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Abstract. 3D object detection from point clouds is one of the key com-
ponents in autonomous driving. Current two-stage detectors generate a
small number of proposals, and then refine them in the second RCNN
procedure. However, due to the inherent sparsity of point clouds, the first
stage may predict some low quality proposals with incomplete structure
and inaccurate localization. These low quality proposals fail to obtain ad-
equate and precise proposal features which are essential for the following
refinement, inevitably degrading the overall detection performance. To
alleviate this problem, we propose Structure guided Proposal Completion
(SPC) for 3D object detection from point clouds. Specifically, two com-
pletion strategies are developed to obtain high quality proposals: one
is Structure Completion, in which a group of structural proposals are
obtained by traversing most structures, and thus at least one proposal
with ground truth similar structure can be guaranteed. The other is RoI
Feature Completion, which is used to fill the empty area of proposals
with virtual points under structure-aware manner. With the proposed
SPC, high quality proposals with clearer structure and more precise lo-
calization can be obtained, and further promote the RCNN to perceive
adequate proposal features. Extensive experiments on KITTI benchmark
demonstrate the effectiveness of our proposed method, especially for hard
setting objects with fewer LiDAR points.
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1 Introduction

3D object detection is one of the core computer vision tasks, since it benefits
wide applications in various fields, such as autonomous driving, virtual reality
and robot perception [1,5]. Point clouds from LiDAR sensors are often adopted
to detect objects from 3D space for its less sensitivity to weather and time of
the day. Hence, point clouds based 3D detectors [3,6,20,21,29,30] are one of the
main research topics in both academic and industrial area.

Despite the great success of the above methods, their performance is still lim-
ited by the sparsity of point clouds. It means that the LiDAR sensors can solely
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Fig. 1. Examples of RPN predicted proposals from sparse point clouds: (a) proposals
from the first stage of PointRCNN [22], denoted as P1 and P2; and (b) augmented
proposals by our Structure Completion module, denoted as P1(ours) and P2(ours).
The object points, ground-truth boxes, and the predicted proposals are shown in blue,
green and red colors, respectively. After applying Structure Completion, we can obtain
a set of augmented proposals and we only show the most precisely localized proposals
for better view.

capture small portion of object point clouds, especially in distant or occluded re-
gions, making it difficult to generate precise 3D bounding boxes. Concretely, we
analyzed the statistical results of point clouds in KITTI dataset [4], and found
that: more than 20.2% objects have less than 30 points, including 10.8% objects
have less than 10 points, and even worse for pedestrian and cyclist in KITTI
dataset. Most of them are incomplete with some important parts missing, such
as tyre of a bicycle or arm of a man.

To alleviate the sparsity of point clouds, some methods [2,24,26] combine the
data of multi sensors with the usage of complementary information. MV3D [2]
directly merges the image features and birds-eye-view (BEV) features. Point-
Painting [24] first paints points with semantic segmentation score, then uses
the painted points to point-based 3D detectors. However, these approaches are
complex with multiple fusion modules. Pyramid R-CNN [15] designs RoI-grid
Pyramid to gather more points of interest outside proposals for accurate object
recognition, but the background points may also be gathered. ImpDet [19] uses
evenly distributed virtual points to learn richer context features, but ignores the
structural information of each object. In addition to the widely studied issues
above, we have further discovered that the sparsity also brings the difficulty to lo-
calize object accurately. As shown in Figure 1(a), region proposal network (RPN)
may yield low quality proposals with inaccurate localization due to the sparsity
of points, which brings difficulties for further regression. Moreover, constrained
by sparse points and features, it is hard for the second refinement stage [22, 30]
to generate adequate proposal features.

