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Abstract. We present CV4Code1, a compact and effective computer
vision method for sourcecode understanding. Our method leverages the
contextual and the structural information available from the code snip-
pet by treating each snippet as a two-dimensional image, which naturally
encodes the context and retains the underlying structural information
through an explicit spatial representation. To codify snippets as images,
we propose an ASCII codepoint-based image representation that facili-
tates fast generation of sourcecode images and eliminates redundancy
in the encoding that would arise from an RGB pixel representation.
Furthermore, as sourcecode is treated as images, neither lexical anal-
ysis (tokenisation) nor syntax tree parsing is required, which makes the
proposed method agnostic to any particular programming language and
lightweight from the application pipeline point of view. CV4Code can
even featurise syntactically incorrect code which is not possible from
methods that depend on the Abstract Syntax Tree (AST). We demon-
strate the effectiveness of CV4Code by learning Convolutional and Trans-
former networks to predict the functional task, i.e. the problem it solves,
of the source code directly from its two-dimensional representation, and
using an embedding from its latent space to derive a similarity score of
two code snippets in a retrieval setup. Experimental results show that our
approach achieves state-of-the-art performance in comparison to other
methods with the same task and data configurations. For the first time
we show the benefits of treating sourcecode understanding as a form of
image processing task.
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1 Introduction

Machine Learning on Sourcecode (MLOnCode) promises to redefine how soft-
ware is delivered through intelligent augmentation of the software development
lifecycle (SDLC). Automation of routine tasks with software makes our lives
more comfortable and efficient. For example, software drives the global economy
and transfer of value worldwide making the purchase of goods and the man-
agement of finances a seamless experience. Furthermore, at the touch of a few

1 https://github.com/jpmorganchase/cv4code
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Fig. 1: The proposed CV4Code code understanding pipeline.

buttons on our smartphone we can communicate to friends and family world-
wide. Reliable software can also change healthcare outcomes by making it easier
for doctors to diagnose disease. A key to accomplishing these feats of automa-
tion and being prepared for future complex use-cases is accelerating the software
development process without sacrificing software quality, robustness and time-
to-market. Augmenting the SDLC with machine learning holds this promise,
in which the developer’s capabilities are magnified through predictive analytics
driven by the vast quantities of exhaust data naturally produced by the SDLC.
Machine learning can potentially enhance every stage of the SDLC including
requirements gathering, build and test and deployment. For example, AI-driven
code auto-completion and enhanced code search are near-term possibilities for
enhancing developer productivity with startups and established companies alike
productionising such capabilities for mass consumption.

The academic field of MLOnCode explores the application of machine learn-
ing techniques for mining the massive amount of sourcecode and associated meta-
data available in public and private repositories [3]. Indicative tasks in this field
include code search using natural language keywords [28] and sourcecode [17]
as queries, automated bug finding [21], vulnerability detection [24], design pat-
tern detection [29], program repair [7] and code auto-completion [27]. Core to
the field of MLOnCode is the learning of expressive sourcecode latent feature
representations (“code vectors”) that capture semantics of programs and can
be flexibly used in generic machine learning classifiers to support a myriad of
downstream tasks, such as code search and repository annotation with semantic
keywords. Code is unique from natural language in many respects, for example
more distantly spaced tokens may be highly related (e.g . opening and closing
brackets) and code that looks very similar can have very different behaviour (and
vice-versa). Capturing these subtleties and intricacies of sourcecode to learn pro-
gram semantics requires methods that can understand the underlying context
(sequence of tokens) and structure (as presented by syntax parse tree) of the
language. Prior methods for sourcecode feature extraction can be differentiated
to the extent on which they capture context, structure or both when learning
code vectors. For example, early methods treat sourcecode either as a set of in-
dependent tokens [2], a sequence of tokens (processed sequentially by an RNN
or CNN) or generate an Abstract Syntax Tree (AST) from the code snippet
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before linearising the tree into vector form, thereby capturing local structure in
the snippet [17]. Drawing a parallel between the word2vec model in natural lan-
guage processing (NLP), Alon et al . [5] propose a code2vec alternative that uses
the proxy task of method name prediction based on paths in the AST tree to
learn expressive code vectors from a shallow neural network architecture. More
recent research has explored transformer architectures to learn effective code
vectors [31] that capture structure and context. In contrast to prior research, we
represent sourcecode in a visual way as a set of images that explicitly, through
the 2-dimensional spatial representation, present both the code structure and
context directly to the learning algorithm. We adapt well-known image pro-
cessing techniques to process these sourcecode images. We argue that, with no
assumption of naturalness in programming language [3], treating sourcecode un-
derstanding as a computer vision problem can not only produce more effective
code vectors, but can also address key limitations of existing methods such as
their inability to featurise partial code snippets and syntactically incorrect code.

