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Abstract. Scene text segmentation, which aims to generate pixel-level
text masks, is an integral part of many fine-grained text tasks, such as
text editing and text removal. Multi-scale irregular scene texts are often
trapped in complex background noise around the image, and their tex-
tures are diverse and sometimes even similar to those of the background.
These specific problems bring challenges that make general segmentation
methods ineffective in the context of scene text. To tackle the aforemen-
tioned issues, we propose a new scene text segmentation pipeline called
Attention and Recognition enhanced Multi-scale segmentation Network
(ARM-Net), which consists of three main components: Text Segmenta-
tion Module (TSM) generates rectangular receptive fields of various sizes
to fit scene text and integrate global information adequately; Dual Per-
ceptual Decoder (DPD) strengthens the connection between pixels that
belong to the same category from the spatial and channel perspective
simultaneously during upsampling, and Recognition Enhanced Module
(REM) provides text attention maps as a prior for the segmentation net-
work, which can inherently distinguish text from background noise. Via
extensive experiments, we demonstrate the effectiveness of each module
of ARM-Net, and its performance surpasses that of existing state-of-the-
art scene text segmentation methods. We also show that the pixel-level
mask produced by our method can further improve the performance of
text removal and scene text recognition.

Keywords: Scene Text Segmentation · Deep Neural Network.

1 Introduction

As an important constituent of image pre-processing, text segmentation was
once the foundation of text detection and recognition. With mature applications

⋆ Corresponding author.
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2 Yujin Ren et al.

Fig. 1. Three specific issues in scene text segmentation [4]: (a) various text scales; (b)
scattered text distribution; (c) background distraction.

of deep neural networks (DNNs) in optical character recognition (OCR), pixel-
level (stroke) text segmentation is rarely used in traditional text-related vision
tasks. However, some more fine-grained scenarios have emerged recently, such as
text editing [39, 25, 14] and text removal [44, 17]. They require segmentation to
obtain precise pixel-level text masks in advance, which can be used to separate
texts from complex backgrounds. In response to these new demands, scene text
segmentation has gradually regained researchers’ attention [23, 1, 32, 40, 41].

It is difficult to obtain satisfactory results by directly transferring general
segmentation methods to scene text, as there are specific issues that must be
addressed in scene text segmentation: (1) Scene text is non-convex and prone to
exhibiting drastic differences in scale, making it challenging to segment struc-
tural details of texts with various styles. (2) The uneven distribution of scene
text in the image makes it easy for text that appears in inconspicuous loca-
tions, especially text whose texture appears less frequently, to be ignored by the
segmentation network. (3) Scene text is trapped in complex background noise
and sometimes has similar textures with them, which may lead to ambiguity in
segmentation results.

Although existing scene text segmentation approaches partially solve the
aforementioned problems to some extent, they still have major shortcomings.
SMANet [1] used a pooling operation to obtain multi-scale text features, but
it cannot preserve the resolution of the feature map, making it unsuitable for
retaining the spatial location information of scene text. MGNet [32] adopted a
semi-supervised training strategy and used polygon-level mask annotations to
provide a prior for pixel-level text segmentation, which is helpful to confirm
text location, but lacks a subtle network design for scene text. TexRNet [40]
well-designed a refinement network after the segmentation backbone, exploiting
cosine similarity to correct those infrequent pixels that are misclassified. It can
indeed produce a better segmentation effect by considering the characteristics of
scene text, but requires complex character-level annotations for its discriminator.

In this study, we propose a text-tailored segmentation pipeline called ARM-
Net, which jointly focuses on both low-level appearance information and higher-
level text semantic information. It is worth noting that low-level and high-level
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Looking from a Higher-level Perspective: ARM-Net 3

