This ACCV 2022 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2022
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv

Vectorizing Building Blueprints

Weilian Song*, Mahsa Maleki Abyaneh, Mohammad Amin Shabani, and
Yasutaka Furukawa

Simon Fraser University, BC, Canada
T Y

ilgsilgs

% N R N

Blueprint image Our result zoomed in Our result Ground-truth

Fig. 1. This paper proposes a novel algorithm for vectorizing building blueprints with
intricate architectural details. The left is an input raster blueprint image. Our vector-
ized blueprint is shown in the middle two columns (the left is a zoomed-in view). The
right is the ground-truth.

Abstract. This paper proposes a novel vectorization algorithm for high-
definition floorplans with construction-level intricate architectural de-
tails, namely a blueprint. A state-of-the-art floorplan vectorization algo-
rithm starts by detecting corners, whose process does not scale to high-
definition floorplans with thin interior walls, small door frames, and long
exterior walls. Our approach 1) obtains rough semantic segmentation by
running off-the-shelf segmentation algorithms; 2) learning to infer miss-
ing smaller architectural components; 3) adding the missing components
by a refinement generative adversarial network; and 4) simplifying the
segmentation boundaries by heuristics. We have created a vectorized
blueprint database consisting of 200 production scanned blueprint im-
ages. Qualitative and quantitative evaluations demonstrate the effective-
ness of the approach, making significant boost in standard vectorization
metrics over the current state-of-the-art and baseline methods. We will
share our code at https://github.com/weiliansong/blueprint-vectorizer.

Keywords: Vectorization - Blueprint - Segmentation.

1 Introduction

Blueprints are technical drawings of buildings, conveying rich architectural and
engineering information for building maintenance, assessing building code com-
pliance, and remodeling. Unfortunately, blueprints are often stored as scanned

* Corresponding author, weilians@sfu.ca

1044

https://github.com/weiliansong/blueprint-vectorizer

2 W. Song et al.

A o=]
P 4501 & 3

o0t Rt

| E= LK
A 6085 12085

AV

Fig. 2. Sample floorplans from the R2V [11] dataset (left two) in comparison to our
dataset (right two).

raster images, where a professional architect spends hours manually converting
to a vector format for down-stream applications. Automated blueprint vector-
ization will have tremendous impacts on real-estate or construction industries,
significantly reducing the amount of human resources in converting hundreds of
thousands of blueprints ever scanned and stored as raster images.

Floorplan vectorization has a long history in the domain of document scan-
ning [3,9]. A classical approach relies on heuristics and was never robust enough
at a production level. With the advent of deep learning, Liu et al.made a break-
through in combining convolutional neural networks for corner detection and
binary integer programming for their connection inference [11]. Their system
achieves more than 90% precision and recall for the task of vectorizing consumer-
grade floorplan images in the real-estate industry.

In this paper, we propose a novel vectorization algorithm for building blueprints
with intricate architectural details. Our system outputs the floorplan in vector-
graphics representation, and keeps intermediate representations as raster seg-
mentation. A standard vectorization process starts by corner detection, which
fails severely on complex blueprints. Our approach 1) starts by region-detection
(which involves higher level primitives and is more robust) by an instance seg-
mentation technique; 2) detects missing or extraneous architectural components
by topological reasoning; 3) adds or removes components by a refinement gen-
erative adversarial network; and 4) further refines the boundaries by heurisics.

We have annotated 200 raster blueprints as vector-graphics images. We com-
pare against the current state-of-the-art and baseline methods, based on the
standard metrics as well as a new one focusing on the topological correctness.
The proposed approach makes significant improvements over existing methods.

2 Related Works

We review related literature, namely, primitive detection, floorplan vectorization,
and structured reconstruction.

1045

Vectorizing Building Blueprints 3

Primitive detection: A floorplan is a 2D planar graph, consisting of three
levels of geometric primitives: O-dimensional corners, 1-dimensional edges, and
2-dimensional regions. Primitive detection is a crucial step for floorplan con-
struction, where convolutional neural networks (CNNs) have proven effective.
Fully convolutional architecture produces a corner confidence image, where non
maximum suppression finds corners [15,41]. The same architecture produces an
“edge confidence image”, where a pixel along an edge has a high value. Direct
detection of edge or region primitives is possible by object detection networks
such as faster-RCNN [16].