In more detail we introduce a series of vision models, including Residual Con-
volutional Neural Networks (CNNs) [13] and Vision Transformers (ViT) variants
[14, 15, 11], adapted for sourcecode understanding (Figure 1). We contribute to
the sparse amount of prior research that draws a parallel between successful im-
age understanding models in the field of Computer Vision and their application
to representation learning for sourcecode [6, 23, 9]. Different to this closely related
prior research, CV4Code does not require any language-specific pre-processing
(e.g . extraction of syntax parse trees). To represent sourcecode in a visual form,
we propose a novel compact encoding of sourcecode as a two dimensional spatial
grid of numeric values that represent the characters in the code by their ASCII
codepoints. This representation is advantageous over a standard RGB pixel rep-
resentation of the code for two key reasons: 1) elimination of redundancy; for a
pixel representation many pixels would be dedicated to encoding a single char-
acter; and 2) fast feature generation: we find it multiple order of magnitude
slower and less scalable to render a pixel representation of code (sub-second)
compared to the proposed code representation (sub-millisecond). The computa-
tional speed-up enables real-time applications over large codebases, such as code
search directly within the Integrated Development Environment (IDE). The pro-
posed image encoding for sourcecode is therefore practical for real-world machine
learning pipelines. The CV4Code architecture is designed for learning represen-
tations effectively from the ASCII-based codepoint encoded sourcecode images.
CV4Code ingests the image representation of code and encodes each pixel as
either a one-hot or learnable embedding. The encoded input is subsequently
processed by a neural network that learns features expressive for the predictive
task e.g . the language of code, the task being solved by the code etc. And the
learned latent embedding from CV4Code can be used as code embeddings for
other MLOnCode tasks, similar to VGG features [26] that have been shown to
be a powerful and flexible embedding of images for many computer vision tasks.

Our contributions in this paper can be summarised as:
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– CV4Code Deep Neural Models: We introduce and compare modern
deep vision models adapted for language-agnostic sourcecode understanding
that learns from a novel ASCII codepoint representation of sourcecode. We
report state-of-the-art performance on a public benchmark dataset compared
to competitive baselines. Compared to a NLP-inspired Transformer strong
baseline, we achieve 4.06% absolute gain in top-1 accuracy on a language-
agnostic problem classification task, and 0.011 gain in mAP@R on a simi-
larity based sourcecode retrieval task.

– ASCII Sourcecode Encoding: We introduce an ASCII codepoint image
representation for sourcecode that efficiently (low redundancy, fast genera-
tion) encodes snippets capturing both code structure and context in a single
representation.

2 Related work

Machine learning for sourcecode analysis aims at learning semantically mean-
ingful representation of the code and then apply the embeddings on downstream
tasks, such as code quality detection, code summarisation, defect prediction and
code duplication detection [25]. We include the research that are most relevant
to our contribution.
AST based representation. Machine learning based intelligent code analy-
sis relies on extracting representative features from sourcecode. The majority of
studies leverage structured graphical models for sourcecode, through parse trees.
AST carries rich semantic and syntactic information and provides a unique rep-
resentation of a sourcecode snippet in a given language and grammar [4, 30, 32].
The paper [32] learned jointly from the AST and the sourcecode of programs
while relying on language-agnostic features, and performed on code summari-
sation task on five programming languages. Although the model does not rely
on language-specific features, parsing sourcecode to a tree structure is language
dependent.
NLP based techniques. A sourcecode sample can be treated as a piece of text.
A code snippet can be represented by a vector of frequencies of token occurrences,
similar to the bag of word model. The frequently used tokens include regex,
keywords and operators [20, 22]. Considering the lack of sequential information
retained in the bag of tokens method, a sequence of token method uses the same
set of tokens but keeps the order information to form a sequence [22]. Such a
token embedding layer is then input into a CNN based model.
Computer vision for code. Despite the fact that more effort has been made
on automated sourcecode analysis using machine learning, representing and pro-
cessing sourcecode in the form of image data is still an under-explored area in the
field. Dey et al . [9] automatically convert program sourcecode to visual images
via an intermediate representation of code created by the LLVM compiler. The
ASCII value of the remaining characters are treated as a pixel value in a prede-
fined empty image canvas. Bilgin et al . [6] use a coloured image of syntax trees
for representing code, where the tokens are plotted in a rectangular shape and
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are completed with specific colours to indicate the type and content of the to-
ken. The most recent work by Rabin et al . [23] on Java code analysis transforms
the original code by removing comments and empty lines using a JavaParser
tool, and then redacts snapshots of input by replacing any alphanumeric charac-
ters in the reformatted input programs with a single letter ‘x’ to emphasise the
structure of code snippets, rather than their content (e.g . the specific naming of
variables). While the aforementioned research exploited image-based representa-
tion for sourcecode, they all require a parser for specific programming language,
which cannot process the sentences with incorrect syntax.