features in segmentation network are collectively referred to as low-level text
appearance information to differentiate them from text semantic information.
We optimize low-level text appearance information by rethinking the classical
encoder-decoder structure of the segmentation network. In the feature encod-
ing stage, the proposed Text Segmentation Module (TSM) is used for modeling
sophisticated text segmentation features by accommodating global and local
perspectives. It assigns equal attention weight to global texts to reactivate those
with rare textures because of their strong semantic association with the domi-
nant text. Moreover, it also adapts irregular multi-scale scene text to eliminate
the interference of background noise and thus capture more effective local fea-
tures. In the decoding recovery stage, pixels are progressively aggregated into
specific classes during upsampling. Slight deviations in deep feature maps may
result in inaccurate and distorted segmentation, especially on scene text with
an arbitrary shape. Accordingly, we propose a Dual Perceptual Decoder (DPD),
whose parameters can be dynamically adjusted to spatial and channel contents.
Aiming to take full advantage of text characteristics, we explore the essential
differences between text and generic scenes (background noise in scene text seg-
mentation), explaining why human beings rarely struggle with how to distinguish
between them. The key, we believe, is that text is no longer treated as simple
graphic symbols after people endow them with specific meanings. To imitate
the human behavioral patterns, we design an innovative Recognition Enhanced
Module (REM) to introduce higher-level text semantic information that provides
text attention maps as prior knowledge to promote text discrimination.

To summarize, our main contributions are three-fold:
1. We propose an end-to-end trainable model, ARM-Net, which exploits a
combination of low-level text appearance information and higher-level text
semantic information to facilitate segmentation.
2. Extensive experiments demonstrate the effectiveness of ARM-Net, which
achieves superior performance on three mainstream scene text segmentation
benchmarks, and each module plays significant role.
3. Experiments on downstream tasks illustrate that the addition of pixel-level
masks generated by ARM-Net can improve the effectiveness of text removal
and the accuracy of scene text recognition.

2 Related Work

2.1 Semantic Segmentation

Semantic segmentation, one of the traditional tasks in computer vision, aims to
predict a correct category for each pixel. With the development of deep learning,
many methods based on the DNN are distinguishable from traditional graph
algorithms such as MRF [31] and CRF [15]. Since the FCN [19] firstly adopted
fully convolutional network in semantic segmentation, numerous works based on
the encoder-decoder structure [24, 46, 8] have emerged.

In order to overcome the dilemma of limited receptive fields, the importance
of multi-scale features has been continuously emphasized. PSPNet [45] fused
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features of different scales through pooling operations to aggregate contextual
information in different regions. DeepLab [2, 3] introduced the atrous convolu-
tion operation to obtain multi-scale features without changing the resolution of
feature maps. HRNet [35] performed repetitive fusion by exchanging informa-
tion on parallel multi-resolution sub-networks so that the network can maintain
high-resolution representation.

As the self-attention mechanism [29] has shown extraordinary value in natural
language processing (NLP), researchers have applied it to semantic segmentation
to obtain the long-range dependency. DANet [5] associated spatial attention and
channel attention to acquire broader contextual information. Employing a simi-
lar strategy, CCNet [9] and Axial-DeepLab [33] proposed Criss-Cross Attention
and Axial-Attention, which both use fewer pixels to participate in the attention
calculation so as to reduce computing costs. EMANet [16] abandoned the pro-
cess of computing attention maps on a full graph and utilized the Expectation
Maximization (EM) algorithm instead to iterate over a set of bases and then
performed the attention mechanism on it.

2.2 Scene Text Segmentation

Previously developed scene text segmentation methods mostly use thresholds or
low-level features to binarize scene text images, making it difficult to produce
satisfactory results due to the complexity of scenes and textures. Recently, sev-
eral approaches based on deep learning have been explored. Bonechi et al. [1]
labeled COCO [30] and MLT [22] by machine for pre-training, and proposed
SMANet, which combines the pooling pyramid with the attention mechanism
to form a multi-scale attention module. Wang et al. [32] proposed a mutually
guided dual-task network that uses polygon-level masks (bounding boxes) for
semi-supervision which can be easily obtained from scene text detection datasets.
They pointed out that pixels outside a polygon-level mask do not belong to the
pixel-level mask. So, polygon-level masks can serve as a filter to guide the gen-
eration of pixel-level masks, and vice versa. Xu et al. [40] made a new text
segmentation dataset, TextSeg, which contains 4,024 images with comprehen-
sive annotations. They made some special designs in their TexRNet to refine the
output from the aforementioned segmentation networks such as DeepLabV3+ [3]
and HRNet [35] to improve their performance on scene text segmentation. TexR-
Net firstly guarantees that high-confidence regions are reliable by calculating the
modified cosine-similarity between the text class and background class. It uses
the key features pooling and attention-based similarity checking to activate text
regions that may be ignored owing to low-confidence in the initial prediction.

