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Abstract. This paper tackles the problem of Cross-view Video-based
camera Localization (CVL). The task is to localize a query camera by
leveraging information from its past observations, i.e., a continuous se-
quence of images observed at previous time stamps, and matching them
to a large overhead-view satellite image. The critical challenge of this
task is to learn a powerful global feature descriptor for the sequential
ground-view images while considering its domain alignment with ref-
erence satellite images. For this purpose, we introduce CVLNet, which
first projects the sequential ground-view images into an overhead view by
exploring the ground-and-overhead geometric correspondences and then
leverages the photo consistency among the projected images to form a
global representation. In this way, the cross-view domain differences are
bridged. Since the reference satellite images are usually pre-cropped and
regularly sampled, there is always a misalignment between the query
camera location and its matching satellite image center. Motivated by
this, we propose estimating the query camera’s relative displacement to
a satellite image before similarity matching. In this displacement esti-
mation process, we also consider the uncertainty of the camera loca-
tion. For example, a camera is unlikely to be on top of trees. To evalu-
ate the performance of the proposed method, we collect satellite images
from Google Map for the KITTI dataset and construct a new cross-view
video-based localization benchmark dataset, KITTI-CVL. Extensive ex-
periments have demonstrated the effectiveness of video-based localization
over single image-based localization and the superiority of each proposed
module over other alternatives.

1 Introduction

Cross-view image-based localization using ground-to-satellite image matching
has attracted significant attention these days [1-11]. It has found many practi-
cal applications such as autonomous driving and robot navigation. Prior works
have been focused on localizing omnidirectional ground-view images with a 360°
Field-of-View (FoV), which helps to provide rich and discriminative features
for localization. However, when a regular forward-looking camera with a lim-
ited FoV is used, those omnidirectional camera-based algorithms suffer severe
performance degradation.

To tackle this challenge, this paper proposes to use a continuous short video,
i.e., a sequence of ground-view images, as input for the task of visual localization.
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(a) Cross-view image-based localization (b) Cross-view video-based localization

Fig. 1: Single-frame image-based localization (a) Vs. Multi-frame video-based localization (b). The
multi-frame video-based localization leverages richer scene context of a query place, increasing the
discriminating power of query descriptors compared to single image-based localization. As a result,
the matching satellite image, marked by green border, from the database is more likely to be re-
trieved. Red border indicates non-matching satellite images to the query image.

Specifically, we localize a camera at the current time stamp t,, by augmenting it
with previous observations at time i.e., t; ~ t,,_1, as shown in Fig. 1. Compared
to using a single query image, a short video provides richer visual and dynamic
information about the current location.

We present a Cross-view Video-based Localization Network, named CVLNet,
to address the camera localization problem. To the best of our knowledge, our
CVLNet is the first vision- and deep-based cross-view geo-localization framework
that exploits a continuous video rather than a single image to pinpoint the
camera location.

Our CVLNet is composed of two branches that extract deep features from
ground and satellite images, respectively. Considering the drastic viewpoint
changes between the two-view images, we first introduce a Geometry-driven
View Projection (GVP) module to transform ground-view features to the over-
head view by explicitly exploring their geometric correspondences. Then, we de-
sign a Photo-consistency Constrained Sequence Fusion (PCSF) module to fuse
the sequential features. Our PCSF first estimates the reliability of the sequential
ground-view features in overhead view by leveraging photo-consistency across
them and then aggregates them as a global query descriptor. In this manner, we
achieve more discriminative and reliable ground-view feature representation.

Since satellite images in a database are usually pre-cropped and sampled at
discretized locations, there would be a misalignment between a query camera
location and its matching satellite image center. Furthermore, a query camera
is usually impossible in some regions (e.g., on top of a tree), while likely on
the other areas (e.g., road). Hence, we propose a Scene-prior driven Similarity
Matching (SSM) strategy to estimate the relative displacement between a query
camera location and a satellite image center while restricting the search space
by scene priors. The scene priors are learned statistically from training rather
than pre-defined. With the help of SSM, our CVLNet can eliminate unreasonable
localization results.