To overcome the above limitations, we propose a novel two-stage 3D de-
tection framework, namely Structure guided Proposal Completion (SPC). To
mitigate the problem of low quality proposals, we innovatively add a Structure
Completion module after RPN, to augment the proposals containing insuffi-
cient points and features in structure guided manner. This module is inspired by
the observation that for objects with fewer points, it is difficult for the network
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to predict where to regress and which part of the object these points belong to
due to the insufficient context information. To this end, based on the predicted
proposals and object structure, we traverse the missing structure of proposals
with limited points and obtain a set of augmented proposals, in which at least
one accurately localized proposal can be guaranteed for second refinement stage.
As shown in Figure 1(b), after Structure Completion, our model can yield high
quality proposals with precise localization. Subsequentially, we propose a RoI
Feature Completion module, aiming to obtain more adequate proposal fea-
tures by virtual points under structure-aware manner. Firstly, we use 2D CNN
to extract BEV feature from pseudo BEV map. Then we fill the empty area in
each proposal with virtual points which are evenly distributed in the proposal.
The proposal features are obtained by adaptively aggregating the virtual point
features and raw point features with attention mechanism. Combining all the
above components, our approach can accurately detect objects with a few points
and effectively improve the performance of 3D object detection. Eventually, for
the 3D detection under challenging settings, our method presents outstanding
performance compared with the state-of-the-art methods.

We summarize our contributions as follows: (1) We propose a Structure
guided Proposal Completion 3D object detector (SPC), which mitigates the low
quality proposal and inadequate proposal feature problems caused by the spar-
sity issue. (2) We propose two simple yet effective completion strategies. One is
Structure Completion, by traversing the missing structures of object to obtain
accurately localized proposal, which can be served as a plug-in to enhance point-
based 3D detection models. The other is RoI Feature Completion, by filling the
empty area of proposals with virtual points to generate adequate proposal fea-
tures. (3) We conduct extensive experiments on KITTI dateset and demonstrate
the effectiveness of our approach, especially for hard setting objects.

2 Related Work

In generally, LiDAR-based 3D object detectors can be categorized into two
streams: (i) single-stage detectors predict object bounding boxes and scores di-
rectly in one stage, which usually run effectively due to simpler network struc-
tures; and (ii) two-stage detectors usually generate some coarse proposals in the
first stage, then these proposals and corresponding features are fed into second
stage for refinement, which help detectors attain higher precision.

2.1 Single-stage Object Detectors.

VoxelNet [35] first encodes point clouds as voxels, then proposes voxel feature
encoding layer to extract voxel-wise feature. But it is computationally expensive
due to the 3D convolution operation. SECOND [28] adopts the sparse convo-
lution to accelerate voxel feature extraction process. PointPillar [8] collapses
the points in vertical columns (pillars) instead of voxels for effective encoding
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process, then uses pseudo-image for feature learning and object detection. 3D-
SSD [29] introduces a novel sampling strategy named Feature-FPS for better
classification by combining feature-based and point-based sampling distances.
SA-SSD [6] proposes an auxiliary network and losses on the basis of 3D voxel
CNN to preserve structure information. SE-SSD [34] utilizes teacher SSD and
student SSD to get more training data, meanwhile it also consumes more time
to train the model.

2.2 Two-stage Object Detectors.

PointRCNN [22] first uses PointNet [17] to segment foreground objects and
generate 3D proposals, then refines them with semantic features. Based on
PointRCNN, Part-A2 [23] introduces an intra-object part supervision to im-
prove the feature representation. STD [30] proposes PointsPool operation for
RoI refinement, which converts sparse feature to dense feature representation.
PV-RCNN [21] combines point-based and voxel-based network to extract fea-
tures from keypoints and voxels, then aggregates them by RoI-grid pooling.
Voxel R-CNN [3] proposes Voxel RoI Pooling to extract RoI feature from vox-
els for refinement. Pyramid R-CNN [15] alleviates the sparsity and imbalanced
distribution problems of points by RoI-grid pyramid and density-aware radius
prediction. CT3D [20] uses channel-wise attention to reweight the proposal fea-
tures for refinement. SFD [25] is multi-modality method with image and LiDAR
as inputs for 3D detection. Different from the previous methods, we add a Struc-
ture Completion after RPN to generate more accurately localized proposals.

2.3 Point Cloud Augmentation.

Point cloud augmentation aims to generate denser points representation from
sparse LiDAR points or RGB images. LiDAR-based methods like PUNet [32]
reconstructs multiple upsampled points from high level feature vectors. Image-
based methods [11,31] first perform depth completion and then convert to point
clouds. MVP [31] predicts object depth in image space and further generates
dense points. ImpDet [19] uniformly places virtual points around candidate
point, then randomly chooses some points for boundary generation. In contrast,
we generate virtual points in structure-aware manner and obtain their features
from BEV feature, which is more accurate for refinement stage.

