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Abstract. For a given image, the self-attention mechanism aims to cap-
ture dependencies for each pixel. It has been proved that the performance
of neural networks which employ self-attention is superior in various im-
age processing tasks. However, the performance of self-attention has ex-
tensively correlated with the amount of computation. The vast majority
of works tend to use local attention to capture local information to re-
duce the amount of calculation when using self-attention. The ability to
capture information from the entire image is easily weakened on this oc-
casion. In this paper, a local-global attention block (LGAB) is proposed to
enhance both the local features and global features with low calculation
complexity. To verify the performance of LGAB, a lightweight local-global
attention network (LGAN) for single image super-resolution (SISR) is
proposed and evaluated. Compared with other lightweight state-of-the-
arts (SOTAs) of SISR, the superiority of our LGAN is demonstrated
by extensive experimental results. The source code can be found at
https://github.com/songzijiang/LGAN.

1 Introduction

For a given low-resolution (LR) image, single image super-resolution (SISR) is a
task aiming at generating a high-resolution (HR) one. Among the current main-
stream SISR methods (e.g., [5, 8�10, 12, 13, 15, 17, 18, 20, 25]), the SwinIR [17]
achieves the impressive performance, and the fundamental idea of SwinIR is
self-attention. The self-attention captures long-range dependencies (LRDs) for
each pixel in an image, and the greatest advantage of self-attention is producing
large receptive �elds. However, the advantage of self-attention comes with the
huge computation. Therefore, lots of works (e.g., [7, 16, 24]) attempt to reduce
the computation with less negative impact. Among them, reducing the number of
pixels involved to calculate the LRDs is the most salient means. In SwinIR [17],
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dividing the image into non-overlapped windows and executing the self-attention
operation in each window. Next, the operation of shifting windows is performed
to enlarge the receptive �elds. By repeating the operations above, the receptive
�elds are expanded to the whole image. However, only local attention is used in
SwinIR, and it is hard to acquire information e�ciently from long-range targets
directly. Thus, SwinIR su�ers from the lack of long-range relationships to gen-
erate the image. Note that, it has been reported in [7] that calculating pixels on
the speci�c path can also e�ectively reduce the amount of calculation and the
receptive �elds are able to be expanded to the whole image without repeating.
However in CCNet [7], too much attention is paid to long-range relationships, and
local relationships are neglected, it is fatal for CCNet [7]. Therefore, networks
like CCNet, which reduces computation only by reducing the pixels involved to
calculate LRDs, are di�cult to achieve an outperforming result.

Motivated by the SwinIR [17] and CCNet [7], we aim to combine both lo-
cal and global features in an e�cient way and reduce the complexity of the
self-attention computation. For that, we use self-attention both in the local fea-
tures and global features in our proposed local-global attention block (LGAB).
In our proposed LGAB, there are three attention parts: 1) window attention
(WA), 2) shifted window attention (SWA), and 3) long-range attention (LRA).
Dividing each image into non-overlapped windows is used in WA to extract the
local features e�ectively. Due to the resolution of each window is small, the
computational complexity is low in WA. The local features su�er from the lack
of long-range relationships, which is expressed in the form of receptive �elds.
Therefore, we use SWA to build the relationship between neighbor windows
and use LRA to expand the receptive �elds to the whole image. LGAB can ex-
tract both local features and global features. To evaluate the performance of the
LGAB we proposed, a local-global attention network (LGAN) using LGAB is
therefore developed for SISR. For accommodating objects of multiple sizes and
further enhancing information of receptive �elds, multi-scale method is used in
our LGAN.

The rest parts of this paper are organized as follows. Related works are
described in Section 2 and our proposed LGAN and LGAB are described in
Section 3. Extensive experiments are shown in Section 4 for the performance
evaluation of our proposed LGAN. Lastly in Section 5, conclusion is drawn.