In order to train and evaluate our method, we curate a new cross-view
dataset by collecting satellite images for the KITTI dataset [12] from Google
Map [13]. The new dataset combines sequential ground-view images from the
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original KITTI dataset and the newly collected satellite images. To the best of
our knowledge, it is not only the first cross-view video-based localization dataset,
but also the first cross-view localization dataset where ground-view images are
captured by a perspective pin-hole camera with a restricted FoV (rather than
being cropped from Google street-view panoramas [1, 8]). Extensive experiments
on the newly collected dataset demonstrate that our method effectively localizes
camera positions and outperforms the state-of-the-art remarkably.

2 Related Work

Image-based localization. The image-based localization problem is initially
tackled as a ground-to-ground image matching [14-19], where both the query and
database images are captured at the ground level. However, those methods can-
not localize query images when there is no corresponding reference image in the
database. Thanks to the wide-spread coverage and easy accessibility of satellite
imagery, recent works [20-22, 1, 23, 2-6, 24, 7-11, 25-29] resort to satellite images
for city-scale localization.

While recent works on city-scale ground-to-satellite localization have achieved
promising results, they mostly focus on localizing isolated omnidirectional ground
images. When the query camera has a limited FoV, we propose using a con-
tinuous video instead of a single image for camera localization, improving the
discriminativeness of the query location representation.

Video-based localization. The concept of video-based localization can
be divided into three main categories; Visual Odometry (VO) [30-32], Visual-
SLAM (vSLAM) [33-38] and Visual Localization [39-45]. VO techniques can
be classified according to their camera setup — either monocular or stereoscopic
or their processing techniques — either feature-based or appearance-based. VO
methods usually use a combination of feature tracking and feature matching [46,
47]. vSLAM pertains to simultaneously creating a map of features and localizing
the robot in that map, all using visual information [48,49]. Many a time, the
map is pre-built, and the robot needs to localize itself using camera-based map-
matching, which is referred to as Visual Localization [50]. Even though these
methods use a series of image frames to determine the robot’s location, they
match information from the same viewpoint. In our work, we have developed a
cross-view video-based localization approach by leveraging a sequence of images
with varied viewpoints and limited FoVs, aiming to improve the representative-
ness of a query location significantly.

Multi-view Counting/Detection. There are also related methods which
project images to the same ground-plane for fusion, such as multi-view count-
ing [51-54], multi-view detection [55-59] methods. We share the similar idea of
projecting features on the ground plane, but solve different downstream tasks
and have distinct challenges.
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Fig.2: Overview of our proposed CVLNet. Our Geometry-driven View Projection (GVP) module
first aligns the sequential ground-view features in the overhead view and presents them in a unified
coordinate system. Next, the Photo-consistency Constrained Sequential Fusion (PCSF) module mea-
sures the photo-consistency of an overhead view pixel across the different ground-views and fuses
them together, obtaining a global feature representation F9 of the query video. The global feature
representation is then compared with the satellite feature map F® with a Scene-prior driven Sim-
ilarity Matching (SSM) scheme to determine the relative displacement between the query camera
location and the satellite image center, guided by an uncertainty map. After alignment, the feature
similarity is then computed for image retrieval.

3 CVLNet: Cross-view Video-based Localization

This paper tackles the ground-to-satellite localization task. Instead of using a
single query image captured at the ground level, we augment the query image
with a short video containing previous observations. To solve this task, our
motivation is first projecting the images in the ground video to an overhead!
perspective and then extracting a global description from the projected image
sequence for localization. An overview of our pipeline is illustrated in Fig. 2.

3.1 Geometry-driven view projection (GVP)

Prior methods often resort to a satellite to ground projection to bridge the
cross-view domain gap. This is achieved either by a polar transform [6, 8, 10] or
a projective transform [60,25,61]. However, both transforms need to know the
query camera location with respect to the satellite image center. In the CVUSA
and CVACT dataset where polar transform performs excellent, the query im-
ages accidentally align with their matching satellite image center, which however
does not occur in practice. When there is a large offset between the real camera
location and its assumed location with respect to its matching satellite image
(e.g., satellite image center in polar transform), the performance will be im-
peded significntly. Hence, instead of projecting satellite images to ground views,
we introduce a Geometry-driven View Projection (GVP) module to transform
ground-view images to overhead view.

