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Abstract. Neural fields have emerged as a powerful paradigm for repre-
senting various signals, including videos. However, research on improving
the parameter efficiency of neural fields is still in its early stages. Even
though neural fields that map coordinates to colors can be used to en-
code video signals, this scheme does not exploit the spatial and temporal
redundancy of video signals. Inspired by standard video compression al-
gorithms, we propose a neural field architecture for representing and
compressing videos that deliberately removes data redundancy through
the use of motion information across video frames. Maintaining motion
information, which is typically smoother and less complex than color
signals, requires a far fewer number of parameters. Furthermore, reusing
color values through motion information further improves the network
parameter efficiency. In addition, we suggest using more than one ref-
erence frame for video frame reconstruction and separate networks, one
for optical flows and the other for residuals. Experimental results have
shown that the proposed method outperforms the baseline methods by
a significant margin.

1 Introduction

Neural fields [TH2I3/4I56] (also known as implicit neural representations or coordinate-
based neural representations) are an emerging approach for representing various
signals. Signals can be reconstructed using dense sampling once a neural net-
work has been trained to map coordinates to corresponding signal values. Un-
like other representation techniques that store discretely sampled data, neural
fields use continuous coordinates as inputs, allowing them to represent signals at
any resolution and at any arbitrary coordinate. It can accurately express both
low and high frequencies of signals thanks to recent breakthroughs in input fea-
tures [II2l5]. This innovative representation approach has shown considerable
promise in a number of areas, including computer graphics [B[7], physical simu-
lations [28], and generative models [910], to name a few.

* Corresponding authors.
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Fig. 1: Neural residual flow fields (NRFF) with a single reference frame. The gray-
scale image on each side shows residuals, and the blue image in each parenthesis
are optical flows. x, y, t are spatial and temporal coordinates.

Although it has recently received widespread attention, its parameter ef-
ficiency has not been thoroughly investigated. In recent studies, neural fields
require a large number of parameters to accurately represent signals [2/45].
Without enhancing parameter efficiency, transaction costs of neural fields are
high because signals are stored as network parameters. This hinders us from
utilizing it in many practical applications that may benefit from it.

In this paper, we study how to effectively represent videos using this new
representation approach. A naive approach, equivalent to SIREN [2], would
be to use a neural field as a function of spatial and temporal coordinates,
(r,g,b) = fo(t,z,y), with continuous coordinates as inputs and three color chan-
nels as outputs. However, this approach does not exploit the spatial and temporal
redundancy of video signals, and our goal is to improve the parameter efficiency
by explicitly removing the redundancy.

We propose Neural Residual Flow Fields (NRFF), a novel neural field scheme
for video representation that leverages optical flows and residuals instead of raw
colors. Our proposed scheme was inspired by standard video compression algo-
rithms [TT/T2JT3] that use motion information to deduplicate signals presented
across frames. Optical flows allow us to reuse color values from other reference
frames, which often preserve fine details. If those delicate patterns are on the
surface of subjects inside video frames, reusing color values relieves the burden
of learning similar patterns across frames and improves network parameter effi-
ciency, rather than wasting network capacity on storing redundant raw signals
for the entire frames.

Many video compression methods use block-wise motion estimations, where
each motion vector is applied to all pixels within each block, significantly reduc-
ing the total number of required motion vectors. This is based on prior knowledge
that smooth, low-frequency motion vector fields are often sufficient for describing
movement between video frames. This gave us the idea that substituting optical
flows for raw colors may greatly reduce the number of parameters. However,
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video frames cannot be completely reconstructed solely by optical flows due to
occlusion and dis-occlusion. Thus, we use residuals to recover the original signals
from video frames with precision. It would not necessitate a large neural network
since a substantial number of color values are likely to be reused from the motion
information. To summarize, we train the networks to capture optical flows and
residuals rather than raw color signals, which greatly improves the efficiency of
network parameters.

We also propose to use more than one reference frame for video frame gener-
ation. Using multiple reference frames enables the exploitation of visible infor-
mation over many reference frames, each of which may contain distinct exposed
and occluded information.

In addition, we also suggest splitting the network into two subnetworks: one
for optical flows and the other for residuals. Separating optical flows and residu-
als, assuming they have different dynamics, would improve the quality, and the
experiment results support this.