3 CV4Code

We propose CV4Code, an end-to-end learning framework for sourcecode under-
standing by treating sourcecode snippets as images i.e. 2-dimensional matrix.

3.1 Sourcecode Representation

Fig. 2: Example of 2D code representation generation

While the sourcecode of most modern programming languages can be writ-
ten in plain text from an extensive character set, only a small set of tokens and
their composing characters have syntactic and semantic roles. In CV4Code, code
snippets are transformed into 2-dimensional (matrix) representation by mapping
each printable ASCII character to their unique index values and padding the
special [blank] token wherever necessary to retain the rectangular shape of the
output. The set of valid printable ASCII characters together with the special
padding token Vc, |Vc| = 96, consists of the following:

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

!"#$%&’()*+,-./:;<=>?@[\]∧_‘{}|∼
[space][blank]
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(a) CV4Code ViT model overview.

(b) CV4Code Conv-ViT model overview.

Fig. 3: CV4Code transformer model variants.

Figure 2 shows an example of the code representation generation process.
Specifically, for a code snippet spanning L lines each with Cl, l ∈ 0, ..., L− 1
characters, the transformation is done in three steps:

1. Remove characters not within the valid set, output has L̂ lines each with Ĉl,
l ∈ 0, ..., L̂− 1 characters;

2. Map each input character vk ∈ Vc to its index value k;

3. Pad each line to M = maxL̂−1
l=0 Ĉl long with the index value of [blank], gen-

erate the output 2-dimensional code matrix X ∈ RL×M .

Compared to human-readable images of sourcecode, e.g . screenshots of code
snippets, which usually are sparse in semantics and require multiple pixels to
represent a single character, the proposed sourcecode representation is compact
and do not introduce any unnecessary information other than the blank padding
that is required to keep the spatial relations.

As the code image, i.e. the compact 2-dimensional sourcecode representation,
encodes the character index values which do not form a numerically continuous
space, unless otherwise specified, one-hot encoding is used in this work to trans-
form each pixel in the code image to a vector of fixed dimension equal to the
size of the set of valid characters, i.e. X ∈ RL×M → X̂ ∈ RL×M×|Vc|.

3.2 Model

We apply and adapt state-of-the-art vision models, including ResNet [13], ViT [14],
ViT for small-size datasets (ViT-fsd) [15] and hybrid Convolutional Transformer
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(Conv-ViT) [11], on the proposed sourcecode representation. And we show the
effectiveness of the proposed method through experiments on a supervised multi-
class classification task. Figure 3 shows an overview of the CV4Code transformer
model variants. While Figure 3a shows a general architecture of CV4Code-ViT
model, differences exist in ViT, ViT-fsd which we briefly describe below.
ViT. We follow [14] and split images into non-overlapping fixed-size patches and
prepend a learnable [class] embedding whose state at the ViT output serves as
the sourcecode representation. This sourcecode representation is then passed to
a single-layer MLP head for the classification task.
ViT-fsd. While the same setup as ViT is used, we apply shifted patch tokeniza-
tion and Locality Self-Attention proposed in [15]. In addition, as the tokenization
process creates 4 extra shifted images leading to a largely increased input di-
mensionality after concatenation, to control the number of parameters in the
linear projection layer, instead of one-hot encoding, i.e. X̂ ∈ RL×M×|Vc|, an 32-
dimensional learnable embedding is used such that X̂ ∈ RL×M×32.
Conv-ViT. Shown in Figure 3b. To leverage CNN’s inductive bias, e.g . local-
ity, similar to [11] and hybrid in [14] we use convolutional layers to create soft
visual tokens but keep the use of [class] embedding to generate sourcecode rep-
resentation at the output. Furthermore, as the soft tokenization process does
not require fixed-size input, similar to NLP applications of transformers where
the input sequence is of variable length, for smaller sourcecode image we append
learnable [pad] embeddings to the generated visual token sequence, i.e. at the
output of the CNN, to form equal-length input to the transformer encoder.