! For clarity, we use “overhead” throughout the paper to denote the projected features
from ground-views, and “satellite” to indicate the real satellite image/features.
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Fig. 4: Geometry-driven cross-view semantic cor-
respondence learning. Both tree canopy and tree
trunk are “trees”. Building roof and facades are
both “buildings”.

era location at t,,.

Starting from a blank canvas in the overhead view with its center corresponds
to the geospatial location of the query camera, we aim to fill it with features
collected from ground-view images. We set the origin of the world coordinate
system to the geo-spatial query camera location as well, with its z-axis pointing
to the south direction, y axis pointing to the east direction, and the z-axis ver-
tically upward. Different ground-view images in a video sequence are projected
to the same overhead-view coordinate system so that they are geographically
aligned after projection. Fig. 3 provides a visual illustration of the coordinate
systems.

Parallel projection of a satellite camera. The projection between the satel-
lite image coordinate system (u®,v*) and the world coordinate system (z,y, 2)
can be approximated as a parallel projection [60], [z,y]T = A\[v* — v, u® —ud]?,
where (uf,v§) indicates the satellite map center, A indicates the real-world dis-

tance between two neighboring pixels in the satellite map.

Perspective projection of ground-view images. Denote R;, and t;, as the
rotation and translation for the camera at time step ¢; in the world coordinate,
E;, as the camera intrinsic, and N as the sequence number. The relative R;, and
t¢, can be easily obtained by Structure from Motion [62]. The projection between
the world coordinate system (x,y,z) and the ground-view camera coordinate
system (uf ,v{) is expressed as wy, [uf , v 1] = By, [Ry,, t1,][x, y, 2,1]7, where
wy, is a scale factor in the perspective projection.

Ground-to-satellite projection. There is a height ambiguity of satellite pixels
in the ground-to-satellite projection. Instead of explicitly estimating the heights,
we present a simple yet effective solution. Specifically, we project ground-view
observations to the overhead view assuming satellite pixels lie on the ground
plane. Rather than projecting original image RGB pixels, we project high-level
deep features. The geometric projection from the ground-view to the overhead-
view is derived as,

Wt; [ufi’vfiv 1]T =E, [Rtwtii][)‘(vs - 7}8)7 )‘(us - ué), —h, 1]T~ (1)
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where h is the height of the query camera with respect to the ground plane, and
wy, can be computed from the above equation.

Denote F{ € RHXWXC a5 ground-view image features by a CNN back-
bone, where H, W and C are the height, width and channels of the features,
respectively, and GVP(-) as the geometry-driven view projection operation illus-
trated in Eq. (1). The projected features in overhead view are then obtained by
F) = GVP(F{), F} € R9*9%C where S indicates the overhead-view feature
map resolution.

This projection establishes the exact geometric correspondences between the
ground and overhead views for scene contents on the ground plane. For scene
objects with higher heights, projecting features rather than image pixels can
alleviate the strict constraint while providing a cue that corresponding objects
exist between the views. As shown in Fig. 4, for pixel (u®,v®), the projected
feature from the ground-view at t,,_; represents the tree trunk, but the feature
in the satellite image corresponds to the tree canopy. Both tree canopy and
tree trunk indicate there is a tree at location ps. Then, by applying a matching
loss between the two features (tree trunk and tree canopy), the network will
be trained to learn viewpoint invariant features, i.e., both tree trunk and tree
canopy are mapped to the semantic features of “tree”.

The coverage of the canvas for ground-to-satellite projection is set to the
reference satellite image coverage, i.e., around 100m x 100m, with its center
corresponding to the query camera location. When the sequence is too long
with some previous image contents exceeding the canvas’s pre-set coverage, the
exceeded contents will not be collected. This is because scene contents that are
too far from the query camera location are less important for localization, and it
is better to cover most of the synthetic overhead-view feature map by referencing
satellite images.