Experimental results show that the proposed method significantly outper-
forms the baseline method, which relies on raw colors. Given similar sizes, NRFF
reconstructs video frames more clearly and sharply. Quantitative results on the
MPI Sintel [14] and UVG [15] datasets reveal that our method significantly out-
performed its counterpart in terms of standard image reconstruction metrics
(PSNR: 31.2 to 37.4, SSIM: 0.82 to 0.95). Although the proposed method is an
initial attempt to improve the parameter efficiency of neural fields for videos,
it also performs favorably with H.264 [I1], a standard video compression algo-
rithm. With the multi-reference frames method, NRFF matches the performance
of H.264 using small group of pictures (GOP) on some videos without any model
compression techniques such as pruning and entropy coding (Fig. @

In summary, our contribution is threefold.

e We show that using optical flows and residuals as output instead of colors
can significantly improve video quality.

e We propose to use multiple reference frames for frame reconstruction, and
this improves video quality without increasing the network size.

o We demonstrate that parameter efficiency can be improved by using sepa-
rate neural fields—one for optical flows and the other for residuals—in addition
to using a shared network for each group of pictures.

2 Related Works

Neural fields Neural fields map spatial and temporal coordinates to certain
physical quantities [16]. Since a wide variety of tasks can be represented as fields,
this approach has recently gained popularity and been used in several tasks, such
as image representation [IJ4/I7], audio representation [2], 3D shape [7/I8], and
novel view synthesis [BIT920021122]. Thanks to recent innovations [TJ2I5IT7I23],
it can faithfully reconstruct even high frequency signals. Neural fields have also
been applied to signals having both spatial and temporal dimensions, includ-
ing video representation and novel view synthesis in 4D space [2425/26/27128].
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As a new way of representing data, several attempts have been made to com-
press various signals, such as images [29/30/31] and videos [26/32]. However, the
compression performance of neural field-based methods is currently far behind
standard state-of-the-art compression algorithms.

Learning based video compression There have been several data-driven
attempts to utilize neural networks for efficient video representation. Convolu-
tional neural networks (CNNs) and auto-encoder architectures have been used to
compress video signals [3334]. These works train encoder and decoder networks
on large-scale datasets and test them on unseen videos to achieve high video
compression rates, assuming decoder networks are already shared and only core
video information needs to be stored or sent. DVC [34] has achieved compres-
sion rates comparable to or slightly better than standard video compression
algorithms, e.g., H.264 and H.265. However, these approaches are inherently
vulnerable to the biases of training datasets. SIREN [2] is an attempt to repre-
sent various forms of signals, including videos, through neural fields, however, it
does not consider its parameter efficiency. NeRV [20] is a variant of neural fields
that achieves video compression performance comparable to that of the stan-
dard video compression algorithm, H.264. However, NeRV gives up two degrees
of freedom and uses only time coordinates ¢ as inputs for efficient rendering.
Our proposed method, NRF'F, explicitly removes the redundancy by combining
residuals and flows with the help of key frames. IPF [32] is a concurrent work us-
ing optical flows and residuals for video compression. Ours and IPF are different
in a number of ways. While IPF employs a separate network for each frame, we
use a shared network for each group of pictures and take advantage of temporal
redundancy between frames. We also propose to use more than one reference
frame, whereas IPF only proposes to use one.

Optical flow estimation Optical flow has been a core component of various
computer vision tasks. Since the work of Horn and Schunck [35], many improve-
ments have been proposed to make optical flow more accurate [35]. Recently,
employing neural networks to improve optical flow estimation [36J37/38] rather
than traditional algorithm-based methods [35] has been successful. To achieve
more robust learning based optical flow methods, the ground truth optical flows
have been collected by using an animated film and computer graphics [14136].
Several strategies have been proposed to improve estimating performance by
using occlusion masks [39] or transformer-based operations [40/41].

3 Method

Figure [I) illustrates an overview of optical flow-based neural fields for video rep-
resentation. Our proposed neural fields generate optical flows for a given spatial
and temporal coordinates (Sec to warp reference frames. In addition to op-
tical flows, the residuals are also generated by neural fields, and these generated
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residuals are added to the warped frame to complete the reconstruction (Sec.
To improve video quality, we use more than one reference frame for video frame
reconstruction. For each GOP, we use two neural networks: one for optical flows
and the other for residuals.

3.1 Dense Optical Flow Estimation

Standard video compression methods use block-wise motion information to im-
prove compression efficiency [ITJI3]. However, because of this algorithmic na-
ture, results often contain block-shaped distortions or artifacts, which necessitate
deblocking filters. We propose using dense, pixel-wise motion vectors through
neural fields. It is known that neural networks can efficiently represent smooth
signals [1l42]. Thus, we sample motion vectors densely by injecting dense coor-
dinates and using small-size neural networks as neural fields.