3.3 Implementation Details

Variable code snippet size. It is expected that the sourcecode 2-dimensional
representation will vary in size. To address this, using the [blank] token, we batch
up sourcecode snippets of different sizes with interleaved padding vertically and
constant padding horizontally. While constant padding appends constant values
from the end of an array, interleaved padding avoids leaving large continuous
blank region by inserting [blank] tokens between original input code lines. In
contrast, if an image exceeds the maximum size limit, we crop and keep the
top left corner of the code image, following the raster order to retain most
information. For instance, given input of size L × M , Xi = [x0,x1, ...,xL−1]
where xl for l = 0, ..., L− 1 each is a row vector of length M , then the cropped

output of size L̂ × M̂ is X̂i = [x̂0, x̂1, ..., x̂L̂] where x̂l = {xl,m}M̂m=0 for l =

0, ..., L̂− 1. In addition, we pad or limit the input images to be the same size of
96× 96 for ResNet, ViT and ViT-fsd, while in Conv-ViT, along with an global
minimum of 12 × 12 and maximum of 96 × 96 on all batches, we dynamically
limit the maximum image size per minibatch at training time, i.e. instead of
setting a constant maximum limit in all minibatches, it is configured to the
95th-percentile, if smaller than the global maximum, of the width and height
independently of the images within the minibatch. Note, while the input code
image size in this work is limited to fit for the data distribution, the proposed
CV4Code models are not limited by its architecture to process larger snippets.
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Dataset
Summary

#problems #samples #languages

CodeNetBench-Train 237 171300 3
CodeNetBench-Validation 237 21000 3

CodeNetBench-Test 237 21000 3

Table 1: CodeNetBench data summary. Balanced distribution among C++,
Python and Java.

Dataset
Summary

#problems #samples #languages

CodeNetBench-Sim 100 2000 2

Table 2: Similarity evaluation datasets.

Training. We use AdamW [16] optimiser with an learning rate of 10−3 and
weight decay is set to 0.0001. We also use a 5-epoch warm-up along with a Cosine
Learning Rate Annealing. Unless otherwise specified, all models are trained for
100 epochs and the model with the highest validation accuracy is selected to
report results on the test set. Our model is implemented in PyTorch and trained
on 1x NVIDIA V100 GPU with a batch size of 256.

4 Experimental Evaluation

In order to benchmark the performance and capabilities of our proposed frame-
work, we conduct experiments on a real-world sourcecode dataset and compare
against a set of competitive baselines, including character-, token- and AST-
based representations respectively. Furthermore, test results are reported on
Code Classification and Code Similarity tasks. The goal of these experiments
is to answer the following research questions :

– RQ1: How well does CV4Code perform on the tasks in comparison to base-
lines using alternative forms of source code representation?

– RQ2: How scalable and flexible is CV4Code to baselines using alternative
forms of source code representation?

– RQ3: How useful are the latent features learnt by CV4Code for alternate
downstream tasks?