Standard instance segmentation techniques such as Mask-RCNN [8] and met-

ric learning [6] yield primitive segmentation. However, blueprints contain many
extremely thin and elongated regions, where these techniques perform poorly.
We divide an input image into smaller patches, perform metric learning locally
per patch, and merge results.
Floorplan vectorization: Liu et al. [11] presented the first successful floorplan
vectorization approach by combining CNNs for corner detection and Integer
Programming for edge/region inference. However, their approach is unsuitable
for our problem due to two key differences in the data. First, their data are
consumer-grade floorplans with much simpler graph structures in comparison to
our blueprints. Second, their input are digitally rasterized images (e.g., a jpeg
image), while our input are optically scanned images from printed papers, ex-
hibiting severe noise and distortions. Some sample floorplans from Liu et al. [11]
are shown in Figure 2. Our approach is to 1) only utilize region detection (i.e., no
corner nor edge detection, which are less robust) and 2) learn to add or remove
tiny architectural components, which are the hardest to detect, by topological
reasoning.

| | door | | open-portal | | room [frame

I
scall o
R

L]
| e

]'] | |background | outer wall [l inner wall | | window

|

yEvy|

0= u—1
i
(12,011

- Tl 7= = — =

Ground-truth Close-ups

Fig. 3. A sample annotated blueprint with close-ups.

1046

4 W. Song et al.

Table 1. Statistics of our dataset, consisting of 200 blueprint images. All averages are
rounded to the nearest integer.

Image Primitives Regions by type

Height Width Corners Edges Regions Outer Inner Window Door Portal Room Frame

Total N/A N/A 123,230 139,808 17,077 1,384 2,111 1019 3,203 172 3,756 5,432
Average 1,279 906 616 699 85 7T 11 5 16 1 19 27

Structured reconstruction: Structured reconstruction [12] seeks to turn raw
sensor data (e.g., images or point-clouds) into structured geometry representa-
tion such as CAD models. The challenge lies in the noisy input sensor data. A
general rule of thumb is to utilize higher level primitive detection (i.e., regions)
instead of corner/edge detection, which is less robust [5,13]. Our approach also
borrows this idea.

The state-of-the-art structured reconstruction algorithms handle outdoor ar-
chitecture [19,13] or commercial floorplans [12,5], which are much simpler than
the building blueprints. Our approach learns topological reasoning to handle tiny
architectural components as described above.

3 Blueprint Vectorization Dataset

We collected 200 building blueprints from a production pipeline. Following the
annotation protocol by an existing floorplan vectorization paper [11], we use the
VIA annotator [7] to annotate a planar graph and associate an architectural
component type to each region. There are eight architectural component types:
background, outer wall, inner wall, windows, doors, open-portals, rooms, and
frames. Table 1 shows various statistics of our dataset, and Figure 3 illustrates
a sample blueprint along with its annotation. We do not have access to previous
datasets [11] to compare statistics, but ours is many times more complex.

To expand upon our semantic types: open-portals denote an opening between
rooms without a physical door. Frames are door trims that often surround doors
within our dataset. From the top-down view, they appear as small rectangles
on the ends of a door (small red rectangles in Figure 3). We make distinction
between outer (exterior) and inner (interior) walls, which can be adjacent to
each other for architectural reasons.

4 Blueprint Vectorization Algorithm

A high-level view of our system is shown in Figure 4. Our blueprint vectorization
consists of four steps: 1) instance segmentation and type classification; 2) frame
connectivity inference; 3) frame correction; and 4) ad-hoc boundary simplifica-
tion. We first explain our intermediate data representation, then provide details
of each step.

1047

Vectorizing Building Blueprints 5

r s
Current
U R D L
l 00100000
VIR
— 00100010
Predicted connectivity
detector
| é

L

I 1 | Addremove oo |
frame

Blueprint image Initial segmentation

Boundaries simplified

Fig. 4. System overview. After obtaining our initial segmentation through instance
segmentation followed by type classification, we detect and correct missing/extraneous
building-frames. Segment boundaries are simplified with heuristics to produce the final
result.