3.2 Photo-consistency constrained sequence fusion

We leverage photo consistency among different ground-views for the video se-
quence fusion. For a satellite pixel, when its corresponding features in several
(more than two) ground views are similar, the existence of a scene object at
this geographical location is highly reliable for these ground-views. We should
highlight these corresponding features when generating descriptors for scene con-
tents. Driven by this, we design a Photo-consistency Constrained Sequence Fu-
sion (PCSF) module. Our PCSF module employs an attention mechanism [63]
to emphasize reliable features in fusing a video sequence and obtaining a global
descriptor for the video.

Our GVP block has aligned the original ground-view features at different time
steps in a unified overhead-view coordinate. When the features of a geographical
location observed by different ground views are similar, those features should be
more reliable for localization. We leverage the self-attention mechanism [63] to
measure the photo-consistency/similarity across different views and find reliable
features. Specifically, for each projected feature map Ffi at time step t;, we
compute its query, key and value by two stacked convolutional layers, denoted by
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Q:,, K, Vi, € R9¥5%C respectively. The stacked convolutional layers increase
the receptive field and the representative ability of the key, query, and value
features at each spatial location. Next, we compute the similarities between each
projected feature map at ¢; and other projected feature maps at ¢;,4,5 =1,..., N,
and normalize them across all possible j by a softmax operation, expressed as,

M, ; = Softmax; (Q/ K;,), M e RN*Nx5x5, (2)
The final fused feature is obtained by,
Fo_ L NN = SxSxC
F9 = N Zi Zj Mi,thj, FIeR . (3)

In this way, we highlight the common features across the views and make the
global descriptor reliable.

3.3 Scene-prior driven similarity matching

We want to address the location misalignment between a query camera location
and its matching satellite image center by ground-to-satellite projection and
spatial correlation between the projected features and the real satellite features.
Hence, the satellite feature descriptors should be translational equivariant, which
is an inherent property of conventional CNNs. Following most previous works [2,
6-8,11], we use VGG16 [64] as our backbone for satellite (and ground) feature
extraction. The extracted satellite features, denoted as F* € RS*S*C share the
same spatial scale as the global representation of the query video. Next, we adopt
a Normalized spatial Cross-Correlation (NCC) to estimate latent alignment be-
tween the query location and a satellite image center.

Denote [F*],, , as a shifted version of a satellite feature map with its center
at (m,n) in the original satellite feature map, and m = 0,n = 0 correspond to
the center of the original satellite feature map. The similarity between F¢ and
F9 aligned at (m,n) computed by NCC is,

~ Fel,, ., - F9
DO(Fsng)m,n - [ } - = ) (4)
1E* ] [[2][F9]2
where Dg(F*, F9) € R"*® denotes the similarity matrix between F* and F9 at
all possible spatial-aligned locations, m € [—%, g], and n € [-%, ¥]. A potential

spatial-aligned location of the satellite map lies in a region of 10 x 10 m? in our
KITTI-CVL dataset, as the database satellite image is collected very ten meters.

To exclude impossible query camera locations, e.g., top of trees, we esti-
mate an uncertainty map from the satellite semantic features, U(F*) = U(F?),
U(F®) € R"™% where U(-) is the uncertainty net, composed of a set of convo-
lutional layers. The value of each element in U(F?) is within the range of [0, 1],
forced by a Sigmoid layer. By encoding the uncertainty, The similarity between
F* and F9 aligned at (m,n) is then written as,

_ DO(F57 ﬁg)m,n

D(F*, F9),, ,,
FE ) = =G Eo

(®)
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When the uncertainty at (m,n) is large, the similarity between F*® and F9 aligned
at this location will be decreased. We do not have explicit supervisions for the
uncertainty map. Rather, it is learned statistically from training. The relative
displacement between F* and F9 is obtained by,

m*,n* = argmax D(F?, f‘g)m,n. (6)

m,n

During inference, we have no idea which one is the matching reference image
for a query image. Thus the uncertainty-guided similarity matching is applied
to all reference features (including non-matching ones). Furthermore, it is more
challenging when a similarity score between non-matching ground and satellite
features is high. Hence, we apply the similarity matching scheme to the pairs of
query and non-matching reference images as well during training and minimize
their maximum similarity, making the learned features more discriminative.