4.1 Setup

Dataset. We use CodeNet [22], a high-quality real-world dataset with code
samples scraped from online coding platforms. The dataset provides code sam-
ples submitted by students and developers from across the world, resulting in a
sundry pool of source code. The dataset is categorised based on the problems
presented in the platform and for each such problem it provides the submissions
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in multiple programming languages. Our choice of CodeNet stems from the fact
that we aim to benchmark the sourcecode understanding capability of CV4Code
against baseline models in both language-agnostic and language-specific setups,
and high-quality CodeNet benchmark set supporting 3 popular languages, in-
cluding C++, Java and Python, makes it the ideal choice. We use the curated
benchmark set of CodeNet [22] as it is made to be challenging with duplicated
and dead code samples filtered. First, we extracted a multilingual set composed
of code solutions to 237 overlapping problem ids from C++1400, Python800 and
Java250 and it is split into train, validation and test sets following 80%, 10% and
10% sample distributions for each problem id. For convenience, we name them
CodeNetBench-Train/Validation/Test. Furthermore, for the code similarity re-
trieval task, we test on CodeNetBench-Sim set, in which we randomly sample
100 problems and each problem with 10 code snippets in C++ and Python re-
spectively, i.e. 20 code snippets per problem, from CodeNetBench-Test. Finally,
we create One-versus-All test pairs, i.e. each test sample is paired with all other
samples and positive pairs are those of the same problem id.
Tasks. To evaluate the efficacy of our proposed framework, we evaluate on two
tasks as follows:

– Code Classification: the goal is to classify source code samples based on their
respective programming problem i.e. problem id. Code samples belonging to
the same programming problem would have high structural and semantic
information overlap. As a result, it provides a solid ground for comparing
the effectiveness of different source code representations.

– Code Similarity: the goal is to compare the efficacy of the various latent
sourcecode representations for retrieving similar code samples.

Table 1 and 2 summarise the datasets classification model training, evaluation
and similarity task evaluation.
Loss function. As for the loss function for problem ids classification, we adopt
Additive Angular Margin (AAM) Softmax loss [8], as shown in Equation 1, which
has been shown to perform well by explicitly optimising similarity for intra-class
samples and diversity for inter-class samples.

L = − 1

N

N∑
i=1

ln
exp{s · cos(θyi,i +m)}

exp{s · cos(θyi,i +m)}+
∑

j ̸=yi
exp{s · cos(θj,i)}

) (1)

where θyi,j is the angle between i-th sample to the yi-th class and N is the batch
size. We use angular margin penalty m = 0.2 and feature scale s = 30. For
consistency and fairness, the same loss function is used in all models trained on
problem id classification.

4.2 Baseline Methods

In this section we describe baseline methods to which we compare the proposed
method against, including language agnostic and language specific ones. Specifi-
cally, we categorise a method as language-agnostic or language-specific 1) if any

3472
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Input Size fc0 fc1 fc2 Output

N 128 256 512 237

Table 3: Bag of Character (BoC) and SPTR-Java MLP model configurations.
ReLU activation and BatchNorm are used in fc layers. N = 95, 256 and 512
respectively in BoC, SPTR-Java-S and SPTR-Java-L.

Model Vocab Depth Hidden Size D MLP size Heads Params

a-Transformer 30K 12 128 512 4 7.1M

k-Transformer 120 12 128 512 4 3.3M

Table 4: Token transformer model configurations. Learnable position embedding
is used.

language-specific pre- or post-processing, including feature extraction, technique
is required; 2) if any language-specific assumption is imposed on the model.

Language Agnostic Models

Bag of Characters. (BoC) A code sample is represented by the relative fre-
quencies of character occurrence. Specifically, the feature vector of a code snippet
is formed by counting the number of occurrences of each valid character intro-
duced in 3.1 (excluding [blank]). Table 3 summarises the configuration of the
MLP network that was selected after experiments with an array of setups. The
training strategy described in Section 3.3 is used.

Token Transformer. Similar to CodeBERT [10], relying on the assumption
of naturalness in programming language, we build state-of-the-art NLP Trans-
former with text-based tokens input as baseline. Specifically, we learn two Token
Transformer models via supervised training on the problem id task, one with in-
put of all tokens, including all operators and words and another with only 120
combined keywords and key operators from Python, Java and C++ provided
in [22], which we call a-Transformer and k-Transformer respectively. To avoid
noisy and sparse input embedding for a-Transformer, we extract a vocabulary
in which each token occurs at least twice in the training dataset. In addition,
both models have maximum input token length of 512. Table 6 summarises the
configurations of the Transformers that was empirically selected. While the same
training strategy described in 3.3 is followed, due to the higher model memory
footprint compared to other models, we use a smaller batch size of 32.