3 Methodology

The overall framework of Structure guided Proposal Completion (SPC) is shown
in Figure 2. Given the input raw points, the first RPN predicts a number of pro-
posals, and the following Structure Completion augments the sampled proposals
by traversing most structures. We further introduce the RoI Feature Completion
module for more adequate proposal features generation, which will be fed into
the final detection head. Details are shown in the following sections.
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Fig. 2. Framework overview. We first generate 3D proposals from raw points with
RPN, then a set of more accurately localized proposals will be generated by Structure
Completion module. Subsequently, RoI Feature Completion module is introduced to
generate more adequate proposal features by attentively aggregating raw point features
and virtual point features. The final one is detection head for box refinement.

3.1 RPN for Proposals Generation

For each 3D scene, let P = {(x, y, z, r)n , n = 1, . . . , N} be a set of raw point
clouds, where (xn, yn, zn) means 3D location in LiDAR coordinate system and rn
means the reflectance. RPN takes P as input and generates a set of 3D bounding
boxes B = {B1, B2, · · · , BK} ∈ RK×8 that represent the detected objects, where
K denotes the number of objects in each scene. Each 3D bounding box Bk is
represented as (xk, yk, zk, hk, wk, lk, θk, ck), where (xk, yk, zk) is object center,
(hk, wk, lk) is object size, θk is object orientation, and ck is classification score.
In this paper, we choose the first stage of PointRCNN [22] as our default RPN
to generate 3D proposals due to its effectiveness and accuracy. It is worth noting
that PointRCNN can be replaced by other high quality RPN. During the first
stage, RPN outputs a set of 3D proposals and extracts corresponding point
features fed to the next stage.

3.2 Structure Completion Module

Due to distance and different forms of occlusion, the number of point clouds in
certain objects may be quite limited. When further integrated with the indis-
pensable point sampling strategy, some essential foreground points are discarded,
which makes the sparsity issue worse. Hence, it is difficult for RPN to predict
where to regress and which portion these points belong to, resulting in low qual-
ity proposal with inaccurate localization. This motivates us to generate precisely
localized proposals. Accordingly, we propose Structure Completion module
to augment the existing predicted proposals.

Preliminary. For each object, we divide the captured points into four parts
(front-left, front-right, behind-left and behind-right, respectively) in 3D space.
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Fig. 3. The illustration of Structure Completion module. We show the captured points,
ground truth, predicted proposal and augmented proposals in red, green, blue and
purple, respectively. (a) shows the captured points, ground truth box and raw proposal.
(b)-(i) represent the Structure Completion process from raw proposal to augmented
proposals according to the missing structures. Specifically, we take proposal center as
origin and shift the proposal by l/2 or w/2 in eight directions. For example, we shift
the raw proposal by w/2 in straight-right direction and obtain the augmented proposal
as shown in the (b). Particularly, we can obtain at least one more precisely localized
proposal after Structure Completion, as shown in the (c).

The origin is located at the bottom center of the object, and the front direction
is same with the heading direction. Inspired by [14], we find that the low quality
proposals are mainly caused by localization error in 3D space, so our Structure
Completion module focuses on improving the accuracy of localization prediction.

Structure Completion. Since proposals with fewer points suffer from struc-
ture missing and inaccurate localization, our mechanism pays more attention on
these proposals, denoted as Bs = {B1, B2, · · · , Bs}. In details, given the full-set
proposals generated by RPN, we first count the number of points in each pro-
posal, and then sample the proposals with small number of points for subsequent
completion. Considering that large objects like cars naturally have more points
than small objects like pedestrians and cyclists, it is unfair to directly select
proposals with the smaller number of points among all proposals. So we sample
the proposals with fewer points in the same class objects instead.