3.2 Image Warping and Completion

We use generated flow fields to warp reference frames to predict target video
frames. Let I be an image function that takes spatial and temporal coordinates
(z,y,t) as inputs and produces corresponding colors (r, g,b) as outputs. A ref-
erence frame and a warped image are denoted as Ie ¢ and I, respectively. The
reference frame can be the key frame or a neighboring frame. Then, a warped
image at time ¢, f(x, y,t) can be written as

(Az', Ay") = Fhow(z,y,t;0), (1)

(z,y,
I(z,y,t) = Interp(fref (1), + Azt y + Ayh). (2)

Fhow(t), which is parameterized by 6, estimates optical flows between two frames
(the video frame to be reconstructed and the reference frame). Interp(-) warps
a video frame by a bicubic interpolation.

Reconstructing a video frame by simply warping the source video frame is
likely to contain artifacts. Artifacts can be caused by a variety of factors, includ-
ing imprecise optical flow estimation, occlusions and disocclusions between video
frames, and accumulated errors from the recursive frame generation process. To
alleviate the issues, we use residuals along with the optical flows.

The final equation for image completion can be written as

f($;y7t) :Fres(xayat;w)'*'f(xayat) (3>

, where Fl.s denotes the residual estimator with its own parameter .

3.3 Key Frames

Inspired by the standard video compression algorithms, we store a key frame per
GOP as a standalone frame so that other frames directly or indirectly depend
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on the key frame. Regarding key frames, there are two important considerations:
the image quality of key frames and the location of key frames.

With a fixed total size, there is a trade-off between the key frame quality
and the network size. Given a high-quality key frame, a network can exploit
the high-frequency details of the key frame. However, since high-quality key
frames require a larger memory size, the network size must be smaller in order
to maintain the total size. Having a small-sized network tends to have difficulties
covering long, dynamic frames. In contrast, a relatively low-quality key frame
relegates expressing fine-details to the network. A large network handles long
dynamic frames relatively easily, however, because the reference frames lack fine-
details, the network must learn to compromise between learning fine-details and
learning the optical flows of long and dynamic frames. We empirically found that
the optimal ratio of the network size and the key frame quality (or the size) is
related to the total number of frames in the GOP. The larger the GOP is, the
larger the network size should be, and vice versa. The detailed experimental
results can be found in the supplementary material.

Among possible positions, we chose the middle frame as the key frame to
minimize the errors caused by the distance from the key frame. Experimental
results showed that selecting the middle frame as the key frame is better in terms
of reconstruction quality than selecting the first or last frame in the GOP.

We could use neural fields for key frame compression. However, existing neu-
ral field-based image compression methods usually underperform or are at most
similar to standard image compression algorithms, such as JPEG, in terms of
compression efficiency. Therefore, for keyframe compression, we employ the stan-
dard H.264 video compression technique. We still need more sophisticated train-
ing algorithms, input feature preprocessing techniques, and new network archi-
tectures to completely replace H.264 with neural fields in our proposed method.

3.4 End-to-end Training

Our proposed approach was designed to be differentiable throughout the en-
tire process in order to build an end-to-end framework for video representation
learning. We used MSE (mean squared error) loss to minimize the reconstruction
errors. Let B be a mini-batch of frame indices excluding the key frame, then the
loss function can be written as

10, 6,0) = 5 S50 S Gy, 0) — 1)1 (4)

teB x Y

I(-,-,-) is a ground truth color, and I(-, -, -) is a reconstructed color. We multiplied
the equation with the inverse of the constant Z to get the average loss over both
time and space. Note that we excluded the key frame during the training process.
The key frame will only be included during the evaluation.
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Fig. 2: Neural residual flow fields with multi-reference frames. ® and @ denote
element-wise multiplication and addition, respectively. & in the figure denotes
one minus inputs, that is, in the case of weights, one minus weights will be
outputted.

3.5 Multi-reference Frames

To further improve the video quality, we propose to use more than one reference
frame to reconstruct a video frame. For each video frame, the video representa-
tion network learns to warp the nearest two key frames, each of which is unique
per GOP, to reconstruct a video frame. The key frame from the GOP, where a
particular video frame to be reconstructed is located, is always referred to for
frame reconstruction. A frame, preceding the key frame of the GOP in temporal
order, uses the key frame from the nearest preceding GOP as the other refer-
ence. Likewise, a frame after the key frame will use the key frame of the nearest
posterior GOP as another reference frame.