Language Specific Models

Simplified Parse Tree Relation. (SPTR) Leveraging Simplified Parse Tree
(SPT) features originally presented in [17], SPTR directly exploits the underly-
ing structure from code snippets. We extract SPT and build a vocabulary from
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conv0 conv1 conv2 conv3 fc Output

16, 2

[
64

64

]
× 2, 2

[
128

128

]
× 2, 2

[
256

256

]
× 2, 1 128 237

Table 5: CV4Code-ResNet model configuration. Conv layer weights are anno-
tated as number of filters and stride step size. 7× 7 kernel is used in conv0 and
3 × 3 in others. 3 × 3 with stride 2 and 6 × 6 (global) max pool is used after
conv0 and conv3. Total #params=3.25M.

Model Patch size Params

CV4Code-ViT-S 16× 16 5.32M

CV4Code-ViT-L 8× 8 2.98M

CV4Code-ViT-fsd-S 16× 16 13.97M

CV4Code-ViT-fsd-L 8× 8 4.58M

Table 6: CV4Code-ViT and CV4Code-ViT-fsd configurations. All configurations
use depth of 8, hidden size of 128, MLP size of 512 with 4 heads. Learnable
position embedding is used.

Model Convolutional Tokenizer Visual Tokens Params

Conv-ViT-S
[
7× 7, 64

]
× 2, stride 2 49 2.35M

Conv-ViT-L
[
3× 3, 64

]
× 3, stride 1 169 1.83M

Table 7: Conv-ViT configurations. All configurations use depth of 8, hidden size
of 128, MLP size of 512 with 4 heads. Each convolutional layer is followed by
a 2× 2 max pool layer with stride of 2. Fixed Sinusoidal position embedding is
used.

all training Java code samples. Then a sparse binary count vector is extracted
from each SPT that defines the existence of a particular vocabulary from a SPT.
Finally dense feature vectors are obtained through Truncated Single Value De-
composition (tSVD). We experiment with the two MLP models, as summarised
in Table 3, with tSVD output dimensions set to 256 and 512 respectively (ex-
plained variance ratios of 0.768 and 0.834). We train and report results on Java
samples in CodeNetBench-Train and CodeNetBench-Test, following the same
training strategy described in section 3.3.

4.3 CV4Code setup

Table 5 reports the model configuration for CV4Code-ResNet, we experiment
with various configurations and report result from the model with the best val-
idation accuracy. For ViT and ViT-fsd, we experiment with two different patch
sizes, i.e. 16 × 16 and 8 × 8, which result in 36 and 144 visual tokens respec-
tively, given input sourcecode image of size 96× 96. For Conv-ViT, we compare
two convolutional soft tokenization setups which result in similar length of visual
tokens. Table 7 summarises the configurations for all vision transformer variants.
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Model
Multilingual Java-only

Top-1 Top-5 Top-1 Top-5

BoC 80.97 90.16 80.56 89.74

k-Transformer 90.30 95.42 89.54 94.97

a-Transformer 93.58 96.63 94.04 97.40

SPTR-Java-S - - 91.09 96.98

SPTR-Java-L - - 92.95 96.78

ResNet 92.93 96.50 91.17 95.50

ViT-S 85.45 93.64 80.50 90.95

ViT-L 92.85 96.86 90.27 95.46

ViT-fsd-S 86.04 93.80 80.60 90.80

ViT-fsd-L 92.27 96.47 88.99 94.49

Conv-ViT-S 96.08 98.45 94.63 98.01

Conv-ViT-L 97.64 98.99 97.13 98.79

Table 8: problem id classification results on CodeNetBench-Test.

Model mAP@R

a-Transformer 0.980

ResNet 0.983

Conv-ViT-L 0.991

Table 9: Code similarity evaluation result on CodeNetBench-Sim.

4.4 Results

Evaluation Metrics. For classification tasks, top-1 and top-5 accuracy are
reported as the evaluation metrics on CodeNetBench-Test. For code similarity,
we consider a retrieval task where a code snippet is used as query to search for
similar snippets and mAP@R[19] is reported as the main evaluation metric.