As shown in the Figure 3(a), LiDAR captures points belonging to front-left
part of the object, denoted by red points, and ground truth is drawn in green
box. We show them in BEV map for better visualization. The subsequent down-
sampling operation will worsen this problem and make their structure incom-
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Algorithm 1 Pseudocode of Structure Completion Module

Input:
proposals B ⊆ RK×8 , Bk = (xk, yk, zk, hk, wk, lk, θk, ck)
H points number threshold
L number of augmented proposals

Output:
augmented proposals BH ⊆ R(H×L)×8

def structure completion(proposals, H, L):
# sample proposals based on points number threshold
samples=proposals[: H, :]
template=array(([1,1], [1,-1], [-1,-1], [-1,1], [1,0], [0,-1], [-1,0], [0,1]))
center=samples[:, 3:5] × template
# transform from local coordinate system to LiDAR coordinate system
transform center=transform(center, samples[:, 6]) + samples[:, 0:2]
for i in range(L):

samples[:, 0] = transform center[i, 0]
samples[:, 1] = transform center[i, 1]

return samples

plete, then RPN may make a wrong prediction with inaccurate localization. It
means the predicted proposal may be distributed around the object with relative
small IoU. For example, RPN incorrectly predicts these points as behind-right
structure and generates a proposal on the front-left direction, as shown in the
Figure 3(a), which is hard to refine. In order to obtain accurately localized pro-
posals, we propose to augment these predictions by traversing object structure.
Concretely, for each selected proposal Bs, we take the predicted center (x, y, z)
as the origin, then shift the proposal by w/2, l/2, (w/2, l/2) in the eight dif-
ferent directions, including straight-right, behind-right, straight-behind, behind-
left, straight-left, front-left, straight-front and front-right directions, respectively,
as shown in the Figure 3 (b)-(i). All structures of the object, i.e., the front-right,
behind-left or behind-right structure, can be included through this method. Fi-
nally, for each selected proposal, we will get eight new proposals. Since we have
traversed possible missing structures, at least one accurately localized proposal
can be obtained for refinement stage, as shown in the Figure 3(c).

The pseudocode of Structure Completion module is presented in Algorithm 1.
Given B = {B1, B2, · · · , BK} proposals generated from the first stage, we first
sample Bs proposals based on the points number threshold H. For each sampled
proposal, we will generate L new augmented proposals. Finally, we will obtain
Baug = {K + L×H} proposals. By default, we set L = 8. Despite its simplic-
ity, this module makes a significant contribution and we will conduct ablation
experiments in the Experiments Section to analyze the effects.
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3.3 RoI Feature Completion Module

On top of high quality proposals generated by our Structure Completion, we
further attempt to refine these proposals including localization and heading.
However, previous methods [10,22] may fail to obtain complete proposal features
because certain proposals have fewer points and features. This motivates us to
generate adequate proposal feature for each proposal. Specifically, we propose
RoI Feature Completion module, which consists of BEV feature learning, virtual
points generation, and feature aggregation.

BEV Feature Learning. BEV image has several advantages compared to
front view image. Such as, objects preserve origin physical size and no occlu-
sion, which make BEV image more feasible in 3D object detection, especially for
localization prediction. So we utilize BEV features for further virtual point fea-
tures generation. Concretely, by projecting the points, we can obtain BEV image
H ×W × C, in which H and W are height and width of BEV image. However,
using 2D CNN to extract raw BEV features directly may be inappropriate due
to the sparsity, which makes objects on BEV image incomplete. So we first use
the occupancy prediction [27] to generate more complete pseudo BEV map, then
use 2D CNN to extract BEV features f bev.

Virtual Points Generation. For each generated 3D proposal Bk, we enlarge
its width and length to contain more points and features. Nevertheless, as dis-
tance increases, points become sparser and fewer points can be captured. To
this end, we propose structure-aware virtual points generation module, which
generates uniformly distributed virtual points to enrich original proposal points
and features. This module is inspired by the observation that 3D objects have
relatively fixed structures and resemble shape prototypes.