3 Methodology

3.1 Pipeline

As shown in Fig. 2, our proposed ARM-Net consists of three main components:
Text Segmentation Module (TSM), Dual Perceptual Decoder (DPD) and Recog-
nition Enhanced Module (REM). We adopt ResNet-50 [6] as backbone for feature
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extraction. Extracted features are fed into the TSM and transformed to dense
multi-scale text segmentation features with a global view. Then, the DPD dy-
namically aggregates text and background pixels according to content informa-
tion from the spatial and channel perspective during upsampling. We also blend
low-level features from the backbone with each stage of the DPD to acquire more
visual details. In addition, the REM is applied as an auxiliary cue and brings in
higher-level text semantic information to enhance segmentation features. Text
attention maps generated by the REM indicate where the segmentation network
should focus.

Fig. 2. Pipeline of our proposed ARM-Net.

3.2 Text Segmentation Module

For scene text segmentation, local and global information are like both sides
of a scale, and a reasonable balance needs to be achieved between the two to
succeed better performance. Accordingly, our proposed TSM integrates global
correlations and local details adequately to obtain more effective segmentation
representations, as illustrated in Fig. 3.

Scene texts are frequently scattered in images, and they are sometimes sub-
merged in the complex background noise; so, those texts with small size or rare
textures are easily ignored by the segmentation network. We propose a Global
Text Module (GTM), which draws on the core idea of CCNet [9] to model
dependencies of the entire image, while avoiding a surge of computation and
parameters. Unlike the non-local network [38] that calculates the correlation
matrix between each pixel in the feature map spatially, we only perform the self-
attention for each pixel in the horizontal and vertical directions that the pixel
belongs to, as shown in the red dashed box of Fig. 3.

In the concrete, after 1× 1 convolution layers, we obtain three feature maps
Q, K and V . The affinity matrix A = φ

(
Qu · KT

u

)
between spatial locations

is obtained by element-wise multiplying each position of Q (i.e. Qu) with the

vector set Ku∈ RC
′
×(H+W−1) and then applying a softmax function, φ(·). Here
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Fig. 3. Architecture of the TSM, which consists of GTM and DTM two sub-modules.
In the DTM, blue and red squares represent horizontal and vertical atrous convolution,
respectively, and d is the dilation rate.

Ku denotes the set of positions in K that are in the same row or column as u.
Similar to the above operation, Vu∈ RC×(H+W−1) is multiplied with the affinity
matrix A. Then, we add it to the primary local feature, H, to obtain the pixel-
wise contextual augmented feature representation, H

′
. Here we implement Criss-

Cross Attention twice to deliver the information of one pixel into all paths. The
above operation can be expressed as follows:

H
′
u = φ

(
Qu ·KT

u

)
· Vu +Hu . (1)

As scene texts are mostly in rectangular or curved shape and their scale
is extremely different, we propose a Dense Text Module (DTM) on the basis
of atrous convolution [2]. The operation of atrous convolution is equivalent to
inserting d − 1 zeros between two adjacent weights of the filter, where d is the
dilation rate. This approach can expand the range of the receptive field while
maintaining the resolution of the feature map.

As illustrated in the blue dashed box of Fig. 3, the DTM heuristically per-
forms atrous convolution in two directions, which separately creates horizontal
or vertical zero padding. Afterwards, the DTM cascades these atrous convolu-
tion layers with the dilation rate from low to high. In this way, we obtain denser
feature representations and rectangular receptive fields with various aspect ratio,
which are more appropriate for irregular scene text. When the dilation rates of
the two directions are equal, the receptive field is of a regular shape. Stacking n
atrous convolution layers can obtain a larger equivalent kernel size K:

K =

n∑
i=1

Ki − (n− 1) . (2)

Moreover, the receptive field size, R, increases linearly with dilation rates:

R = (d− 1)× (K − 1) +K . (3)
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Following equations (2) and (3), the number of R in the DTM is at most 26,
which sufficiently alleviates the problem wherein the fixed shape receptive field
is not appropriate for multi-scale scene text.