Language-agnostic Classification. As summarised in Table 8, Conv-ViT-L
outperforms all other models in multilingual test, including the strong NLP-
based a-Transformer. We attribute the gain of CV4Code over k-Transformer to
exploitation of the contextual and structural information in the spatial rela-
tionships, which is not directly available through the sequential token input in
k-Transformer. Comparing CV4Code ResNet and transformer variants, ViT and
ViT-fsd variants all perform worse than ResNet. This potentially implies that the
inductive bias, e.g . locality, associated with convolutional networks are critical
for sourcecode understanding from our proposed sourcecode image representa-
tion. This is further supported by the gain obtained in Conv-ViT-S/L which
inherit the inductive bias through its soft convolutional tokenizer and leverage
the expressiveness of the Transformer network. In addition, it is noticed that the
size of patch and the subsequently generated visual tokens have a strong influ-
ence on the performance of all CV4Code transformer variants, which is exhibited
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Fig. 4: t-SNE 2D projection of left: Conv-ViT-L and right: a-Transformer em-
beddings. Colour-labeled by unique programming languages.

Fig. 5: Attention maps (rollout) of Conv-ViT-L. 1) C++, 2) Python, 3) Java

through the gap between all -S/-L model pairs. In addition, for Conv-ViT-L, we
also experimented with 2- and 8-head attentions achieving 97.65% and 96.98%
top-1 accuracy scores respectively, showing minor variations.

Language-specific (Java) Classification The Java-only column in Table 8
summaries model test results on Java samples in CodeNetBench-Test. Although
SPTR-Java-L/S both achieve strong performance, which demonstrates the ef-
fectiveness of the input features that exploit the underlying code structures via
SPTs, it is outperformed by a-Transformer by 1.09% in terms of Top-1 accuracy.
And Conv-ViT-L, as a language-agnostic model trained on C++, Python and
Java, still achieves the strongest result overall with a 97.13% Top-1 accuracy.

Code Similarity We test the learned embeddings from the models that achieve
strong results on the classification task, with respect to code similarity and report
similarity mAP@R scores on datasets summarised in Table 2. We extract [class]
embedding at the transformer output from a-Transformer, pre-ReLU bottleneck
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output from ResNet and sequence pooled embedding from transformer output
from Conv-ViT-L. Cosine similarity is used to compute the pairwise similarity
of the embeddings. Test results are shown in Table 9. We observe that CV4Code
models, including ResNet and Conv-ViT-L, outperform a-Transformer on this
task, implying that the learned embeddings from proposed models are highly
discriminative and encodes the semantics of sourcecode.

4.5 Ablation studies

Influence of Programming Languages. We look at the influence of program-
ming languages on the latent representations from Conv-ViT-L, compared with
a-Transformer. t-SNE[18] is used for projection. As shown in figure 4, while both
embedding spaces show clusters formed with respect to problem ids, we observe
slightly more obvious separation with respect to languages in a-Transformer.
Given that distinctive syntax, use of operators, coding styles and naming con-
ventions are often used in each programming language, this implies that models
with text-based token input sequence is potentially more sensitive to the under-
lying programming language than the proposed approach.

Attention maps. Following [1], we compute the average attention weights
across all heads and recursively multiply them over all layers. We notice that
Conv-ViT-L globally attends to regions that are semantically important. For ex-
ample, in Figure 5, with three different code snippets solving the same task, de-
spite the syntactic and language differences, the model attends to code sections
that are functionally near identical and highly relevant to the task. Future
Studies. Following recent advancement of self-supervised learning for Vision
models [12], we would like to scale up CV4Code with the abundance of unla-
belled sourcecode snippets in the public domain. With such a setup, we look
to establish a study of self-supervised approaches with the proposed CV4Code
method and compare to NLP approaches,e.g . BERT, for additional MLOnCode
problems. Furthermore, to capture richer semantics in the latent space and test
on more generic downstream applications, e.g . code quality assessment, we plan
to extend the training framework to include multi-task learning configurations.

5 Conclusion

In this work, we propose an idea for sourcecode understanding via a novel vi-
sual representation. Compared to traditional syntax parse tree or token based
methods, the proposed approach is programming language agnostic and does not
depend on syntax correctness in the preprocessing stage. Finally, along with a
thorough study of vision models applied on the proposed representations and a
comparison with syntax tree and NLP-based approaches, using a Compact Con-
volution Transformer CV4Code model, we show state-of-the-art performance in
terms of both classification and code similarity retrieval.
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