4.1 Blueprint representation

While the goal is to reconstruct a blueprint as a planar graph, our algorithm
also uses a pixel-wise semantic segmentation image as an intermediate represen-
tation, which is an 8-channel image as there exist 8 component types. Note that
a semantic segmentation image is instance-unaware, and cannot represent two
instances of the same type sharing a boundary. However, such cases are rare and
we merge such instances into a single segment for simplicity.

A planar graph is converted to a semantic segmentation image by simple ras-
terization. A semantic segmentation image is, in turn, converted to a graph rep-
resentation by tracing the segmentation boundaries while assuming a Manhattan
world (i.e., edges are either horizontal or vertical). For example, a single-pixel
segmentation is converted to a square with four corners in the vector represen-
tation.

4.2 Instance segmentation and type classification

Instance segmentation: Blueprint images need to be in high resolution to
retain intricate geometric structures. We found that standard instance segmen-
tation techniques such as Mask-RCNN [38] or metric learning [6] do not work
well. Semantic segmentation [18,10] is also an option (given our semantic seg-
mentation representation), but it does not work well due to the data-imbalance
(i.e., the open-portal is the rare type as shown in Table 1).

We divide a scanned blueprint image into a set of overlapping “crops”, each
of which is a 256 x 256 grayscale image and overlaps with the other crops by 32
pixels. ! Since Mark-RCNN is not effective for thin structures, we use a metric-
learning based approach [6].

1 At training, we randomly pick a pixel and extract a patch around it.

1048

6 W. Song et al.

First, a standard CNN converts a crop into an embedding of size 256 x 256 x 8
(i.e., 8 dimensional embedding per pixel) with a discriminative loss function [6]
(implementation borrowed from [1]), which optimizes pixel embedding from the
same instance to be similar and vice-versa. We refer to the supplementary for
the architectural specification.

Second, a mean-shift clustering algorithm extracts instances from the em-

bedding (i.e., a python module MeanShift from the scikit-learn library with
bin-seeding and the bandwidth parameter set to 2.0). We also classify an ar-
chitectural component type for each instance (see the paragraph below), and
merge results by simple heuristics: A pixel in an overlapping region has multiple
segmentation results from multiple crops. We take the most frequent component
type within a 3 x 3 window centered at the pixel in all the crops.
Type classification: We train a CNN-based classifier to assign component type
to each instance in each crop. For each instance in a crop, we pass the blueprint
image of the crop and the binary segmentation mask of the instance as a 4
channel image to a standard CNN-based encoder with a softmax cross-entropy
loss. Again, see the supplementary for the full architectural specification. To
handle a large instance, we uniformly sample 20 pixel locations from the binary
instance mask and use them as centers to extract crops. At test time, we take
the average probability distribution from all the crops and pick the type with
the highest probability.

Up

J L]

Left ﬂ Right
;_I_l ¥

Down
Connectivity vector:

<

0100010
RDL

<

Fig. 5. Figure illustrating the heuristic used to determine the four sides of a segment.
Dashed lines indicate the bounding box of a segment. Four disks indicate the vertices
closest to the bounding box corners. We then trace the perimeter between the vertices
to obtain the four sides.

4.3 Frame detection module

Small architectural components tend to be missed by the instance segmentation
technique in the first step. We train a classifier that infers the correct “connec-

1049

Vectorizing Building Blueprints 7

tivity” of frames. Precisely, we define the connectivity of a segment to be a set
of neighboring segments.

To encode the frame connectivity, we first apply a heuristic to determine
the segment’s four sides. Then, assuming a maximum of two frames on each
side?, we use an 8-bit binary vector to denote the presence of frames on all four
sides. Figure 5 illustrates the heuristic. The top-left, top-right, bottom-left, and
bottom-right corners of the instance are first determined, which are defined as
the four vertices closest to the instance bounding box. The four sides are then
obtained as boundary edges in between two corners, and each frame is attached
to one side only.