The DTM outputs dense multi-scale text features with abundant sizes of the
receptive field. Each feature is concatenated with the augmented feature repre-
sentation H

′
produced by the GTM to combine global information adequately.

3.3 Dual Perceptual Decoder

In segmentation methods that utilize the encoder-decoder structure, decoder
plays an important role in rebuilding image from features. However, traditional
upsampling methods have their limitations. Nearest and bilinear interpolation
only consider adjacent positions, and deconvolution is restrained by fixed kernel
size and weights. To better cope with the problem that are neglected by previous
scene text segmentation methods, we propose the DPD, as shown in Fig. 4.

Fig. 4. Structure of the DPD. The upper branch is Spatial Context-Aware Module,
and the branch below is Channel Semantic-Aware Module.

The upper branch in Fig. 4 is a Spatial Context-Aware Module, which is
inspired by CARAFE [34] and the dynamic filter network [11]. Given a C×H×W
feature map, F , the Spatial Context-Aware Module can dynamically expand the
feature map to C × rH × rW according to the context information of different
objects in the spatial dimension, where r is the up-sampling rate. We first employ
a convolution layer with kernel size ke on segmentation features as a weight
generator through which the feature map becomes H×W ×C ′. Here, C ′ = r2k2u,
and ku is the kernel size during up-sampling. The weight generator aggregates
the spatial context information within the ke × ke receptive field. Then, we
reshape the channel dimension and spatial dimension to obtain a ku×ku weight
matrix, Wu∈ RrH×rW×k2

u , which can satisfy each position on C × rH × rW as
an individual weight. Note that each ku × ku kernel is normalized by a spatial
softmax function. This makes the kernel values sum to one and has no effect
on the feature distribution. Finally, we calculate the upsampled output, Fs, as
follows:

Fs =

n∑
i=−n

Wi · Fi . (4)
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From another perspective, each channel of high-level features can be regarded
as a class-specific response, and semantic responses belonging to the same cat-
egory should be associated with each other during upsampling. By assigning
channel weights according to their interdependencies, associated channels are
emphasized, and interfering channels are suppressed simultaneously, thereby im-
proving the discriminative capacity of the model.

To fulfill the above purpose, we design the Channel Semantic-Aware Module
as illustrated in the lower branch of Fig. 4. Taking segmentation feature F ∈
RC×H×W as the input, we first calculate its channel-wise relationship on it.
Concretely, we reshape F to RC×N , and then multiply it with its transpose
matrix. We normalize the output through a softmax layer to obtain the weight
matrix Wc ∈ RC×C . Wc represents the interrelationship between channels and
can also be seen as a channel attention map.

wc =
exp(Fi · FT

i )∑C
i=1 exp(Fi · FT

i )
, (5)

where wc is an element of Wc that measures the degree of correlation between
two channels. Sequentially, a filter generation layer, g, is applied to generate
channel semantic-aware features. Unlike SENet [7], which squeezes the spatial
information of each feature map into one channel descriptor by global average
pooling, we use adaptive average pooling to generate a k×k channel-wise feature
Fc. Afterward, Fc can be viewed as a channel-weighted dynamic filter, and each
position in the filter represents general information of a sub-region.

Finally, a depth-wise convolution layer with Fc as weights is applied to Fs.
Through a 1 × 1 convolution layer to fuse the channel information, upsampled
output is obtained. Replacing traditional upsampling methods with the DPD
allows us to rearrange activation responses of scene text elaborately according
to the spatial and channel information.

3.4 Recognition Enhanced Module

When the texture is similar to the background, scene text is difficult to be
identified accurately by the segmentation network. We think it is because the
segmentation network only utilizes low-level appearance information such as text
structure and color. To alleviate this problem, the network needs to be taught
that text has higher-level meanings that go beyond general objects and sym-
bols, just like human beings do. Consequently, we propose an REM, which can
highlight text regions in the whole image and deliver higher-level text semantic
information to segmentation features, as shown in Fig. 5.