2 Related Work

The existing deep learning methods usually enlarge the receptive �elds using
self-attention for better performance. Non-local block and transformer block
are two outstanding blocks using self-attention. For ease of understanding, a
brief description of non-local neural networks and transformer-based networks
in computer vision (CV) is given.
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2.1 Non-local Neural Networks

Non-local neural network, whose basic idea is self-attention. This idea was �rst
proposed in [29] as a generic block for capturing LRDs. The non-local opera-
tion in [29] can be seen as computing the weighted sum of other positions for
each pixel. For each pixel, densely computing LRDs required by pixel-wise dot-
products over the entire image has a high complexity. Therefore, multiple non-
local blocks can not be added to the network, due to the unbearable amount
of calculation. To address this issue, Huang et al. [7] suggested reducing the
LRD computation by limiting the number of pixels involved. For that, recurrent
criss-cross attention (RCCA) was proposed in [7], and it computes the LRDs at
each pixel position along a speci�c criss-cross path. A network called criss-cross

network (CCNet) using RCCA was then proposed for image segmentation [7].
The receptive �elds can be easily expanded to the entire image without hav-
ing to be repeated using non-local-based blocks. Additionally, Mei et al. [24]
investigated the combinations of non-local operation and sparse representation,
and proposed a novel non-local sparse attention (NLSA) with a dynamic sparse
attention pattern for SISR. However, these approaches su�er from a huge com-
putational burden and do not balance well the local and global representation
capabilities.

2.2 Transformer in Computer Vision

Transformer was proposed in [27] �rstly, whose outperforming results quickly
swept through many tasks in natural language processing (NLP). Due to the
di�erence in the dataset between CV and NLP, the number of pixels in the image
is far greater than the number of words in the sentence. Repeating self-attention
operations on each pixel in a transformer-based network causes una�ordable
expenses in CV task. Therefore, dividing the image into non-overlapped 16× 16
windows is used in ViT [3] for CV task. Each window is seen as a token and fed
into the transformer block. With the operation above, the information of position
in image is destroyed, and position embedding is therefore added to the network.
ViT is e�ective to reduce the computation complexity compared to treating each
pixel as a token. However, considering that taking each 16 × 16 window as a
token could lose low-level information, especially for image restoration. To solve
this issue, Swin [19] was proposed. The same as ViT [3], the input images are
divided into non-overlapped windows. Di�erent from ViT [3], the self-attention
operation is only performed in each window. We can think of this operation as
a local attention block. However, global information is lost as a result. To get
the information from the entire image, a shifting window operation was proposed
in [19]. With the repetition of the transformer operations, the receptive �elds can
be expanded to the global image. Due to the impressive performance of Swin, the
network structure was applied to SISR and named SwinIR [17]. SwinIR achieved
state-of-the-art (SOTA) result compared to the previous networks on the vast
majority of benchmark datasets. Although the shifting operation is added in the
network, SwinIR is not e�cient enough at obtaining information from long-range
targets.
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Fig. 1. The overall of the proposed LGAN. The window size of each feature extract
block (FEB) is denoted by WS, and `⊕' denotes the operation of residual plus.

3 The Proposed Approach

In this section, the structures of 1) the proposed local-global attention net-

work (LGAN), 2) feature extract block (FEB) and 3) local-global attention block

(LGAB) are described.

3.1 Network Structure

As shown in Fig. 1, our proposed LGAN contains two stages: 1) feature extraction
and 2) image reconstruction. A set of feature maps denoted by F0 is generated
by 3× 3 convolution based on the given image X in the feature extraction stage
as follows:

F0 = Conv3×3 (X) , (1)

where Conv3×3 (·) denotes the convolution operation with 3 × 3 kernel size. As
shown in Fig. 1, the generated F0 is further enhanced by several FEBs. In our
LGAN, it is empirically determined that the number of FEBs is 24 (i.e.,K = 24).
Finally in the image reconstruction stage, based on the `coarse' feature maps F0

and the residual part FK , HR image Y will be generated via the pixel shu�e [26]
as follows:

Y = Conv3×3 (U (F0 + FK)) , (2)

where the pixel shu�e operator is denoted by U(·), which is used in LGAN for
upsampling.