Overall architecture is presented in Fig. 2| First, two reference frames are
warped by the generated optical flows. To combine information from multiple
frames, we also need learned pixel-wise weights (from zero to one) that selectively
aggregate two warped frames. The network would weigh more on closer pixels
among two reference frames to aggregate warped images. The flow network now
generates optical flow outputs for each reference frame and additional mixing
weights. Lastly, the residuals are added to fully reconstruct a video frame.

3.6 Network Split

Simply replacing the output of neural fields from colors with optical flows and
residuals means that optical flows and residuals are generated from the shared
parameters. If the patterns of optical flows and residuals are similar, then shar-
ing parameters may help to improve parameter efficiency. Otherwise, sharing
parameters could degrade the quality. We analyze two different structures in the
experimental section.

As proposed in IPF, we can also split in the temporal dimension. That is,
we can use each network for each video frame. However, unlike the relationship
between optical flows and residuals, neighboring video frames are usually highly
correlated. To support our claim that separating the network for each video frame
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Fig.3: The qualitative results between the proposed method and the baseline
method under similar sizes (best viewed in color electronically). The left column
examples are from the MPI Sintel dataset, and the right column examples are
from the UVG dataset.

prevents the use of temporal redundancy and, thus, is less parameter efficient,
we compare our method with IPF in the experimental section.

4 Experiments

We tested our approach on both synthetic and real-world datasets (MPI Sin-
tel [I4], UVG dataset [15]). We used the color-based neural field, SIREN [2], as
the baseline. In addition to SIREN, we also compared our approach with the
standard video compression algorithm, H.264 [I1].

4.1 Dataset

The MPT Sintel [14] dataset was originally designed to evaluate the optical flow
performance and it provides challenging and natural video sequences based on
an open source animated film. We selected the MPI Sintel dataset for two rea-
sons. First of all, it provides the ground truth optical flow, which allows us to
evaluate the accuracy of the learned flows. Flow estimation is a core part of our
algorithm, therefore, it is desirable to understand how flow estimation affects the
final reconstruction. Second, it has been a good testbed for challenging scenar-
ios, such as long range motion, motion blur, multi-frame analysis, and non-rigid
motion. We tested our method on the entire 23 videos supported by MPI Sintel.

We also evaluated our method using seven 1080p videos from the Ultra
Video Group (UVG) video collection [I5], in order to compare it to other neural
field-based video compression methods [26132]. The dataset includes a variety of
videos, ranging from nearly static scenes to fast-moving scenes.
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Fig.4: The qualitative results on the MPI Sintel dataset.

4.2 Single Reference Frame Experiments

Experimental setup First, we used the SIREN backbone model and only
changed the output linear layer to evaluate the effect of replacing colors with
optical flows and residuals. For frame reconstruction, we applied optical flows
recursively; that is, starting from the key frame, the reconstructed frame is used
as the reference frame of the next frame. We used 16-bit precision weights for
both ours and the baseline (SIREN) to halve the network size without quality
degradation.

Our proposed method and the baseline are evaluated using the MPI Sintel
video dataset. The resolution of all videos was reduced by half, resulting in
218 x 512 pixels. We set the size of the GOP to seven, so that each key frame
covers six neighboring frames. In the case of a video containing 28 frames, for
example, we trained four models for the video. We trained each model for total
30K iterations, and training the whole batch of frames at once was considered a
single iteration. We used the Adam optimizer with a learning rate of 0.0005.

Results As shown in Fig.[3] replacing colors with optical flows and residuals sig-
nificantly improves video quality for similar model sizes. Our method effectively
preserves fine details such as a person’s beard, water drops, and bees, whereas
the baseline method generates blurry outputs.
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Fig. 5: The quantitative results of single reference frame experiments on the MPI
Sintel dataset.

Figure [4] shows the qualitative results of single reference frame experiments
in detail, including intermediate steps to complete video frames. The parts that
need to be corrected by residuals are highlighted in figure [l As we expected,
the optical flow estimation is not necessarily accurate enough to reconstruct a
video frame correctly. In fact, the final optical flow estimation includes many
artifacts, particularly in the background regions. The residuals can successfully
compensate for those artifacts created by inaccurate optical flows.