With our representation, we train a classifier to predict a segment’s ground-
truth frame connectivity. The classifier takes as input three masks: a one-hot
encoded semantic segmentation mask around the segment, the corresponding
gray-scale blueprint crop, and a binary mask highlighting the segment. The
network directly outputs the 8-bit vector, and is optimized with the standard
binary cross-entropy loss. We use a mix of ground-truth and predicted data to
generate training input-label pairs, where each predicted instance is assigned
the frame vector of the corresponding ground-truth instance. See supplementary
material for more details on training data generation.

4.4 Frame correction module

Once we detect a discrepancy in the current and predicted frame arrangement,
we employ a generative adversarial network (GAN) to locally correct the seg-
mentation.

The main input to the generator is a graph, where each node contains a noise
vector, an instance mask for the target segment, the blueprint crop, a one-hot
type encoding, and a binary indicator denoting the absence of a frame. The
instance mask is trinary with values [—1,0,1]; —1 and 1 pixels are the input
constraints, and O-pixels indicate areas of uncertainty. The generator learns to
expand input constraints to fill in gaps between instances, and generate miss-
ing frames in nodes when indicated. Before inference, for an extra frame, we
simply remove the corresponding node from the graph. For a missing frame, we
add a new node, compute its approximate centroid location, and paint a square
zero-mask of 18 x 18 pixels around the centroid in the instance mask. For all
other segments, we randomly (50% chance) hide their boundaries by dilating
and eroding the instance mask, and marking the difference as 0-pixels. See Fig-
ure 6 for an example input of door with missing frame, and please refer to the
supplementary material for heuristics on approximate centroid computation.

Our generator and discriminator designs are inspired by House-GAN++ [14].
They are both convolutional message passing networks (ConvMPN) [19], and
considers an input blueprint crop as a graph of instances. For simplicity, we con-
sider the graph to be fully-connected. The generator first encodes input masks
down to a lower spatial resolution, then performs a series of four convolutional

2 One window in our dataset does not follow this rule, which we ignore for simplicity.

1050

8 W. Song et al.

random
shrinking
background 9 outer wall
B inner wall - window
[door open-portal random
[Troom I frame shrinking
I 1 1
random
shrinking
random
shrinking
1 |
i Generator
| input masks
Current connectivity shuinxing
U R D L
00001000
x random
10001000 shrinking
Predicted connectivity - -

| |
add missing frame

, Valid
operation

Change in
topology

x Shift
out-of-bounds

Object
removed

e I

Fig. 6. Visualization of generator preprocessing routine (left) and example valid /invalid
edge shift for heuristic simplification. (right)

message passing and up-sampling layers back to the input resolution. The dis-
criminator performs a series of three convolutional message passing and down-
sampling layers, followed by a special pooling and FC module to output a single
value for the input graph. During training, we do self-supervised learning on the
ground-truth data by randomly hiding frame instances. During testing, following
House-GAN++ we do iterative refinement by running the generator a max of
50 steps or until convergence. Please see the supplementary for details.

4.5 Heuristic Simplification

Given our corrected segmentation, we use heuristics to simplify segment bound-
aries. Concretely, we take an edge shorter than 2 pixels (i.e., a reference edge)
and consider neighboring edges that share one of its end-points. We find the
neighboring edge that is perpendicular and closest to the reference. We shift the
reference perpendicularly until the closest neighboring edge gets contracted. We
perform this operation for each edge shorter than 2 pixels, unless one of the
following three conditions occur (see Figure 6).

Change in topology: If an edge shift changes the segment connectivity (e.g.,
a door being disconnected from a wall).

Shift out-of-bounds: If an edge shift expands the segment too much. Con-
cretely, we dilate the original segment with a 7 x 7 kernel and check if the new
segment is fully contained inside the dilated segment.

Instance added /removed: If an edge shift removes a segment or splits a seg-
ment into two instances or more.

1051

Vectorizing Building Blueprints 9

Table 2. Implementation details for learned stages of our pipeline. We use a U-Net
implementation from [2], and use the Resnet50 architecture found in the torchvision
library. Training time is for the full training set, while testing time is for each floorplan.
“Val.” stands for validation, where we reserve 20 floorplans from training set and use
them to choose best checkpoint.

Architecture # iterations Batch size Training time Testing time Learning rate Ir. schedule Ir. decay Val.