3.4 Training objective

We employ the soft-weighted triplet loss [2] to train our network. The loss in-
cludes a positive term to maximize the similarity between the matching query
and reference pairs and a negative term to minimize the similarity between
non-matching pairs. The non-matching term also prevents our view projection
module from trivial solutions. Therefore, it is formulated as,

L=log (1 + ea(d@“’FS)—d(ﬁg’Fs*))) (7)

where F* is the matching satellite image feature to the ground feature F9, F*"
is the non-matching satellite image feature, d(-,-) is the Lo distance between its
two inputs after alignment, and « is set to 10.

4 The KITTI-CVL Dataset

KITTTI is one of the widely used benchmark datasets for testing computer vision
algorithms for autonomous driving [12]. In this paper, we intend to investi-
gate a method for using a short video sequence for satellite image-based camera
localization. For this purpose, we supplement the KITTI drive sequences with
corresponding satellite images. This is done by cropping high-definition Google
earth satellite images using the KITTI-provided GPS tags for vehicle trajecto-
ries. Based on these GPS tags of the ground-view images, we select a large region
that covers the vehicle trajectory. We then uniformly partition the region into
overlapping satellite image patches. Each satellite image patch has a resolution
of 1280 x 1280 pixels, amounting to about 20 cm per pixel.

Training, Validation and Test sets. The KITTI data contains different
trajectories captured at different time. In our Training, Validation and Test set
split, the images of Training and Validation set are from the same region. The
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Table 1: Query image numbers in the Training, Validation and Tests sets.

‘ Training ‘ Validation ‘ Test-1 Test-2

Distractor X X X 4
Query Num 23,905 2,362 2,473 2,473

Validation set is constructed in this way to select the best model during training.
In contrast, the images in the test set are captured at different regions from the
Training and Validation sets. The test set aims to evaluate the generalization
ability of the compared algorithms.

Only the nearest satellite image for each ground image in the sampled grids
is retained for the Training and Validation set. We use the same method to
construct our first test set, Test-1. Furthermore, we construct the second test
set, Test-2, where all satellite images in the sampled grids are reserved. In other
words, Test-2 contains many distracting satellite images, and it considers the real
deployment scenario compared to Test-1. Visual illustrations of the differences
between Test-1 and Test-2 are provided in the supplementary material. Tab. 1
presents the query ground image numbers of the Training, Validation, Test-1,
and Test-2 sets.

5 Experiments

Evaluation metrics. Following the previous cross-view localization work [3],
we use the distance and recall at top k (r@k) for the performance evaluation.
Specifically, when one of the retrieved top k reference images is within 10 meters
to the query ground location, it is regarded as a successful localization. The
percentage of successfully localized query images is recorded as recall at top k.
we set k to 1, 5, 10 and 100, respectively.

Implementation details. The input satellite image size is 512 x 512, cen-
ter cropped from the collected images. The coverage of them is approximately
102m x 102m. The ground image resolution is 256 x 1024. The sizes of our global
descriptor for query videos and satellite images are both 4096, which is a typical
descriptor dimension in image retrieval. We follow prior arts [2-11] to adopt an
exhaustive mini-batch strategy [1] with a batch size of B = 8 to prepare the
training triplets. The Adam optimizer [65] with a learning rate of 1074 is em-
ployed, and our network is trained end-to-end with five epochs. Our source code
with every detail will be released, and the satellite images will be available for
research purposes only and upon request.