When training our LGAN, a set of image pairs {X(n), H(n)}Nn=1 is used. The
X(n) denotes the LR image and the H(n) denotes the ground-truth (GT) image
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A Lightweight Local-Global Attention Network for SISR 5

correspondingly. Minimizing the loss is performed for training between Y (n) and
H(n); i.e.,

Θ∗ = argmin
Θ

1

N

N∑
n=1

L
(
Y (n), H(n)

)
, (3)

where Θ denotes the set of parameters to be learned in our LGAN, and L(·)
stands for the smooth ℓ1 loss function [4].

3.2 Feature Extract Block (FEB)

Di�erent from the existing transformer blocks, our FEBs excavate both local
and global information simultaneously with low computational complexity as de-
picted in Fig. 1(b). In our proposed FEB, there are a local-global attention block
(LGAB) and two shift-conv blocks [30]. For shift-conv blocks, smaller compu-
tational parameters are required when expanding the receptive �elds compared
with 3 × 3 convolutions. GELU is chosen to be the activation function. For Fi,
the mathematical de�nitions in FEB are depicted as follows to generate Fi+1:

Ti = SC(GELU(SC(Fi))) + Fi,

Fi+1 = LGAB(Ti) + Ti,
(4)

where SC(·) denotes the shift-conv blocks [30], GELU(·) is the activation func-
tion, and LGAB(·) represents LGAB which de�ned as shown in the following
section.

3.3 Local-Global Attention Block (LGAB)

As depicted in Fig. 2, there are three attention parts in an LGAB: 1) window
attention (WA), 2) shifted window attention (SWA), and 3) long-range attention
(LRA). For a given set of feature maps Ti, it is splited into three parts on the
channel dimension, denoted by x(1), x(2) and x(3), respectively. The number of
channels of x(k) (k = 1, 2, 3) is one third of the number of channels of Ti. x

(1),
x(2) and x(3) are fed into the three attention parts to achieve LGAB(Ti) as
follows:

LGAB(Ti) = Conv1×1(CAT(WA(x(1)),SWA(x(2)),LRA(x(3)))), (5)

where WA(·), SWA(·) and LRA(·) denote window attention, shifted window
attention and long rang attention, respectively; concatenate operation on channel
dimension is denoted by CAT(·).

Window attention. Motivated by SwinIR [17], the original images are divided
into non-overlapped windows. In order to adapt to objects of di�erent scales,
multi-scale resolutions of windows (i.e., 5 × 5, 10 × 10, and 15 × 15) are used.
The reason that we not set the sizes of windows to power of 2 (e.g 4× 4, 8× 8,
and 16×16), is to seek larger receptive �elds. For each pixel, the range capturing
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Fig. 2. The overview of our proposed LGAB. The input set of feature maps is divided
on channels into 3 sets of feature maps. Three attention parts are performed on these
three divided feature maps, respectively.

𝑎 × 𝑎 𝑏 × 𝑏 c × 𝑐 𝑏 × 𝑏

Fig. 3. Receptive �elds in windows of di�erent sizes. The windows are denoted in the
big black square and the receptive �elds are represented by the red box. Each small
black box denotes a divided window.

information is determined by the size of its corresponding receptive �elds. For
example, only considering WA, the size of receptive �elds is determined by the
least common multiple of the sizes of windows. As shown in Fig. 3(a), there are
two window sizes a × a and b × b, and there is 3a = 2b. Therefore, the least
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Fig. 4. A comparison of two parts in LGAB: (a) window attention and (b) shifted
window attention.

common multiple of these window sizes is 2b× 2b, which is the same size as the
entire image. On the other hand in Fig. 3(b), the window sizes are c × c and
b × b. The least common multiple of these window sizes is b and the receptive
�elds is b × b. These two cases have the approximate amount of computation,
but the receptive �elds of case (a) are quadruple of case (b).