Instance segmentation U-Net 270K 16 2 days ~1 hour 0.0003 6750 0.96 No
Type classification Resnet50 ~98K 64 5 hours <1 minute 0.001 ~9800 0.5 Yes
Frame detection Resnet50 ~42K 32 2 hours <1 minute 0.001 ~4200 0.1 Yes
Frame correction Conv-MPN ~420K 1 2 days ~1 hour 0.001 N/A N/A No

5 Implementation details

Our proposed pipeline is implemented in PyTorch. All training and inference
can be done on a single NVIDIA V100 GPU with 32G memory. We perform 10-
fold cross-validation on our dataset to obtain test-time results for each floorplan.
Table 2 shows implementation details for pipeline stages that require learning. In
addition, for frame detection training we perform random rotation augmentation
at 0, 90, 180, and 270 degrees.

6 Evaluations

We compare against one baseline (Mask-RCNN [8]), one state-of-the-art method
(Raster-to-Vector [11] denoted as R2V), and a few variants of our system. Our
method and Mask-RCNN both perform segmentation, but we predict in smaller
local crops and merge predictions. R2V performs corner detection first and then
edge/region inference, which our method aims to avoid detecting primitives.
Mask-RCNN: We use the detectron2 implemenation [17] using the predefined
config of ResNet50+FPN backbone, pretrained on COCO dataset, and fine-
tuned for 60k iterations. The learning rate is set to 0.0025. The anchor sizes and
ratios are set to (16, 32, 64, 128, 256) and (0.1, 0.5, 1.0, 2.0, 5.0), respectively.
R2V: We downloaded and modified the official implementation [11], while con-
sidering every boundary as a wall of 2 pixels. All types are considered to be
rooms. For example, a door is a line in the R2V system, but a region with a
boundary in our problem. The network was trained for 150 epochs with a batch
size of 4 on 512 x 512 images.

6.1 Quantitative results

Besides the standard corner, edge, and region metrics in the existing litera-
ture [11,13], we introduce a new one that measures the correctness of the seg-
ment “connectivity”. In the evaluation, we also consider directions in addition to
being just neighbors. Here, we define the connectivity of a segment to be a set
of neighboring segments and their directions, where a direction is given by a ray
connecting the centroids of the segments.

1052

10 W. Song et al.

Table 3. Quantitative evaluations are based on the standard corner/edge/region met-
rics [11] and a new connectivity correctness accuracy. “I”, “F”, and “H” refers to the
the instance segmentation and type classification (Sect. 4.2), the frame detection and
correction modules (Sects. 4.3 and 4.4), and the heuristic simplification (Sect. 4.5), re-

spectively. The cyan and the color denote the best and the second best results,
respectively.
Model Corner Edge Region Connectivity Acc.
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 All Frames
R2V 71.3 1.9 3.7 0.3 0.5 97.8 45 8.7 0.0 0.0
Mask-RCNN 6.9 25.510.8 0.5 1.8 0.8 44.0 15.8 23.2 0.0 35.7
Mask-RCNN + H 24.6 17.1 20.2 5.1 3.2 4.0 44.0 15.8 23.2 0.0 35.7
Ours (I) 27.2 65.4 38.4 7.6 17.2 10.6 81.7 85.3 76.7
Ours (I + F) 27.9 8.2 89.7 85.3 48.4 80.4
Ours (I + F + H) 53.1 60.5 38.3 30.4 33.9 81.2 89.7 18.4

We declare that a segment connectivity is correct if it is exactly equal to
the connectivity of the corresponding ground-truth segment with a tolerance
of 15 degrees in the directions. Note that we only evaluate the connectivity for
segments that are matched with ground-truth segments during region evaluation.
Therefore, we report only the accuracy number for the connectivity correctness.

Table 3 shows the main results, comparing against one state-of-the-art (R2V |
and one baseline method (Mask-RCNN [g]). For our system, we report numbers
at three different stages. Mask-RCNN is a “dense” segmentation method where
segment boundaries consist of many corners. Therefore, we also apply our heuris-
tic simplification (Sect. 4.5) after Mask-RCNN. For the connectivity, we report
the average accuracy across all segment types as well as only for type “Frame”.
Note that frames are extremely small segments which pose challenges to existing
techniques.