In the training phase, we first crop textlines from the image and feed them
into a pre-trained DAN [37] recognizer whose parameters are frozen. The rea-
son why we choose DAN is that it mitigates attention drift problem through
the Convolutional Alignment Module (CAM). Other attention-based recogniz-
ers [21, 27] are also appropriate here. The cropped textline images are unified
into M×128×32, where M is the total number of textlines in one batch. Atten-
tion maps produced by DAN are used to align character positions at each time
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Fig. 5. Architecture of the REM. Portions in the red dotted box only participate in
the training phase, and during inference, the text attention map is predicted by U-Net.

step, which are implicitly supervised by word annotations. Summing all steps’
attention maps along the channel can obtain a textline attention map. Further-
more, we put textline attention maps into an all-black background according
to their initial positions to acquire the text attention map of the whole image,
which can indicate text distribution. Pixels with a higher probability in the text
attention map are more likely to be candidates of text regions. For a better re-
lation estimation, we follow the operation in the self-attention mechanism [29].
Formally, we treat the text attention map as Q and segmentation features as
K, V . After computing the relation matrix between the text attention map, FQ,
and segmentation features, FK , we assign it as text region representations to
the corresponding position of segmentation features, FV . As a result, the seg-
mentation feature with high similarity to the corresponding position on the text
attention map is highlighted while that with low similarity is restrained. By this
means, we obtain the enhanced text features, Te, as follows:

Te =
exp(FK · FT

Q )∑n
i=1 exp(FK · FT

Q )
· FV . (6)

Since the coordinate information of texts is not available in the inference
phase, we employ a lightweight U-Net [24] to predict text attention maps by
using segmentation features under the supervision of the l1 loss. In this way, we
can not only impose a more direct constraint on segmentation features but also
replace text attention maps’ output by recognizer with that prediction, enabling
an image-to-image inference process.

4 Experiment

4.1 Datasets and Implementation Details

We conduct experiments on the following three benchmarks, all of which have
high-quality pixel-level annotations that can be used to supervise the training
phase of segmentation network.

1) ICDAR-2013 [12]: This is a dataset for the ICDAR 2013 ‘Robust Text
Reading’ competition, which contains 229 training images and 233 test images
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with pixel-level mask ground-truth. Scene texts in this dataset are regular and
can be surrounded by rectangular bounding box.

2) Total-Text [4]: It contains 1,255 training images and 300 test images.
Unlike ICDAR-2013, scene texts in Total-Text have irregular shapes, including
rectangular and curved texts. Clear pixel-level annotations are also available.

3) TextSeg [40]: TextSeg consists of 4,024 scene text and design text images,
which are split into training, validation, and testing sets, with 2,646, 340, and
1,038 images, respectively. TextSeg provides accurate and comprehensive anno-
tations including word-wise and character-wise polygon-level masks as well as
pixel-level masks and transcriptions.

We train each model on a NVIDA V100 GPU for 100 epochs and use the
Adam [13] optimizer. The first five epochs are warm-ups, and the remaining
epochs employ poly decayed learning rates, where the initial learning rate 1e-4
is multiplied by

(
1− iter

maxiter

)power

with power=0.9.

4.2 Comparison with Existing Methods

We compare our proposed ARM-Net with some state-of-the-art methods, includ-
ing three semantic segmentation methods [24, 3, 35] and three text segmentation
methods [1, 32, 40]. We use the Precision(P ), Recall(R), and F-score(F ) of the
foreground text to quantitatively evaluate the performance of the network, where
F= 2P ·R

P+R denotes the harmonic mean of P and R. The results of three evalua-
tion metrics are presented in Table 1. ARM-Net outperforms the state-of-the-art
methods in pixel-level scene text segmentation on all three benchmarks. Further-
more, the inference speed of ARM-Net (4.35fps) is faster than TexRNet (1.22
fps), which shows that our method has a better efficiency.

