given different real
point clouds.

6 Limitations and Future Work

Upsampling Efficiency: Compared to the recent works such as Point Trans-
former [29] (∼7.76M parameters) or PoinTr [55] (∼22.7M), PU-Transformer
(∼0.97M) is an efficient transformer for point clouds. However, it still consumes
more parameters than some CNN-based counterparts [35,9,23,27] shown in Ta-
ble 1. As for inference speed, our approach is very close to others due to the
succinct pipeline design, while methods that exploit complex network [24], up-
sampling strategy [27] or geometric calculations [44] will be a bit slower.
Upsampling Flexibility: To generate different resolutions of output, our PU-
Transformer may require some post-processing such as multiple inference iter-
ations and farthest point sampling [3]. For flexible point cloud upsampling, in
future work, we will improve the adaptability of the PU-Transformer’s body.
Future Work: As a light-weight transformer targeting point clouds, our PU-
Transformer has great potential in practice. For example, we could design a
multi-functional tail to solve different low-level vision problems such as upsam-
pling, completion, and denoising. Moreover, we could further optimize the effi-
ciency of the PU-Transformer in learning fine-grained point feature representa-
tions, benefiting the high-level visual analysis of large-scale point clouds.

7 Conclusions

This paper focuses on low-level vision for point cloud data in order to tackle its
inherent sparsity and irregularity. Specifically, we propose a novel transformer-
based model, PU-Transformer, targeting the fundamental point cloud upsam-
pling task. Our PU-Transformer shows significant quantitative and qualitative
improvements on different point cloud datasets compared to state-of-the-art
CNN-based methods. By conducting related ablation studies and visualizations,
we also analyze the effects and robustness of our approach. In the future, we
expect to further optimize its efficiency for real-time applications and extend its
adaptability in high-level 3D visual tasks.

2488

PU-Transformer: Point Cloud Upsampling Transformer 15

References

1. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-d mapping with an
rgb-d camera. IEEE transactions on robotics 30 (2013) 177–187

2. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.H., Loye, A., Metzger, R.,
Pedrazzini, A.: Use of lidar in landslide investigations: a review. Natural hazards
61 (2012) 5–28

3. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2017) 652–660

4. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG) 38
(2019) 146

5. Qiu, S., Anwar, S., Barnes, N.: Geometric back-projection network for point cloud
classification. IEEE Transactions on Multimedia (2021)

6. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in neural information processing
systems. (2017) 5099–5108

7. Qiu, S., Anwar, S., Barnes, N.: Dense-resolution network for point cloud classifica-
tion and segmentation. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). (2021) 3813–3822

8. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.:
Randla-net: Efficient semantic segmentation of large-scale point clouds. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. (2020) 11108–11117

9. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detec-
tion in point clouds. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. (2019) 9277–9286

10. Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: Imvotenet: Boosting 3d object detec-
tion in point clouds with image votes. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. (2020) 4404–4413

11. Qiu, S., Wu, Y., Anwar, S., Li, C.: Investigating attention mechanism in 3d point
cloud object detection. In: International Conference on 3D Vision (3DV), IEEE
(2021)

12. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, T., Yeung, S.K.: Revisiting point cloud
classification: A new benchmark dataset and classification model on real-world
data. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. (2019) 1588–1597

13. Qiu, S., Anwar, S., Barnes, N.: Semantic segmentation for real point cloud scenes
via bilateral augmentation and adaptive fusion. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). (2021) 1757–
1767

14. Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for
monocular 3d object detection? In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). (2021) 3142–3152

15. Ye, S., Chen, D., Han, S., Wan, Z., Liao, J.: Meta-pu: An arbitrary-scale upsam-
pling network for point cloud. IEEE Transactions on Visualization and Computer
Graphics (2021)

16. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network
for point cloud analysis. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2019) 8895–8904

2489

16 S. Qiu et al.

17. Qiu, S., Anwar, S., Barnes, N.: Pnp-3d: A plug-and-play for 3d point clouds. arXiv
preprint arXiv:2108.07378 (2021)

18. Mitra, N.J., Nguyen, A.: Estimating surface normals in noisy point cloud data.
In: Proceedings of the nineteenth annual symposium on Computational geometry,
ACM (2003) 322–328

19. Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud
data from a geometric optimization perspective. In: Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH symposium on Geometry processing, ACM (2004)
22–31

20. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convo-
lutional networks. IEEE transactions on pattern analysis and machine intelligence
38 (2015) 295–307

21. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. (2016) 1646–1654

22. Anwar, S., Khan, S., Barnes, N.: A deep journey into super-resolution: A survey.
ACM Computing Surveys (CSUR) 53 (2020) 1–34

23. Qian, G., Abualshour, A., Li, G., Thabet, A., Ghanem, B.: Pu-gcn: Point cloud
upsampling using graph convolutional networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. (2021) 11683–11692

24. Li, R., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-gan: a point cloud upsam-
pling adversarial network. In: Proceedings of the IEEE International Conference
on Computer Vision. (2019) 7203–7212