5.1 Cross-view video-based localization
Since there are no existing video-based cross-view localization algorithms, we

conduct extensive experiments to dissect the effectiveness and necessity of each
component in our framework.
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Table 2: Performance comparison on different designs for view projection and sequence fusion (se-
quence = 4)

Model
Size

Test-1
rQl r@5 r@l0 r@100

Ours w/o GVP (Unet) |66.4M| 0.08 0.61 1.70 26.24
Ours w/o GVP 66.2M| 1.66 4.33 7.97 36.35

Test-2
r@l r@5 r@10 r@100

0.00 0.00 0.00 1.09
0.04 0.16 0.20 5.22

View
Projection

Direct Conv2D 66.0M| 1.25 5.90 10.80 65.91| 890 18.44 26.61 76.51
Fusion Conv3D 66.0M | 15.08 41.57 53.17 93.09 | 7.00 20.38 30.33 75.90
LSTM 66.2M | 12.53 32.11 50.42 96.93 | 5.78 15.89 23.01 70.60

Attention Conv2D 66.0M | 18.80 47.03 61.75 96.64 | 11.69 25.03 36.55 81.52
based Conv3D 66.0M | 19.65 43.27 58.39 97.41 | 11.36 24.02 34.45 83.58
Fusion LSTM 66.1M | 15.93 47.88 66.03 97.61 | 9.70 24.30 35.26 85.08
Ours 66.2M |21.80 47.92 64.94 99.07|12.90 27.34 38.62 85.00

5.1.1 Geometry-driven view projection. Although our GVP module is
the basis for the following sequence fusion and similarity matching steps, we in-
vestigate whether it can be replaced or removed. We first replace it with an Unet
and expect the domain correspondences can be learned implicitly during train-
ing, denoted as “Ours w/o GVP (Unet)”. Next, we remove it from our pipeline
and directly feed the original ground-view features to our sequence fusion mod-
ule, denoted as “Ours w/o GVP”. As indicated by the results in Tab. 2, the
performance of the two baselines is significantly inferior to our whole pipeline,
demonstrating the necessity of our geometry-driven view projection module.

Learned viewpoint-invariant semantic features. To fully understand the
capability of our view projection module, we visualize the learned viewpoint-
invariant semantic features of our network by using the techniques of Grad-
Cam [66]. As seen in Fig. 5, salient features on roads and roads edges are suc-
cessfully recognized in ground-view images (Fig. 5(a)). The detected salient fea-
tures in satellite images also concentrate on roads and scene objects along roads
edges (Fig. 5(b)). By using our view projection module and the photo-consistency
constrained sequence fusion mechanism, the learned global representations of the
ground video (Fig. 5(c)) capture similar scene patterns to those of their matching
satellite counterparts (Fig. 5(d)).

5.1.2 Photo-consistency constrained sequence fusion. Our goal is to
synthesize an overhead-view feature map from a query ground video. To this
end, our PCSF module measures the photo consistency for each overhead view
pixel across different ground-view images and fuses them with an attention-based
(transformer) architecture. Apart from this design, LSTM (RNNs) and 3D CNNs
are also known for their power to handle sequential signals. Hence, we compare
with these architectures. For completeness, we also experiment with 2D CNNs.

Direct fusion. We first replace our PCSF module with Conv2D, Conv3D, and
LSTM based networks, respectively. The Conv2D-based fusion network takes
the projected sequential ground-view features Ffi separately and computes the
average of the outputs of different time steps. The Conv3D-based fusion network
uses its third dimension to operate on the temporal dimension. The LSTM-
based network includes two bidirectional LSTM layers to enhance the sequential
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Fig. 5: Visualizations of intermediate results of our method. For ground images, the learned activa-
tions focus on salient features of the ground and road edges. Interestingly, it automatically ignores
the dynamic objects (first row in (a)). The learned activations of satellite images concentrate on
the scene objects along the main road (likely visible by a moving vehicle). The fused query video
features (c) capture scene objects similar to those of their satellite counterparts (d), and the learned
confidence maps attention on the region of road.

relationship encoding. The outputs of the Conv3D-based and the LSTM-based
networks are both directly fused features for the query video. The results are
presented in the middle part of Tab. 2. It can be seen that the performance is
significantly inferior to ours.

Attention-based fusion. Based on the above observations, we infer that it
may be difficult for a network to fuse a sequence of features implicitly. Hence,
we employ the Conv2D, Conv3D, and LSTM based network to regress the at-
tention weights for the projected features at different time steps, denoted as
N;, € R%*%, Then, the global query descriptor is obtained by a dot product
between the attention weight Ny, and the features F7 . The results are pre-
sented in the bottom part of Tab. 2. It can be seen that the attention-based
fusion methods all outperform the direct fusion methods, indicating that the
attention-based decomposition helps to achieve better performance. Among the
attention-based fusion ablations, our method achieves the best overall perfor-
mance. This should be attributed to the explicit photo consistency computation
across different ground-views by our PCSF module.