Due to the page limits, we presented the results of six videos and the average
of all 23 videos in Fig. [f] We used two commonly used metrics in image recon-
struction tasks; peak signal noise ratio (PSNR) and structural similarity index
measure (SSIM). On average, our method enhanced PSNR from 30 to 37 and
SSIM from 0.85 to 0.95 at around 2 bits per pixel. For example, in alley 1, we
obtained 39.09 PSNR and 0.972 SSIM, as opposed to the baseline performance
of 28.71 PSNR and 0.827 SSIM under similar model sizes. In sleeping 1, we got
41.56 PSNR and 0.970 SSIM, while the baseline only reached 29.78 PSNR and
0.806 SSIM. As illustrated in Figure [3] this resulted in significant increases in
visual quality.

There are a few exceptions where we did not gain much improvement. One
example is demonstrated in the fourth row of Figure [l The scene is foggy and
blurry, and the video shows a lot of camera movement. These factors, we believe,
are the causes of the slightly lower quality of our approach. We hypothesize that,
given a fixed number of parameters, inaccurate optical flow estimation may not
be sufficiently compensated by residuals in some scenes. We also reported the
performance of the H.264 video compression method [I1] for your information.

4.3 Multi-reference Frames and Network Splitting Experiments

Experimental setup This section analyzes the effect of using multi-reference
frames and separating networks on video quality. We replaced the activation
function of the neural networks from sinusoidal activation [2] to swish func-
tion (f(xz) = = x sigmoid(Bx)) and used positional encoding [5]. Furthermore,
we reused hidden layers to improve parameter efficiency. We used H.264 for
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Fig. 6: The quantitative results of multi-reference frames experiments on the MPI
Sintel dataset. The last column is the average performance on all 23 videos.

key frame compression, and the middle frame of the GOP was chosen as the
key frame. To modulate the total size for video representation, we controlled
the quality factor in H.264. As for the network size, each network width was
automatically set so that the total size of the network is proportional to the
corresponding key frame size.

We ran experiments using full-resolution MPI Sintel videos. We set the size
of the GOP to five for every method, including H.264. We also applied 16 bit
precision in this experiment to both the baseline (SIREN) and our proposed
methods for a fair comparison. We trained each model for 5K epochs, and the
batch size was set to one. Since the single reference NRFF becomes unstable when
the batch size is one, the whole batch of the GOP was used as the minibatch
for the single reference NRFF and the number of epochs was therefore increased
to 25K. As for the initial learning rate, we used optimal learning rate for each
method: 1e-3 for SIREN and the single reference NRFF, and 1e-2 for the multiple
reference NRFF. The NRFF network size was set to be equal to one-fourth of
the key frame size. For example, a network with a key frame size of 10k bytes
was set to have approximately 1,250 parameters of 16-bit precision.

We also evaluated each method using videos from the UVG dataset (the first
100 frames of each). In this experiment, we unbridled the GOP size limitation
for SIREN and H.264. That is, we use the automatically chosen GOP size in
the case of H.264, which is 100, and we use the same size for SIREN. For our
method, the GOP size was set at 15. Since we empirically found that large GOP
size requires an increased ratio of the network size and the key frame, we set the
ratio to be approximately 0.5.

Results Figs. [f]and [7]show the quantitative results on the MPI Sintel and UVG
datasets, respectively. The supplementary materials provide all of the experiment
results on the MPI Sintel. First of all, the results indicate that using optical
flows can enhance video quality for both synthetic and non-synthetic scenes,
including static and dynamic scenes. Second, referencing more than one frame
enhances video quality without increasing the network size. Lastly, dividing the
network into two subnetworks never degrades video quality and can significantly
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Fig.7: The quantitative results of multi-reference frames experiments on the
UVG dataset.

UVG (first 300 frames) Overall UVG performance (first 100 frames)

..... > o
36 et e —8— NRFF(ours)
il NeRV
B X265 351

2349 ¥ -®- X264 <
L >e’ mpeg4-2 L

321 —&— IPF 34 1

—#— NRFF (ours)
301 T T T T T T
0.05 0.10 0.15 0.20 0.25 0.30 0_‘10 0,i5 D_IZO 0.‘25
bits per pixel bits per pixel

(a) comparison with IPF (b) comparison with NeRV

Fig. 8: Overall compression performance on the UVG videos. All results in fig.
were copied from IPF [32] except NRFF (ours).

improve quality for some videos. This demonstrates that our assumption that
optical flows and residuals have different dynamics is valid. Even without network
compression methods, our method performs on par with or better than the H.264
algorithm on some videos, such as shaman_ 2 and sleeping 1 from MPI Sintel,
and Bosphrous and HoneyBee from UVG. The optical flow-based method might
worsen the video quality in some videos, such as ambush_2, which contains
fast and large movements. However, the overall performance can be significantly
improved by using optical flows instead of raw colors, as shown in Fig. [7] and
the rightmost column of Fig. [f]