25. Yifan, W., Wu, S., Huang, H., Cohen-Or, D., Sorkine-Hornung, O.: Patch-based
progressive 3d point set upsampling. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. (2019) 5958–5967

26. Liu, X., Liu, X., Han, Z., Liu, Y.S.: Spu-net: Self-supervised point cloud upsampling
by coarse-to-fine reconstruction with self-projection optimization. arXiv preprint
arXiv:2012.04439 (2020)

27. Li, R., Li, X., Heng, P.A., Fu, C.W.: Point cloud upsampling via disentangled
refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. (2021) 344–353

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. (2017) 5998–6008

29. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. (2021)
16259–16268

30. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert,
D., Wang, Z.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. (2016) 1874–1883

31. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European Conference on Computer
Vision, Springer (2020) 213–229

32. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

2490

PU-Transformer: Point Cloud Upsampling Transformer 17

33. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV). (2021)
10012–10022

34. Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., Gao,
W.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. (2021) 12299–12310

35. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-net: Point cloud upsampling
network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2018) 2790–2799

36. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3d shape recognition. In: Proceedings of the IEEE international
conference on computer vision. (2015) 945–953

37. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep
projective 3d semantic segmentation. In: International Conference on Computer
Analysis of Images and Patterns, Springer (2017) 95–107

38. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for
3d point clouds: A survey. IEEE transactions on pattern analysis and machine
intelligence (2020)

39. Huang, J., You, S.: Point cloud labeling using 3d convolutional neural network. In:
2016 23rd International Conference on Pattern Recognition (ICPR), IEEE (2016)
2670–2675

40. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.:
Splatnet: Sparse lattice networks for point cloud processing. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. (2018) 2530–2539

41. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolu-
tional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2019) 3075–3084

42. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion
network. In: 2018 International Conference on 3D Vision (3DV), IEEE (2018)
728–737

43. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural
information processing systems 27 (2014)

44. Qian, Y., Hou, J., Kwong, S., He, Y.: Pugeo-net: A geometry-centric network for 3d
point cloud upsampling. In: European Conference on Computer Vision, Springer
(2020) 752–769

45. Zhao, Y., Hui, L., Xie, J.: Sspu-net: Self-supervised point cloud upsampling via
differentiable rendering. In: Proceedings of the 29th ACM International Conference
on Multimedia. (2021) 2214–2223

46. Luo, L., Tang, L., Zhou, W., Wang, S., Yang, Z.X.: Pu-eva: An edge-vector based
approximation solution for flexible-scale point cloud upsampling. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. (2021) 16208–
16217

47. Qian, Y., Hou, J., Kwong, S., He, Y.: Deep magnification-flexible upsampling over
3d point clouds. IEEE Transactions on Image Processing 30 (2021) 8354–8367

48. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers
in vision: A survey. arXiv preprint arXiv:2101.01169 (2021)

49. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer net-
work for image super-resolution. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. (2020) 5791–5800

2491

18 S. Qiu et al.

50. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020)

51. Yew, Z.J., Lee, G.H.: Regtr: End-to-end point cloud correspondences with trans-
formers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. (2022) 6677–6686

52. Fan, H., Yang, Y., Kankanhalli, M.: Point 4d transformer networks for spatio-
temporal modeling in point cloud videos. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. (2021) 14204–14213

53. Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.: Point-bert: Pre-training
3d point cloud transformers with masked point modeling. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2022)
19313–19322

54. Fan, H., Yang, Y., Kankanhalli, M.: Point spatio-temporal transformer networks for
point cloud video modeling. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022)

55. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: Pointr: Diverse point cloud
completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. (2021) 12498–12507

56. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct: Point
cloud transformer. Computational Visual Media 7 (2021) 187–199

57. Mazur, K., Lempitsky, V.: Cloud transformers: A universal approach to point cloud
processing tasks. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. (2021) 10715–10724

58. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

59. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

60. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Icml. (2010)

61. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(2018) 7794–7803

62. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: Efficient channel
attention for deep convolutional neural networks. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). (2020)

63. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale ma-
chine learning. In: 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16). (2016) 265–283

64. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

65. Berger, M., Levine, J.A., Nonato, L.G., Taubin, G., Silva, C.T.: A benchmark for
surface reconstruction. ACM Transactions on Graphics (TOG) 32 (2013) 1–17

66. Han, B., Zhang, X., Ren, S.: Pu-gacnet: Graph attention convolution network for
point cloud upsampling. Image and Vision Computing (2022) 104371

67. Li, G., Muller, M., Thabet, A., Ghanem, B.: Deepgcns: Can gcns go as deep as
cnns? In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. (2019) 9267–9276

2492

PU-Transformer: Point Cloud Upsampling Transformer 19

68. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall,
J.: Semantickitti: A dataset for semantic scene understanding of lidar sequences.
In: Proceedings of the IEEE International Conference on Computer Vision. (2019)
9297–9307

69. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d-3d-semantic data for indoor
scene understanding. arXiv preprint arXiv:1702.01105 (2017)

70. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. (2017) 5828–5839

2493

	PU-Transformer: Point Cloud Upsampling Transformer