5.1.3 Different choices for network backbone. In this section, we con-
duct ablation study on different network backbones, including Vision transformer
(ViT) [67], Swin transformer [68], Renet50 [69] and VGG16 [64](ours). Trans-
formers are known of their superior feature extraction ability than CNNs. How-
ever, they do not preserve the translational equivariance ability, which however
is an essential element in estimating the relative displacement between query
camera locations and their matching satellite image centers. Thus, transformers
achieve slightly worse performance than CNNs, as indicated by Tab. 3. Compared
to VGG16, Resnet50 does not make significant improvement. Hence, following
most previous works [2,6-8,11], we use VGG16 as our network backbone.
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Table 3: Performance comparison with different backbones (sequence = 4)

Test-1 Test-2
r@1 r@5 r@10 r@100 r@l r@5 r@10 r@100
ViT [67] 20.05 45.13 60.17 97.53 12.86 27.94 38.86 81.64
Swin [68] 18.40 47.80 63.73 99.11 12.29 22.31 35.29 80.70
Resnet [69] 22.68 55.16 67.69 97.90 9.75 28.31 38.45 73.72

VGG16 [64] (Ours) | 21.80  47.92  64.94  99.07 | 12.90 27.34 38.62  85.00

Table 4: Effectiveness of the scene-prior driven similarity matching (sequence = 4)

Test-1 Test-2
r@l r@5 r@10 r@100 r@1l r@s r@10 r@100
Ours w/o SSM

Ours w/o U
Ours

13.26 36.76 55.72 97.05
21.80 47.92 64.94 99.07

10.47 27.42 39.51 88.92
12.90 27.34 38.62 85.00

6.35 25.76 41.97 97.61 3.48 9.42 14.03 63.04

5.1.4 Scene-prior driven similarity matching. Next, we study whether
the NCC-based similarity matching can be removed. In this experiment, the
distance between the satellite features and the fused ground-view features is
directly computed without estimating their potential alignments. Instead, they
are assumed to be aligned at the satellite image center. The results are presented
in the first row of Tab. 4. The performance drops significantly compared to
our whole baseline, demonstrating that the network does not have the ability
to tolerate the spatial shifts between query camera locations, and our explicit
alignment strategy (NCC-based similarity matching) is effective.

Furthermore, we investigate the effectiveness of the learned scene prior by
the uncertainty map (Eq. 5). To do so, we remove the term of uncertainty map
U(F*),,., in Eq. (5), denoted as “Ours w/o U”. The results in the second row
of Tab. 4 indicates the learned uncertainty map boosts the localization per-
formance. Fig. 5(e) visualizes the generated confidence maps (inverse of uncer-
tainty) by our method. It can be seen that the higher confidence regions mainly
concentrate on roads, indicating that the confidence maps successfully encode
the semantic information of satellite images and recognize the correct possible
regions for a vehicle location.

5.1.5 Varying sequence lengths. One desired property for a video-based
localization method is to be robust to various input video lengths after a model
is trained. Hence, we investigate the performance of our method on different
query video sequences (1-16) using a model trained on sequence 4. Fig. 6 shows
that the performance increases elegantly with the increase in number of video se-
quences. This confirms our general intuition that more input images will increase
the discriminativeness of the query place and help boost the localization perfor-
mance. Note that when keep increasing the sequence length until the cameras
at previous time steps exceed the pre-set coverage of the projected features, the
performance will not increase but stay same because we did not fuse exceeded
information. Scene contents too far from the query camera location are also less
useful for localization.
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Fig. 6: Recall rates with the in- Fig. 7: Qualitative visualization of retrieved results using 4 image
crease of input sequence number. frames in a video.