Let θ and g denote two 1× 1 convolutions. For the given feature maps x(1),
there are θ(x(1)) = Wθx

(1) and g(x(1)) = Wgx
(1), where Wθ and Wg are weight

matrices to be learned. The operation of reshaping feature maps into windows
is denoted by Rw. For the given feature maps x(1) of shape B × C × H × W ,
shape of Rw(x

(1)) is B · n · n× nh · nw ×C, where nw × nh denotes the pre-set

window size; and n = ⌈W/nw⌉, n = ⌈H/nh⌉. The window where x
(1)
i,j is located

is denoted by Ω(1)(i, j), and WA(x(1))i,j is performed as follows:

WA(x(1))i,j =
∑

(s,t)∈Ω(1)(i,j)
f(θ(x

(1)
i,j ) · θ(x

(1)
s,t )

T ) · g(x(1)
s,t ), (6)

where f(·) denotes the softmax operation. WA can fully utilize the local features
with low computation complexity.

Shifted window attention. WA only captures information within each indi-
vidual window, and the information in the neighbor window is established by
SWA [17]. As shown in Fig. 4(b), the black boxes denote the windows and the
shift size is set to the half of the window size to expand the receptive �elds to a
greater extent. As for a given set of feature maps in WA, it is divided into several
windows and self-attention is executed in each window in Fig. 4(a). Compara-
tively speaking between Fig. 4(a) and (b), the yellow pixels in area A are shifted
from top left to bottom right, and pixels in area B and area C are processed
correspondingly in SWA. Following, the shifted image is divided into windows
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Fig. 5. Operations of reshaping feature maps in LRA. There are two reshaping opera-
tions in LRA: (a) Rh, and (b) Rw. Each number denotes a pixel in the feature maps.
For the convenience of presentation, the parts of convolution and softmax operation
are omitted.

as shown in the WA part. Next, the self-attention operation is performed in
each shifted window. Inverse operation of shifting windows is used to restore the
original image. The feature maps x(2) are calculated as follows:

SWA(x(2)) = UnShift(WA(Shift(x(2)))), (7)

where WA(·) denotes the window attention described in previous subsection and
Shift(·), UnShift(·) denote the shifting windows, and the inverse operation of
shifting windows as shown in Fig. 4(b), respectively. SWA enhances the rela-
tionship between neighbor windows, which is lacking in WA.

Long-range attention. In both WA and SWA, self-attention is calculated
densely between the current pixel and other pixels in the same window. Although
receptive �elds can be expanded to the entire image by shifted windows, we use
LRA to enhance the ability of the network to catch information from the whole
image in a more e�cient way. For a given set of feature maps x(3), whose shape
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A Lightweight Local-Global Attention Network for SISR 9

is B × C × H × W . There are Rh and Rv denote the operation of reshaping
feature maps along horizontal and vertical direction, respectively, as shown in
Fig. 5. After Rh, the shape of the set of feature maps is B · W × H × C and
after Rv is B ·H ×W ×C, where H and W denote the height and width of the
set of the feature maps x(3), respectively. As depicted in Fig. 5, the set of the
feature maps x(3) is reshaped by Rh and executed self-attention in the same row
for each pixel (e.g., for pixel 1, the pixels involved to calculate are pixel 1, pixel
2, and pixel 3). Then the set of the feature maps is reshaped by Rw, and only
pixels in the same column are considered into self-attention calculating (e.g., for
pixel 1, pixels involved in calculating are pixel 1, pixel 4, and pixel 7 in Fig. 5).
The de�nition of LRA(x(3)) is shown as follows:

M = f(Rh(θ(x
(3))) ·Rh(θ(x

(3)))T ) ·Rh(g(x
(3))), (8)

LRA(x(3)) = f(Rv(θ(x
(3))) ·Rv(θ(x

(3)))T ) ·Rv(g(M)). (9)

LRA can catch the LRDs from the entire image with low computation complexity
and make up for the lack of global features in WA and SWA.