4.4 Comparison with Other Neural-field-based Video
Representation

Experimental setup We compared our method (multi-reference model with
two subnetworks) to other neural field-based methods (IPF [32], NeRV) using the
UVG dataset. Since these two methods are evaluated in different experimental
settings, we separately compared them with ours. First, to compare ours with
IPF, we used the same experimental settings as in IPF (first 300 frames with
the size of the group of pictures (GOP) of five) to train our models. To compare
ours with NeRV, we compared the results of publicly available NeRV codes in
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our experimental settings (first 100 frames for 1,500 epochs, and no compression
techniques other than 16-bit precision).

Results Fig. [§| shows how efficiently our proposed neural fields can express a
video compared to other neural field-based methods, including the current state-
of-the-art method, NeRV. Our method outperforms a concurrent flow-based neu-
ral fields, IPF by a large margin, as demonstrated in fig. [8a] This performance
gap is significant considering that IPF has adopted additional compression tech-
niques, such as quantization and entropy encoding, to improve compression per-
formance, while ours does not. We conjecture that this performance gain pertains
to using a shared network per GOP.

Fig. [BD] shows that replacing raw colors with residuals and flows results in
better performance, especially in the low bits per pixel (bpp) region, even without
enhancing network structure. Please note that NeRV relies on a neural field
architecture that limits spatial sampling and only allows temporal sampling to
improve compression performance, while ours permits spatial sampling.

4.5 Spatial and Temporal Interpolation

The neural fields have several advantages that no other video compression method
has, one of which being the ability to sample values from arbitrary spatial and
temporal coordinates, even at an unobserved point during encoding. To show this
advantage of neural fields, we ran two experiments: spatial and temporal inter-
polation. For spatial interpolation, we first trained a neural network to represent
a low-resolution video (with a resolution of (480, 270)). After that, without any
post-processing methods, we simply upscaled the resolution four times in both
height and width by sampling values in a much more dense grid. This is pos-
sible because neural fields take continuous coordinates as inputs. For temporal
interpolation, we trained a neural network as in the main experiment with the
fixed reference frames as for the multi-reference frame experiments. And then,
the intermediate frame (for example, a frame in between the 5th and 6th frame)
was sampled simply by injecting the corresponding temporal coordinates.

As shown in Fig. [0] simple dense sampling results in smooth interpolation in
both time and space, even without any modifications and extra training tech-
niques. Spatial interpolation of neural fields results in much smoother outputs
than bilinear interpolation. For a fast-moving scene, interpolating two adjacent
frames results in a blurry frame. However, our proposed method manages to
represent the intermediate frame much more clearly. In addition to the fact that
NRFF inherits the good properties of neural fields, the proposed method can
offer new opportunities to improve the parameter efficiency of neural fields in
other domains, such as NeRF [5] and light-field imaging, to name a few.

5 Conclusions and Discussion

We present a way to exploit neural fields for efficient video representations.
The video quality was greatly enhanced by explicitly leveraging reference frames
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Nearest Bilinear NRFF (ours)

Linear temporal interpolation NRFF (ours)

Fig.9: The spatial and temporal interpolation. The first row shows the results
of each method’s spatial super resolution, upscaling from (480, 270) to (1920,
1080). The second row shows the the results of temporal interpolation, which
samples an intermediate frame that was not seen during video encoding.

through optical flows. The proposed approach, Neural Residual Flow Fields
(NRFF) maintains smooth and less complex signals, which allows us to achieve
more compact representations while maintaining quality.

Although the results were promising, there is still room for improvement. We
observed that neural fields (or implicit neural representations) require a large
number of parameters and long training iterations to capture high-frequency
details. We believe that resolving this problem would significantly enhance en-
coding speed and make neural fields more accessible in various cases.

Note that we achieved fairly good compression rates without any model
compression techniques, except for 16-bit precision weights. Incorporating unac-
commodated network compression techniques into our proposed method would
improve the performance much further. Weight pruning, entropy coding, and
knowledge distillation could all be promising directions to investigate.

There are a handful of promising research directions that can further make
this emerging representation more attractive. We believe we have only scratched
the surface. A better understanding of the efficiency of neural network param-
eters in general might help answer a fundamental question about how a neural
network preserves information in its parameters.
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