When only using one image for localization, the feature extraction time for
a query descriptor is 0.15s. With the increasing of sequence numbers, the query
descriptor extraction time increases linearly. We expect this can be accelerated
by parallel computation. The retrieval time for each ground image on Test-2 is
around 3ms, and the coverage of satellite images in Test-2 is about 710, 708 m?.
It takes 8GB GPU memory when the sequence=4 and 24GB when the se-
quence=16. We show some qualitative examples of retrieved results in Fig. 7
using sequence number 4.

5.2 Single image-based localization

Single image-based localization is a special case of video-based localization, i.e.,
when the image frame count in the video is one. In this section, we compare
the performance of our method with the recent state-of-the-art (SOTA) that are
invented for cross-view single image-based localization, including CVM-NET [2],
CVFT [7], SAFA [6], Polar-SAFA [6], DSM [8], Zhu et al. [11], and Toker et
al. [10]. The results are presented in Tab. 5. It can be seen that our method
significantly outperforms the recent SOTA algorithms.

Among the compared algorithms, DSM [8] achieves the best performance, be-
cause it explicitly addresses the challenge of limited FoV problem of query images
while the others assume that query images are full FoV panoramas. By compar-
ing SAFA and Polar-SAFA, we can observe that the polar transform boosts the
performance on Test-1 (one-to-one matching) while impairs the performance on
Test-2 (one-to-many matching). This is consistent with the conclusion in Shi et
al. [6] and Zhu et al. [11].

Based on SAFA, Zhu et al. [11] proposes two training losses: (1) an IoU
loss and (2) a GPS loss. However, we do not found the two items work well
on the KITTI-CVL dataset. We guess that the IoU loss is only suitable for
the panorama case. The limited FoV images in the KITTI-CVL dataset have a
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Table 5: Comparison with the recent state-of-the-art on single image based localization

Method Test-1 Test-2
rQl r@5 r@Ql10 r@100 r@l r@5 r@10 r@100
CVM-NET [2] 6.43 20.74 32.47 84.07 1.01 4.33 7.52 32.88
CVEFT [7] 1.78 7.20 14.40 73.55 0.20 1.29 3.03 16.86
SAFA [6] 4.89 15.77 23.29 87.75 1.62 4.73 7.40 30.13
Polar-SAFA [6] 6.67 17.06 27.62 86.53 1.13 3.76 6.23 28.22
DSM [8] 13.18 41.16 58.67 97.17 5.38 18.12 28.63 75.70
Zhu et al. [11] 5.26 17.79 28.22 88.44 0.73 3.28 5.66 27.86
Toker et al. [10] 2.79 7.72 11.69 58.92 2.39 5.50 8.90 27.05
Ours 17.71 44.56 62.15 98.38 9.38 24.06 34.45 85.00

smaller overlap with satellite images than panoramas, and thus the original IoU
loss may not provide correct guidance for training. The GPS loss does not help
mainly because of the inaccuracy of the GPS data in our dataset. We provide
the GPS accuracy analysis of the KITTI dataset in the supplementary material.
In contrast, our method does not rely on the accurate GPS tags of ground or
satellite images.

5.3 Limitations

Our method assumes that the north direction is provided by a compass, following
previous works [3, 6,8, 10, 11], and the absolute scale of camera translations can
be estimated roughly from the vehicle velocity. We have not investigated how
significant tilt and roll angle changes will affect the performance, because the
tilt and roll angles in the KITTI dataset are very small and we set them to
zero. In autonomous driving scenarios, the vehicle-mounted cameras are usually
perpendicular to the ground plane. Thus there are only slight changes in tilt and
toll during driving.

6 Conclusions

This paper introduced a novel geometry-driven semantic correspondence learn-
ing approach for cross-view video-based localization. Our method includes a
Geometry-driven View Projection block to bridge the cross-view domain gap,
a Photo-consistency Constrained Sequence Fusion module to aggregate the se-
quential ground-view observations and a Scene-prior driven similarity matching
mechanism to determine the location of a ground camera with respect to a satel-
lite image center. Benefiting from the proposed components, we demonstrate that
using a video rather than a single image for localization significantly facilitates
the localization performance considerably.
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