The table shows that R2V and Mask-RCNN both fail with significant mar-
gins . Our system after the instance segmentation (I) recovers most regions and
achieves high region metrics while suffering severely in corner and edge metrics.
The frame detection/correction modules (F) improves the connectivity accuracy
for frames by 3.7%. The heuristic simplification (H) further improves the corner
and edge metrics significantly.

Table 4 shows the performance of the proposed approach while varying the
order and the presence of the three steps. After the instance segmentation (I),
it is best to perform frame detection/correction first (F'), then the heuristic
simplification (H).

6.2 Qualitative results

Figures 7 and 8 compare our pipeline against the competing methods. R2V [11]
is not designed for varying wall thickness or small segments, and hence fail
to recover most segments. Mask-RCNN with heuristic simplification did not

1053

Vectorizing Building Blueprints 11

Blueprint image R2V Mask-RCNN + H Ours Ground-truth

v T -T'_‘;" Ry

l"w | | A N

[|background [] outer wall [inner wall [window [| door | |open-portal | | room [N frame

Fig. 7. Full-blueprint comparison between our full pipeline and competing methods.
“H” stands for heuristic simplification (Sect. 4.5). Our results match the ground-truth
data very closely, while other methods cannot recover most instances.

1054

12 W. Song et al.

Blueprint image R2V Mask-RCNN + H Ours Ground-truth
pras
— | n -
- T
b pe L4 .
]
L | .
, q q = Jﬂ -
e |
& L <« — —
e [| [
A I a

|

o0

[backeround [outer wall [inner wall [T window [T door [open-portal [room [frame

Fig. 8. Continued.

1055

Vectorizing Building Blueprints 13

Ours (I+F) Ours (I+F +H) Ground-truth

i L 1

Ours (I)

Blueprint image

C C C

ey oy =
5 L b [| | | | | & i
MBPS |.
biae i

background [T] outer wall [JI inner wall [window [door open-portal room [frame

Fig. 9. Step-by-step visualization of our pipeline, focusing in around instances. For
step names, “I” refers to the instance segmentation and type classification (Sect. 4.2),
“F” refers to the frame detection and the correction modules (Sects. 4.3 and 4.4), and

“H” refers to the heuristic simplification (Sect. 4.5).

1056

14 W. Song et al.

Table 4. Ablation study. The table shows the performance of the proposed approach
while varying the order and the presence of the three steps, namely, “I” the instance
segmentation and the type classification (Sect. 4.2), “F” the frame detection and the
correction modules (Sects. 4.3 and 4.4), and “H” the heuristic simplification (Sect. 4.5).

The cyan and the color denote the best and the second best results, respectively.
Config Corner Edge Region Connectivity Acc.
F1 F1 F1 Al Frames

Ours (I) 384 10.6 85.3 46.6 76.7

Ours (I + H) 61.1 34.1 85.3 46.6 76.7

Ours (I + F) 38.8 11.2 85.3 48.4 80.4

Ours (I + H+ F) 59.4 79.8

Ours I+ F + H) 33.9 48.4

perform well, producing results that are far from complete. Our method clearly
outperforms the two.

Figures 9 evaluate the quality of our frame connectivity. A mix of adding or
removing actions and different frame connections are shown, where our system
successfully corrects frame connectivity. Refinement GAN based simplification
removes many jagged edges, followed by heuristic simplification which produces
further visually-pleasing results.

The second row of Figure 9 is a common case for bathroom doors, where
there should be no door frames. Our pipeline removed the extra frame and filled
in the open region. The first row is a common example of doors with two frames.
Here, we see a failure case of the frame correction module where the top left
horizontal blue wall disappears due to the refinement procedure. The last row
is interesting where a door frame was segmented, but mistakenly classified as a
blue wall. Our system is able to handle this mistake, and also smooth the green
door’s jagged line with our heuristic simplification.

7 Conclusion

This paper proposes a novel image vectorization algorithm for building blueprints,
whose geometric structures are far more complex and detailed than standard
floorplan images. Qualitative and quantitative evaluations demonstrate the ef-
fectiveness of our approach, outperforming the current state-of-the-art and a
baseline method with significant margins. However, the precision and recall are
still far from the production quality, where our main future work will be to
further robustify the algorithm.