Concretely, we first generate one type of template from original dataset for
each category, and then uniformly place M virtual points in each template,
denoted as V = {(x, y, z, r)m ,m = 1, . . . ,M}. These points encode the structural
information of the object. Then we select corresponding template and place them
in the canonical coordinate system. The heading and the center of the template
remain the same as the original proposal. We project V to BEV map and apply
bilinear interpolation to get virtual points feature fv

k from BEV feature f bev

due to its larger receptive fields. After that, for each proposal Bk, we have raw
points pk and corresponding features fr

k , and we also have virtual points vk and
corresponding features fv

k . Hence, the original proposal features fp
k are enriched

by concatenating virtual point features.

fp
k = [fr

k ; f
v
k ] , for k = 1, 2, · · · ,K (1)

where [∗; ∗] denotes the concatenation operation.

Feature Aggregation. After virtual points generation, original proposal fea-
ture is enriched by virtual points. However, the proposal region may contain

4469



Structure Guided Proposal Completion for 3D Object Detection 9

background points due to inaccurate localization. Intuitively, it is inappropriate
to utilize foreground and background points equally, because foreground points
and virtual points indicated object boundary should make more contributions to
the refinement stage, while background points should contribute less. To adap-
tively aggregate raw point features and virtual point features, we adopt the
attention-based aggregation module to re-weight above features. In practice, we
apply point-wise attention and channel-wise attention to strengthen the features,
respectively. The point-wise attention can be represented as:

Rk = W2δ (W1ek) , ek = POOL (fp
k ) (2)

where ek represents the pooled features across the channel-wise dimensions,
POOL represents the average-pooling, W1,W2 are the weight parameters of two
fully-connected layers, and δ is the ReLU activation function. Similar to the
point-wise attention, the channel-wise attention can also be computed and we

will get Sk = W ′
2δ

(
W ′

1

(
gk

)T)
, where gk represents the pooled features across

the point-wise dimensions.
By element-wise multiply, we obtain the attention matrix Ak = σ (Rk

⊙
Sk),

where σ is sigmoid function and
⊙

is element-wise multiply operation. After
that, the re-weighting features can be formulated as:

f̃p
k = fp

kAk (3)

Eventually, the re-weighting features are fed into the network [18] to obtain
proposal features for the final confidence classification and box refinement.

3.4 Detection Head and Loss Function

Detection Head. The detection head takes proposal features as input for re-
finement stage. Specifically, we first transform the proposal features into feature
vectors by a shared two layers MLP. Then, the feature vectors are fed into two
branches for bounding box regression and confidence prediction. In practice, our
detection head adopts the same architecture as that in [22] with several fully
connected layers.

Loss Function. We use multi-task loss to train our model. Specifically, the
total loss is composed of region proposal loss Lrpn and refinement loss Lrcnn as

Ltotal = Lrpn + Lrcnn (4)

For region proposal loss Lrpn, we adopt the same loss function with [22] as

Lrpn = Lfocal + Lreg (5)

where classification loss Lfocal are focal loss and we keep the default parameters
αt = 0.25 and γ = 2, and smooth-L1 loss is utilized for regression loss Lreg.

The refinement loss Lrcnn consists of two parts, including the smooth L1
loss for box refinement Lbox, and the multi-class cross entropy loss for box class
prediction Lce,

Lrcnn = Lbox + Lce (6)
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Table 1. Comparison with state-of-the-art methods on KITTI val set, the results are
evaluated by the 3D Average Precision with 40 recall positions. The 3D APs with 11
recall positions are also reported under moderate setting. ”-” means that results are
not reported in the published version. Best in bold.

Type Method Modality
Car 3D APR40 Ped. 3D APR40 Cyc. 3D APR40 3D APR11

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Car Ped. Cyc.