4 Experiments

In this section, the settings of the experiment and training steps are shown.
To verify the outperforming structure of our LGAN, the ablation experiments
are shown. Lastly, The experiments of performance are shown in indicators and
visual results for a comparison between proposed LGAN and other lightweight
SOTAs for SISR.

4.1 Experimental Setup

Our LGAN is trained on DIV2K [1], which is the standard benchmark dataset
for SISR. Set5 [2], Set14 [31], B100 [22], Urban100 [6], and Manga109 [23] are
used to evaluate the performance of LGAN. Window sizes are set to 5×5, 10×10,
and 15×15 for 3 continuously FEBs. There are 24 FEBs in our proposed LGAN
and the number of channels is set to 60. And 64 images are used in a batch
for training fairly. Adam [11] is selected as our optimizer and smooth ℓ1 loss [4]
is selected as our loss function. All experiments were running on Nvidia Titan
XP GPUs and implemented by PyTorch based on ELAN [32]1. The results are
evaluated by PSNR and SSIM metrics on the Y channel (i.e., luminance) of
YCbCr space. The LR images generated from the HR images (i.e., GT images)
by downsampling are fed into the network. Data augmentation including random
�ips and rotations is applied when training our proposed LGAN. We cut each
LR image into a 60 × 60 patch for training. Lastly, the ×2 model was trained
with 1, 000 epochs, for each epoch, the training dataset are repeated 80 times.
The initial learning rate was 2 × 10−4 and was reduced by half at epoch 500,

1 https://github.com/xindongzhang/ELAN
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Table 1. An ablation study using PSNR and SSIM for LGAN of scale ×2 trained with
100 epochs.

Case
Attention
Block

Activation
Function

BSDS100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

(a) WA+SWA+LRA GELU 32.13/.8994 32.00/.9274 38.34/.9764
(b) WA GELU 32.12/.8991 31.83/.9260 38.24/.9260
(c) WA+SWA GELU 32.13/.8992 31.91/.9262 38.29/.9764
(d) LRA GELU 32.04/.8976 31.73/.9239 38.04/.9758
(e) WA+SWA+LRA ReLU 32.11/.8992 31.95/.9267 38.19/.9762

Table 2. A comparison of total FLOPs in attention operations between three atten-
tion blocks in ablation experiments. For the convenience of count, the calculation of
convolution and softmax are discarded. Total channels of these cases are all set to 60.
The column of channels in the table is denoted by a× b, where a denotes the channels
of each block and b denotes the number of blocks.

Case WA SWA LRA Channels FLOPs (M)

(a) ✓ ✓ ✓ 20× 3 506.9
(b) ✓ × × 60× 1 604.8
(c) ✓ ✓ × 30× 2 604.8
(d) × × ✓ 60× 1 311.0

800, 900, and 950. Larger magni�cation factors (i.e., ×3 and ×4) were trained
for 500 epochs from the starting based on the trained ×2 network. The learning
rate was reduced by half at epoch 250, 400, 450, and 475, the initial learning
rate was also inited to 2× 10−4.

4.2 Ablation Study

To prove that our LGAN is an e�ective structure, we made an ablation exper-
iment on the scale of ×2 and the results are shown in Tab. 1. To save time
and computational resources, all ablation experiments were trained with 100
epochs, and the LR images are cropped into 30 × 30 patches for training, and
the batchsize is set to 64. Due to the di�erent attention parts occupying a part of
channels alone, respectively. The more attention parts are added to the LGAB,
the fewer channels are distributed to each attention part. Therefore as shown
in Tab. 2, cases with more attention parts are not necessarily more computa-
tionally expensive than cases with fewer attention parts. In Tab. 1, case (a)
serves as the baseline and other cases are built based on case (a). In case (b),
only WA part is used in block and the result of PSNR reduces from 32.00dB to
31.83dB on Urban100. Same, the performance also deteriorates on both BSD100
and Manga109. And then in case (c), WA part and SWA part are added to
the block. Compared with case (b), performance has improved (i.e., 31.91dB vs
31.83dB) but there is still a certain gap with case (a) (i.e., 31.91dB vs 32.00dB)
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Table 3. Angles of the line segment produced by LSD [28] in �ve benchmark datasets
and the changing PSNR and SSIM of SwinIR compared to LGAN.