Table 1. Quantitative results between ARM-Net and other segmentation methods.

Methods Total-Text ICDAR 2013 TextSeg
P R F P R F P R F

U-Net [24] (MICCAI’15) 79.6 69.7 74.3 74.6 53.9 62.6 89.0 77.4 82.8
DeepLabV3+ [3] (ECCV’18) 80.2 76.5 78.3 77.4 63.2 69.6 91.4 90.9 91.2
HRNetV2 [35] (TPAMI’20) 81.4 78.0 79.7 72.8 69.5 71.1 91.9 90.5 91.2

SMANet [1] (PRL’20) 86.6 73.9 77.5 74.4 73.8 71.3 - - -
MGNet [32] (TIP’20) 83.3 81.6 80.5 79.0 77.0 74.5 - - -

TexRNet+DeepLabV3+ [40] (CVPR’21) - - 84.4 - - 83.5 - - 92.1
TexRNet+HRNetV2-W48 [40] (CVPR’21) - - 84.8 - - 85.0 - - 92.4

ARM-Net (Ours) 87.1 83.8 85.4 88.9 81.6 85.1 92.8 92.6 92.7

Several typical qualitative examples are presented in Fig. 6, where images
contain a variety of styles/shapes/arrangements of text, as well as other complex
background distractions such as illumination. It is obvious that our approach
overcomes these difficulties and produces more accurate results.
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Fig. 6. Text segmentation visualization results on Total-Text(a∼c) and ICDAR-
2013(d,e). From left to right, each column is input, masks predicted by DeepLabV3+,
SMANet, MGNet, TexRNet, our ARM-Net, and ground truth, respectively.

4.3 Ablation Studies

In this section, we conduct ablation experiments to verify the effectiveness of
each module in our method. All ablation experiments are performed on Total-
Text. Note that when conducting ablation experiments within one module, we
ensure that other modules are in the best settings.

We first investigate three main components of ARM-Net. The baseline is
a simple FCN [19], beginning with which, we add the TSM after the encoder,
replace the decoder with the DPD, and introduce the REM progressively. The
results in Table 2 exhibit a continuous upward trend with the introduction of
each module. When including TSM and DPD, the F-score increases 2.7%, while
this gain is 2.5% when we use REM only. Moreover, the ARM-Net with all three
modules achieves the best performance, with an increase in F-score of more than
3% compared to the baseline. This suggest that higher-level semantic information
is an effective supplement and is as critical as low-level appearance information.

In addition, the samples in Fig. 7 provide more intuitive evidence that ARM-
Net is highly adaptable to the scene text segmentation task. Because of the com-
prehensive consideration of low-level text appearance information and higher-
level text semantic information through TSM, DPD, and REM, our approach
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Table 2. Effectiveness experiment on three main modules of ARM-Net.

TSM DPD REM P R F
× × × 85.4 79.4 82.3
✓ × × 85.7 83.4 84.6
✓ ✓ × 85.9 84.2 85.0
× × ✓ 85.8 83.7 84.8
✓ ✓ ✓ 87.1 83.8 85.4

achieves satisfactory segmentation results, without many serious cases of misclas-
sification such as incomplete, blurred text structure and unfiltered background.

Fig. 7. Segmentation results for typical difficult samples. From top to bottom, each
row is large variations in the scale and shape of text, scattered distribution of text
throughout the image, and small text hidden in complex background noise, respectively.

Better low-level text appearance information. We conduct experiments
in Table 3 to investigate the effectiveness of GTM and DTM. It can be seen that
in scene text segmentation, both global attention information and local multi-
scale information are beneficial for scene text segmentation. The shape and size
of scene text are different from those of general objects; so, the dilation rate of
DCM needs to be carefully designed to prevent degradation problem, that is,
as the dilation rate increases, fewer weights are applied to valid feature regions.
Consequently, we empirically set both the horizontal and vertical dilation rate
to 1,2,3,6 based on the experimental results in Table 4.