Acknowledgements The research is supported by NSERC Discovery Grants,
NSERC Discovery Grants Accelerator Supplements, and DND/NSERC Discov-
ery Grants. We also thank GA Technologies for providing us with the building
blue-print images.

1057

Vectorizing Building Blueprints 15

References

10.

11.

12.

13.

14.

15.

16.

instance-seg. https://github.com/alicranck/instance-seg, accessed: 2021-04-16 6
Unet: semantic segmentation with pytorch. https://github.com/milesial/
Pytorch-UNet, accessed: 2021-04-16 9

Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Improved automatic analysis of
architectural floor plans. In: 2011 International conference on document analysis
and recognition. pp. 864-869. IEEE (2011) 2

Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-
person 2d pose estimation using part affinity fields. IEEE transactions on pattern
analysis and machine intelligence 43(1), 172-186 (2019) 3

Chen, J., Liu, C., Wu, J., Furukawa, Y.: Floor-sp: Inverse cad for floorplans by
sequential room-wise shortest path. In: The IEEE International Conference on
Computer Vision (ICCV) (2019) 4

De Brabandere, B., Neven, D., Van Gool, L.: Semantic Instance Segmentation
with a Discriminative Loss Function. In: CVPR Workshop on “Deep Learning for
Robotic Vision” (2017) 3, 5, 6

Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and
video. In: Proceedings of the 27th ACM International Conference on Multimedia.
MM ’19, ACM, New York, NY, USA (2019). https://doi.org/10.1145/3343031.
3350535, https://doi.org/10.1145/3343031.3350535 4

He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV). pp. 2980-2988 (2017). https:
//doi.org/10.1109/ICCV.2017.322 3, 5, 9, 10

de las Heras, L.P., Terrades, O.R., Robles, S., Sanchez, G.: Cvc-fp and sgt: a
new database for structural floor plan analysis and its groundtruthing tool. Inter-
national Journal on Document Analysis and Recognition (IJDAR) 18(1), 15-30
(2015) 2

Kalervo, A., Ylioinas, J., Haikio, M., Karhu, A., Kannala, J.: Cubicasabk: A dataset
and an improved multi-task model for floorplan image analysis. In: Scandinavian
Conference on Image Analysis. pp. 28—40. Springer (2019) 5

Liu, C., Wu, J., Kohli, P., Furukawa, Y.: Raster-to-vector: Revisiting floorplan
transformation. In: 2017 IEEE International Conference on Computer Vision
(ICCV). pp. 2214-2222 (2017). https://doi.org/10.1109/ICCV.2017.241 2, 3, 4,
9, 10

Liu, C., Wu, J., Furukawa, Y.: Floornet: A unified framework for floorplan recon-
struction from 3d scans. In: Proceedings of the European Conference on Computer
Vision (ECCV) (September 2018) 4

Nauata, N., Furukawa, Y.: Vectorizing world buildings: Planar graph reconstruc-
tion by primitive detection and relationship inference. In: European Conference on
Computer Vision. pp. 711-726. Springer (2020) 4, 9

Nauata, N., Hosseini, S., Chang, K.H., Chu, H., Cheng, C.Y., Furukawa, Y.: House-
gan+-+: Generative adversarial layout refinement networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2021) 7

Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: European conference on computer vision. pp. 483-499. Springer (2016)
3

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in Neural Information Processing
Systems. vol. 28 (2015) 3

1058

https://github.com/alicranck/instance-seg
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.241
https://doi.org/10.1109/ICCV.2017.241

16

17.

18.

19.

W. Song et al.

Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.
com/facebookresearch/detectron2 (2019) 9

Zeng, 7., Li, X., Yu, Y.K., Fu, C.W.: Deep floor plan recognition using a multi-task
network with room-boundary-guided attention. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (October 2019) 5

Zhang, F., Nauata, N., Furukawa, Y.: Conv-mpn: Convolutional message passing
neural network for structured outdoor architecture reconstruction. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2020) 4, 7

1059

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