1
-s
ta
g
e SECOND [28] L 90.97 79.94 77.09 58.01 51.88 47.05 78.50 56.74 52.83 76.48 52.98 67.15

PointPillars [8] L 87.75 78.35 75.18 57.30 51.41 46.87 81.57 62.94 58.98 77.28 52.29 62.68
SA-SSD [6] L 92.23 84.30 81.36 - - - - - - 79.91 - -

2
-s
ta
g
e PointRCNN [22] L 89.47 80.32 77.92 62.82 53.66 47.01 91.62 71.34 66.77 78.61 53.85 71.62

PV-RCNN [21] L 92.57 84.43 82.69 64.26 56.67 51.91 88.88 71.95 66.79 83.24 57.37 69.48
Voxel R-CNN [3] L 92.38 85.29 82.86 - - - - - - 84.52 - -
Ours(SPC) L 92.71 85.75 83.35 66.18 58.92 51.38 93.66 75.55 70.97 85.85 59.63 74.72
Improvement - +0.14 +0.46 +0.49 +1.92 +2.25 -0.53 +2.04 +3.60 +4.18 +1.33 +2.26 +3.10

4 Experiments

We evaluate the effectiveness of our proposed method on the KITTI dataset [4],
which consists of 7481 training samples and 7518 testing samples in 3D object
detection task. The training data is divided into a train set with 3712 samples
and a val set with 3769 samples [2]. We report our results on val set and test set
for Car, Pedestrian and Cyclist categories. The 3D Average Precision (3D AP)
is utilized as the evaluation metric. We adopt the official evaluation protocol for
fair comparisons. Specifically, the IoU threshold is set to 0.7 for Car and 0.5 for
Pedestrian and Cyclist. APs are computed by recalling 11 and 40 positions on
the val and test splits respectively.

4.1 Experimental Setup

Network Architecture. We randomly choose 16384 points from the entire
point clouds per scene, and the detection range is limited to [0,70.4]m for the
x axis, [-40,40]m for the y axis and [-3,1]m for the z axis. We adopt PointR-
CNN [22] as our default RPN due to its efficiency. And we use 2D UNet [9] to
extract pseudo BEV map features. For the virtual points generation strategy, we
empirically generate 27 virtual points for each proposals, and the corresponding
virtual point feature dimension is 128. For the box refinement module in SPC,
we follow the usual RoI pooling strategies in PointRCNN [22].

Training and Inference Details. The SPC model is end-to-end optimized for
80 epochs with the ADAM [7] optimizer with the batch size 4. The learning rate
is initialized as 0.01 and is decayed 10x at 50 and 70 epochs. We conduct data
augmentation at training stage following strategies in [3], including gt-sampling,
random rotation, random flipping and random scaling.

4.2 Comparison with State-of-the-Arts

We compare our model with the state-of-the-art competitors on Car, Pedestrian,
Cyclist using AP under 40 recall positions (APR40), as shown in Table 1. The
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Table 2. Comparison with state-of-the-art methods on the KITTI test set, with av-
erage precision of 40 recall positions evaluated on the KITTI server. ”-” means that
the results are not reported in the published version. ”L” means LiDAR-only methods,
and ”L+R” means the detector makes the use of both LiDAR and RGB modality. Best
in bold.

Type Method Modality
Car 3D APR40 Ped. 3D APR40 Cyc. 3D APR40

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

1
-s
ta
g
e

VoxelNet [35] L 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37
ContFuse [12] L+R 83.68 68.78 61.67 - - - - - -
SECOND [28] L 84.65 75.96 68.71 45.31 35.52 33.14 75.83 60.82 53.67
PointPillars [8] L 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92
TANet [13] L 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53
SA-SSD [6] L 88.75 79.79 74.16 - - - - - -
CIA-SSD [33] L 89.59 80.28 72.87 - - - - - -

2
-s
ta
g
e

MV3D [2] L+R 74.97 63.63 54.00 - - - - - -
F-PointNet [16] L+R 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01
PointRCNN [22] L 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
STD [30] L 87.95 79.71 75.09 53.29 42.47 38.35 78.69 61.59 55.30
MMF [11] L+R 88.40 77.43 70.22 - - - - - -
PV-RCNN [21] L 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65
PI-RCNN [26] L+R 84.37 74.82 70.03 - - - - - -
CT3D [20] L 87.83 81.77 77.16 - - - - - -
Ours L 87.69 81.80 77.22 48.37 39.88 37.21 80.66 63.04 56.88

APR40 of SA-SSD [6], PV-RCNN [21] and Voxel R-CNN [3] come from published
papers, and the APR40 of SECOND [28], PointPillars [8] and PointRCNN [22]
come from the results of the officially released code. In addition, we also re-
port the 3D APs under 11 recall positions (APR11) under moderate setting. Our
method achieves the best performance among all competitors. Specifically, our
SPC outperforms other methods by 1.33%, 2.26% and 3.10% 3D APR11 on car,
pedestrian, cyclist class under moderate setting. Figure 4 shows some predicted
results and we project them onto color images for better visualization. As ob-
served, our SPC can produce high quality 3D bounding box in different kinds of
scenes.