Higher-level text semantic information. REM aims to deliver higher-level
semantic information from the recognizer to the segmentation network. As demon-
strated in Table 2: the addition of REM increases the F-score by a further 0.4%
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Table 3. Comparison on the impact of
GTM and DTM to text segmentation.

GTM DTM P R F
× × 85.9 80.1 82.9
✓ × 87.0 80.5 83.6
× ✓ 87.2 82.3 84.7
✓ ✓ 87.1 83.8 85.4

Table 4. Ablation experiment on dilation
rate combinations of DTM.

Dilation rate P R F
1,12,18,24 86.3 81.6 83.9
1,6,12,18 85.6 82.7 84.1
1,3,6,12 86.0 83.3 84.6
1,2,3,6 87.1 83.8 85.4

thus achieving optimal performance. As shown in Fig. 8, the role of REM is
manifested in three aspects: (1) filtering out the misclassified background noise;
(2) reactivating text regions that have been ignored by segmentation network;
(3) distinguishing negative samples whose texture is close to that of the tar-
get text, eg. dot, symbols (e.g. ‘&’), and Chinese characters outside the ground
truth. Characters that are not of concern to the recognizer are suppressed by
REM along with the background, which is a similar pattern as that of humans,
who treat unrecognized words as graphic symbols.

Fig. 8. Visualized results of using the
REM (w. REM) and not (w.o REM).

Fig. 9. Downstream application on text
removal task.

4.4 Downstream tasks

Downstream tasks such as text editing and text removal can benefit from fine-
grained pixel-level text masks. Here we take text removal task as an example to
demonstrate the application value of our ARM-Net. We feed the segmentation
result as mask into DeepfillV2 [42], one of the state-of-the-art inpainting net-
works, to generate a text-free image. As shown in Fig. 9, the inpainting image
using mask predicted by our method avoid suffering from serious smudging and
erasing mistakes, which appear in inpainting reults using polygon masks from
ground truth, and TexRNet (column 2 and 3). As DeepfillV2 utilizes the seg-
mentation mask as a guidance, any misclassified pixels of text will be omitted
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14 Yujin Ren et al.

and those of background will be erased incorrectly. Such text removal results
also reflects the superior segmentation performance of ARM-Net.

Apart from low-level image tasks, we observe that segmentation results also
boost the performance of text recognition. Here we choose CRNN [26], a widely
used method for text recognition, as the baseline. To utilize segmentation re-
sults, we simply concatenate pixel-level text masks and original images along
the channel dimension, then feed it into the CRNN, which is initialized with
an official pre-trained model, and fine-tune the first layer further with other pa-
rameters fixed. For a fair comparison, we train the model on the synthetic text
dataset Synth90k [10] and validate it on ICDAR-2003 [20], ICDAR-2013 [12] and
SVT [36], follow the setting of [26, 32]. The experimental results in Table 5 illus-
trate that the inclusion of pixel-level text masks generated by ARM-Net leads
to an improvement in recognition accuracy of over 2% on both ICDAR-2003 and
SVT, and of 1.2% on ICDAR-2013. The performance not only exceeds that of
the CRNN baseline but is also better than the MGNet [32] method.

Table 5. Downstream experiment on scene text recognition.

Method ICDAR-2003 ICDAR-2013 SVT
CRNN [26] 89.4 86.7 80.8

CRNN+MGNet [32] 91.4 87.7 82.8
CRNN+ARM-Net (Ours) 91.7 87.9 82.9

5 Conclusion

Scene text varies considerably in scale and shape, with some textures appearing
infrequently, or even close to backgrounds. In this paper, we rethink the essence
of scene text segmentation task and propose an effective end-to-end neural net-
work, ARM-Net. The proposed TSM and DPD capture better low-level text
appearance information, while the REM incorporates higher-level text semantic
information as a complement. And by jointly exploiting both, we implement an
optimization for the segmentation network. Quantitative and qualitative exper-
iments demonstrate that our model outperforms state-of-the-art segmentation
networks. We also show promising results that using text segmentation masks
from ARM-Net on text removal and text recognition downstream tasks. In the
future, we will investigate end-to-end networks for segmentation and recognition
to further improve the performance of text segmentation in extreme scenarios.
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