Method Set5 Set14 BSDS100 Urban100 Manga109

0◦ ± 10◦

90◦ ± 10◦

Total
�

13.60%
10.00%
23.60%

13.86%
19.71%
33.57%

13.19%
21.37%
34.56%

19.70%
19.81%
39.51%

18.18%
15.82%
34.60%

PSNR
SSIM

SwinIR
-0.04dB
-0.0008

-0.06dB
-0.0006

-0.02dB
-0.0010

-0.16dB
-0.0042

-0.15dB
-0.0000

on Urban100. In case (d), only LRA part is added in LGAB. Compared with case
(a), case (d) yields a worse result on Urban100 (i.e., 31.73dB vs 32.00dB). As
shown in case (a), (b), (c) and (d), it is demonstrated that these three attention
parts in LGAB can compensate each other for local and global relationships. To
further explore higher performance, GELU is replaced by ReLU in case (e). It
turns out that GELU is better than ReLU for our network (i.e., case(a) vs case
(e)).

4.3 Compared with SwinIR

In this subsection, the reason LGAN outperforms SwinIR [17], which is the most
e�ective SISR network of the currently accepted papers in mainstream opinion,
is discussed.

`Local attention only' versus `local and global attention'. In SwinIR [17],
the image is split into several non-overlapped windows, and attention operation
is executed in each window. Only local information is captured and it is a fatal
problem. In our LGAN, LRA is proposed to obtain the global information at
the same time in one block.

Better spatial location. Spatial information is very important for CV tasks.
However, in original ViT [3] or SwinIR [17], spatial information is handled by
position embedding, which can not explore the potential of spatial information
well. Our proposed LRA could utilize spatial information more e�ectively.

More reasonable organization of blocks. Although SwinIR and LGAN both
include base units window attention (WA) and shifted window attention (SWA),
the ways these base units are organized are quite di�erent. In SwinIR [17] or in
transformer [27], multi-head attention (MHA) is designed to extract features. In
each block, channels are split into several heads. Each head is executed by the
same attention operation (e.g., WA). In our LGAN, channels are split into 3 parts
to execute 3 di�erent attention operations (i.e., WA, SWA, LRA). Experimental
results demonstrated that, compared with SwinIR's single function, our LGAB

4405



12 Z. Song et al.

Table 4. Comparison of PSNR and SSIM with other lightweight SISR methods. The
results highlighted in red are the best, and the second best results are in blue. Data
not given in the corresponding paper is identi�ed using `�'.

Method Scale Params.
Set5

PSNR/SSIM
Set14

PSNR/SSIM
BSDS100

PSNR/SSIM
Urban100

PSNR/SSIM
Manga109

PSNR/SSIM

MSICF [5]
SRNIF [15]
NLRN [18]
LapSRN [12]
MSRN [13]
MIPN [20]
AMNet [10]
LatticeNet [21]
LAPAR-A [14]
IDN [9]
IMDN [8]
HRFFN [25]
SwinIR [17]
LGAN (Ours)

x2

�
�
�
�
�
�
�

756K
548K
579K
694K
646K
878K
650K

37.89/.9605
38.05/.9607
38.00/.9603
37.52/.9591
38.08/.9605
38.12/.9609
38.13/.9608
38.06/.9607
38.01/.9605
37.83/.9600
38.00/.9605
38.12/.9608
38.14/.9611
38.13/.9612

33.41/.9153
33.65/.9181
33.46/.9159
33.08/.9130
33.74/.9170
33.73/.9188
33.77/.9191
33.70/.9187
33.62/.9183
33.30/.9148
33.63/.9177
33.80/.9192
33.86/.9206
33.95/.9221