We also compare our model with state-of-the-art methods on the KITTI test
set by submitting our results to KITTI online test server. As Table 2 displays,
compared with all the models, SPC surpasses them on moderate and hard setting
of car class. SPC also shows competitive results on the pedestrians and cyclists
class. Those methods include the models that take LiDAR and RGB images as
inputs and the ones taking LiDAR input only.

4.3 Ablation Study

Here we provide extensive experiments to analyze the effectiveness of our method.
All of the experiments in this section are conducted on the KITTI val set.

Component Analysis. We individually evaluate the contributions of Struc-
ture Completion and RoI Feature Completion module in our model. We choose
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Table 3. Component analysis of our SPC model on KITTI val set. Structure means
the Structure Completion, while the Feature means the RoI Feature Completion mod-
ule. Performance comparisons of different components with 3D APR40.

Method Structure Feature
Car Ped. Cyc.

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Baseline 89.47 80.32 77.92 62.82 53.66 47.01 91.62 71.34 66.77
SPC ✓ 91.87 82.68 80.38 65.74 58.21 51.18 93.52 75.48 70.78
SPC ✓ 92.62 83.69 81.27 64.17 55.24 48.21 91.67 73.99 69.15
SPC ✓ ✓ 92.71 85.75 83.35 66.18 58.92 51.38 93.66 75.55 70.97

Fig. 4.Qualitative results on KITTI val set. The predicted bounding boxes and ground-
truth bounding boxes are shown in red and green, respectively, and we project them
back onto the color images for better visualization.

PointRCNN [22] as our baseline and all hyperparameters and training procedures
are the same, whose mAP for car, pedestrian and cyclist are 81.70%, 56.31% and
74.43%, respectively. Table 3 shows the importance of each component of our
SPC model. Simply adding Structure Completion after RPN, the process boosts
the performance beyond the baseline, improving the APR40 by 2.41%, 3.88% and
3.34% for three categories, respectively. It clearly demonstrates the effectiveness
of Structure Completion module, which helps to alleviate the low quality pro-
posal generation problem of RPN, especially for pedestrian and cyclist under
moderate and hard setting. The main reason that leads to this phenomenon,
is the inaccurate localization caused by structure missing has bigger impact for
pedestrian and cyclist. Compared with car class, pedestrian and cyclist are rela-
tive smaller, then the same localization error has a more severe influence on the
IoU between the predicted bounding boxes and the ground truth of the small ob-
ject. Our RoI Feature Completion module contributes an improvement of 3.39%,
1.37% and 1.69% on the three categories, respectively. Finally, we combine the
two module and obtain the full model of SPC.
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Table 4. Effects of Structure Completion module in different LiDAR-based detection
paradigms on KITTI val set with 3D APR40. Structure means the Structure Com-
pletion module.

Method
Car Ped. Cyc.

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointRCNN 89.47 80.32 77.92 62.82 53.66 47.01 91.62 71.34 66.77
PointRCNN+Structure 91.87 82.68 80.38 65.74 58.21 51.18 93.52 75.48 70.78

Improvement +2.40 +2.36 +2.36 +2.92 +4.55 +4.17 +1.90 +4.14 +4.01

PV-RCNN 92.57 84.43 82.69 64.26 56.67 51.91 88.88 71.95 66.79
PV-RCNN+Structure 92.65 85.57 83.12 67.43 58.46 51.30 90.42 72.68 67.12

Improvement +0.08 +1.14 +0.43 +3.17 +1.79 -0.61 +1.54 +0.73 +0.33

Table 5. Ablation on Structure Completion module. Performance comparisons of dif-
ferent Structure Completion strategies with 3D APR40. H means the points number
threshold to sample proposals. L means the number of augmented proposals.