32.15/.8992
32.19/.9002
32.19/.8992
31.80/.8949
32.23/.9013
32.25/.9006
32.27/.9008
32.20/.8999
32.19/.8999
32.08/.8985
32.19/.8996
32.24/.9005
32.31/.9012
32.32/.9017

31.47/.9220
32.14/.9286
31.81/.9249
30.41/.9101
32.22/.9326
32.42/.9312
32.52/.9320
32.25/.9288
32.10/.9283
31.27/.9196
32.17/.9283
32.52/.9319
32.76/.9340
32.81/.9343

�/�
�/�
�/�

37.27/.9740
38.82/.9771
38.88/.9773
39.02/.9779

�/�
38.67/.9772
38.01/.9749
38.88/.9774
39.05/.9797
39.12/.9783
39.13/.9777

MSICF [5]
SRNIF [15]
NLRN [18]
LapSRN [12]
MSRN [13]
MIPN [20]
AMNet [10]
LatticeNet [21]
LAPAR-A [14]
IDN [9]
IMDN [8]
HRFFN [25]
SwinIR [17]
LGAN (Ours)

x3

�
�
�
�
�
�
�

765K
544K
588K
703K
654K
886K
658K

34.24/.9266
34.42/.9274
34.27/.9266
33.82/.9227
34.38/.9262
34.53/.9280
34.51/.9281
34.40/.9272
34.36/.9267
34.11/.9253
34.36/.9270
34.49/.9279
34.62/.9289
34.56/.9286

30.09/.8371
30.36/.8426
30.16/.8374
29.87/.8320
30.34/.8395
30.43/.8440
30.47/.8445
30.32/.8416
30.34/.8421
29.99/.8354
30.32/.8417
30.41/.8433
30.54/.8463
30.60/.8463

29.01/.8024
29.06/.8047
29.06/.8026
28.82/.7973
29.08/.8041
29.15/.8061
29.18/.8074
29.10/.8049
29.11/.8054
28.95/.8013
29.09/.8046
29.13/.8061
29.20/.8082
29.24/.8092

27.69/.8411
28.23/.8541
27.93/.8453
27.07/.8270
28.08/.8554
28.38/.8573
28.51/.8595
28.19/.8513
28.15/.8523
27.42/.8359
28.17/.8519
28.43/.8574
28.66/.8624
28.79/.8646

�/�
�/�
�/�

32.21/.9343
33.44/.9427
33.86/.9460
34.10/.9474

�/�
33.51/.9441
32.71/.9381
33.61/.9445
33.82/.9459
33.98/.9478
34.19/.9482

MSICF [5]
SRNIF [15]
NLRN [18]
LapSRN [12]
MSRN [13]
MIPN [20]
AMNet [10]
LatticeNet [21]
LAPAR-A [14]
IDN [9]
IMDN [8]
HRFFN [25]
SwinIR [17]
LGAN (Ours)

x4

�
�
�
�
�
�
�

777K
569K
677K
715K
666K
897K
669K

31.91/.8923
32.34/.8970
31.92/.8916
31.54/.8863
32.07/.8903
32.31/.8971
32.28/.8962
32.18/.8943
32.15/.8944
31.82/.8903
32.21/.8948
32.33/.8960
32.44/.8976
32.48/.8984

28.35/.7751
28.66/.7838
28.36/.7745
28.19/.7720
28.60/.7751
28.65/.7832
28.71/.7841
28.61/.7812
28.61/.7818
28.25/.7730
28.58/.7811
28.69/.7830
28.77/.7858
28.83/.7864

27.46/.7308
27.62/.7380
27.48/.7306
27.32/.7262
27.52/.7273
27.61/.7375
27.66/.7392
27.57/.7355
27.61/.7366
27.41/.7297
27.56/.7353
27.62/.7378
27.69/.7406
27.71/.7416