Method Parameter
Car Ped. Cyc.

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Baseline 89.47 80.32 77.92 62.82 53.66 47.01 91.62 71.34 66.77

H
20 91.42 50.54 78.10 62.65 55.15 48.54 90.90 73.62 69.16
40 91.87 82.68 80.38 65.74 58.21 51.18 93.52 75.48 70.78
60 91.01 82.12 79.70 65.32 56.52 49.74 92.95 74.42 69.89

L
4 89.67 80.63 78.21 66.09 58.03 50.71 92.20 71.65 67.04
6 89.01 78.87 77.90 64.83 55.93 48.70 92.07 73.15 68.82
8 91.87 82.68 80.38 65.74 58.21 51.18 93.52 75.48 70.78

Effects of Structure Completion. The Structure Completion is easily ex-
tended to LiDAR-based 3D detectors. To verify it can play a plug-in to other
models, we select PointRCNN [22] and PV-RCNN [21] to test on KITTI val
set. As shown in Table 4, the Structure Completion module can bring +0.08% ∼
+4.55% APR40 to the original 3D detector. We also test our model with different
Structure Completion strategies. We first analyze the effect of hyperparameter
H, as shown in Table 5. When we augment the proposals with fewer points,
SPC shows better capacity than the baseline, especially at moderate and hard
setting. When proposals with enough points (H = 60) are selected to augment,
the performance slightly decrease. The reason is that for objects with sufficient
points, they are conducive to network’s inference of the localization and size
of the objects. Augmenting these relatively accurate localization proposals may
yield some proposals that are easily misclassified as positive, resulting in perfor-
mance degradation. The best result comes from the H = 40 setting and we select
as our default setting. Besides, we further analyze the effect of hyperparameter
L, as displayed in Table 5. We get the best result by setting L = 8, that means
each augmented proposal may make contributions to the finally result, because
it is hard to identify which structure is missing.
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Table 6. Ablation on RoI Feature Completion module. Performance comparisons of
different number of virtual points with 3D APR40.

Number
Car Ped. Cyc.

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

8 92.65 85.57 83.11 64.95 56.07 49.44 91.29 72.46 68.66
27 92.71 85.75 83.35 66.18 58.92 51.38 93.66 75.55 70.97
64 92.54 85.52 83.11 66.00 56.39 48.60 93.23 75.30 70.60

Table 7. Speed and Accuracy comparisons on KITTI val set. The inference speed is
tested under single RTX 3090 GPU with batch size 1. PR means PointRCNN [22],
Structure means Structure Completion and Feature means RoI Feature Completion.

Inference Speed APR40 for Car detection

PR PR + Structure PR + Feature PR PR + Structure PR + Feature

71.1ms 72.0ms 90.4ms 80.32 82.68 83.69

Effects of RoI Feature Completion. We further validate the effectiveness
of RoI Feature Completion module. As Table 6 displays, if we place too many
virtual points in each proposal, the number of virtual points may be greater than
the raw points and degrade the overall performance, because it cannot help to fit
a bounding box well. Moreover, the more virtual points we generate, the higher
computation costs. We choose the optimal value when the model achieves the
best performance, i.e., M =27.

Efficiency Analysis. We analyze the efficiency of our proposed methods from
inference speed and accuracy, as shown in Table 7. The proposed method only
adds little latency, including 0.9ms for Structure Completion and 19.3ms for
RoI Feature Completion module. And we achieve 2.36% and 3.37% accuracy
improvements on moderate setting for car detection than the baseline.

5 Conclusion

We present a two-stage 3D object detection framework SPC for outdoor point
clouds. It aims to mitigate the problems of low quality proposal generation in
RPN and insufficient proposal features in refinement stage. To this end, we in-
troduce a Structure Completion strategy that generates at least one proposal
structure similar to the ground truth boxes by traversing most structures. More-
over, we propose a RoI Feature Completion module that helps to obtain adequate
proposal features by attentively aggregating raw point features and virtual point
features. Our approach achieves competitive performance compared with state-
of-the-art methods on KITTI dataset, especially on the hard setting objects.
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