25.64/.7692
26.32/.7935
25.79/.7729
25.21/.7548
26.04/.7896
26.23/.7906
26.37/.7951
26.14/.7844
26.14/.7871
25.41/.7632
26.04/.7838
26.32/.7928
26.47/.7980
26.63/.8022

�/�
�/�
�/�

29.09/.8890
30.17/.9034
30.67/.9107
31.04/.9136

�/�
30.42/.9074
29.41/.8942
30.45/.9075
30.73/.9107
30.92/.9151
31.07/.9151

has more powerful functions with fewer parameters and complexity as shown in
Tab. 2.

Adaptivity to object size. Multi-scale strategy is applied in our LGAN to
adapt to objects with di�erent sizes. In the image, the size of pixels occupied by
objects is di�erent. Window sizes of 5, 10, 15 are used in our LGAN.

Higher quality of restoring line segments. At the same time, we observe
that on the Urban100 dataset, our LGAN has huge superiority to restore the
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Fig. 6. A visual comparison of ×4 scale with other lightweight SISR networks on
Urban100 and Manga109.

horizontal and vertical line segments. To evaluate the reinforcement of our LGAN
of line segments, Tab. 3 is shown. Straight line segment detection by LSD [28]
is �rstly performed on the �ve datasets, and then the detected straight line
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segments are divided into from −10◦ to 170◦ according to their slopes. The line
segments with slopes from −10◦ to 10◦ are considered as horizontal ones, and line
segments from 80◦ to 100◦ are considered as vertical straight line segments. The
percentage of horizontal and vertical line segments are 19.70% and 19.81% in
Urban100 respectively, and signi�cantly ahead of the average (percentage of per
20◦ is 11.11%). Comparing SwinIR and our proposed LGAN, PSNR is reduced
by 0.16dB correspondingly in Urban100. In contrast in Set5, only 13.60% and
10.00% of line segments are horizontal or vertical. As a result, PSNR has been
reduced only by 0.04dB. From this, we can speculate that our LGAN can yield
outperforming results compared with SwinIR on the datasets regardless of the
ratio of vertical and horizontal line segments, and if on a dataset with more
vertical and horizontal line segments like Urban100, our network can achieve
considerably increased performance.

4.4 Performance Evaluation

The results of indicators are shown in Tab. 4. We choose several lightweight
SISR networks to compare, including MSICF [5], SRNIF [15], NLRN [18], Lap-
SRN [12], MSRN [13], MIPN [20], AMNet [10], LatticeNet [21], LAPAR-A [14],
IDN [9], IMDN [8], HRFFN [25], and SwinIR [17]. If there are multiple versions
of the same network to choose from, the lightweight version is chosen to be com-
pared in this paper fairly. Since some networks did not provide the number of
parameters, only a part of parameters are listed in Tab. 4. Our proposed LGAN
achieves impressive results on most benchmark datasets and most scales.

In Fig. 6, subjective comparisons on Urban100 and Manga109 are shown.
Due to space limitations, we have only selected six networks developed in recent
years for comparison, including NLRN [18], IDN [9], MSRN [13], IMDN [8],
AMNet [10], and SwinIR [17]. Note that, SwinIR is the most e�ective of the
currently accepted papers in mainstream opinion. From the visual results, the
reconstructions of existing methods are of low quality and have obvious errors,
while our LGAN delivers an outstanding image quality for SISR.

5 Conclusion

In this paper, a block called local-global attention block (LGAB) is proposed. In
each LGAB, there are three di�erent attention parts: 1) window attention (WA),
2) shifted window attention (SWA), and 3) long-range attention (LRA). Then
an e�cient network called local-global attention network (LGAN) is proposed for
single image super-resolution (SISR). Extensive experiments demonstrate that
our proposed LGAN can yield outperformance on the most benchmark datasets
over the existing lightweight state-of-the-arts for SISR. This work focuses on the
mechanism of self-attention blocks, and may enlighten some insights for further
studies.
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