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Abstract. Cross-modality person re-identification between visible and
infrared images has become a research hotspot in the image retrieval
field due to its potential application scenarios. Existing research usually
designs loss functions around samples or sample centers, mainly focusing
on reducing cross-modality discrepancy and intra-modality variations.
However, the sample-based loss function is susceptible to outliers, and
the center-based loss function is not compact enough between features.
To address the above issues, we propose a novel loss function called Het-
erocentric Sample Loss. It optimizes both the sample features and the
center of the sample features in the batch. In addition, we also pro-
pose a network structure combining spatial and channel features and a
random channel enhancement method, which improves feature discrim-
ination and robustness to color changes. Finally, we conduct extensive
experiments on the SYSU-MM01 and RegDB datasets to demonstrate
the superiority of the proposed method.

1 Introduction

Person re-identification(ReID) is a popular research direction in the image re-
trieval field, which is a cross-device pedestrian retrieval technology. Person ReID
faces many challenges due to factors such as lighting changes, viewpoint changes,
and pose changes. Most existing methods [1,2,3,4] focus on matching person im-
ages with visible images. However, when at night, it can be hard for visible
cameras to capture clear pictures of pedestrians due to insufficient light. Nowa-
days, many new outdoor monitors have integrated infrared image capture de-
vices. Therefore, how to use both visible and infrared images for cross-modality
person re-identification (VI-ReID) has become a very significant research issue.

Compared with the single-modality person ReID task, VI-ReID is more chal-
lenging with a higher variation in data distribution. Two classic methods have
been investigated to solve the VI-ReID problem. The first method is based on
modal conversion [5,6], which eliminates modal discrepancy by converting the
images of two modalities to each other. However, the operation of modal conver-
sion is relatively complicated. And inevitably, some key information is lost and
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some noise is introduced in the conversion process. Another method is based
on representation learning [7,8]. This method often maps visible and infrared
images into a unified feature space and then learns a discriminative feature rep-
resentation for each person. Among them, local features as a common feature
representation method have been widely used in person ReID. Inspired by previ-
ous work MPANet [9], we propose a Spatial-Channel Features Network (SCFNet)
structure based on local feature representation in this paper. SCFNet extracts
local features in simultaneously spatial and channel dimensions, enhancing the
feature representation capability. Besides the above two methods, metric learn-
ing [10,11] is often used in VI-ReID as a key technique. In particular, triplet loss
and its variants [10,12] are the most dominant metric learning methods. How-
ever, most of the existing triplet losses are designed around samples or sample
centers. The loss designed around the sample is vulnerable to the influence of
anomalous samples, and the loss designed around the center is not tight enough.
To solve this problem, an improved heterocentric sample loss is proposed in this
paper. It can tolerate the outliers between samples and also takes into account
the modal differences. More importantly, it can make the distribution of sample
features relatively more compact.

In addition, we also propose a local random channel enhancement method for
VI-ReID. By randomly replacing pixel values in local areas of a color image, the
model is made more robust to color changes. We combine it with global random
grayscale to improve the performance of the model with only a small increase in
computational effort.

The summary of our main contributions is as follows:

• A SCFNet network structure is proposed that allows local features to be
extracted from the spatial and channel levels. In addition, a local random
channel enhancement is used to further increase the identification and ro-
bustness of the features.

• A heterocentric sample loss is proposed, which optimizes the structure of the
feature space from both sample and center perspectives, enhancing intra-
class tightness and inter-class separability.

• Experiments on two benchmark datasets show that our proposed method
obtain good performance in the VI-ReID tasks. In particular, 69.37% of
mAP and 72.96% of Rank1 accuracy are obtained on SYSU-MM01.

2 Related Work

VI-ReID was first proposed by WU et al. [13] in 2017. They contributed a stan-
dard dataset SYSU-MM01 and designed a set of evaluation criteria for this prob-
lem. Recently, the research on VI-ReID has been divided into two main types:
modality conversion and representation learning. In addition, metric learning,
as a key algorithm used in these two methods, is often studied separately. This
paragraph will introduce the related work from these three aspects.

Modality conversion based methods. This method usually interconverts
images of two modalities by GAN to reduce the modal difference. Wang et al.
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[5] proposed AlignGAN to transform visible images into infrared images, and
they used pixel and feature alignment to alleviate intra- and inter-modal vari-
ation. In the second year, they also used GAN to generate cross-modal paired
images in [14] to solve the VI-ReID problem by performing set-level and instance-
level feature alignment. Choi et al. [15] used GAN to generate cross-modality
images with different morphologies to learn decoupled representations and au-
tomatically decouple identity discriminators and identity irrelevant factors from
infrared images. Hao et al. [16] designed a module to distinguish images for bet-
ter performance in cross-modality matching using the idea that generators and
discriminators are mutually constrained in GAN. The method based on modality
conversion reduces inter-modal differences to a certain extent, but inevitably it
also introduces some noise. In addition, methods based on modality conversion
are relatively complex and usually require more training time.

Representation learning based methods. The method of representation
learning aims to use a feature extraction structure to map the features of both
modalities into the unified feature space. Ye et al. [7] proposed an AGW base-
line network, which used Resnet50 as a feature extraction network and added a
non-local attention module to make the model focus more on global information.
In the same year, they also proposed a DDAG [8] network to extract contextual
features by intra-modal weighted aggregation and inter-modal attention. Liu et
al. [17] incorporated feature skip connections in the middle layers into the lat-
ter layers to improve the discrimination and robustness of the person feature.
Huang et al. [18] captured the modality-invariant relationship between different
character parts based on appearance features, as a supplement to the modality-
shared appearance features. Zhang et al. [19] proposed a multi-scale part-aware
cascade framework that aggregates local and global features of multiple granu-
larities in a cascaded manner to enrich and enhance the semantic information of
features. Representation learning approaches often achieve good results through
well-designed feature extraction structures. And, the representation of person
features has evolved from the initial global features to richer features, such as
local features, multi-scale features, etc.

Metric Learning. Metric learning aims to learn the degree of similarity be-
tween person images. As a key algorithm in VI-ReID, metric learning has been
used in both modal transformation methods and representation learning meth-
ods. In VI-ReID, triplet loss and its variants are the most used metric learning
methods. Ye et al. [10] proposed the BDTR loss, which dealt with both cross-
modal variation and intra-modal variation to ensure feature discriminability. Li
et al. [12] proposed a strategy of batch sampling all triples for the imbalance
problem of modal optimization in the optimization process of triplet loss. Liu et
al. [20] proposed Heterocentric Triplet Loss (HcTri) to improve intra-modality
similarity by constraining the center-to-center distance of two heterogeneous
intra-class modalities. Wu et al. [9] introduced a Center Cluster Loss (CC) to
study the relationship between identities. The CC loss establishes the relation-
ship between class centers on the one hand, and clusters the samples toward
the center on the other hand. Inspired by the work of [9] and [20], we design a
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heterocentric sample loss that combines samples and sample centers. This loss
makes the sample distribution more compact while optimizing the intra-class
similarity and inter-class difference, which further enhances the identification
and robustness of features.

3 Methodology

3.1 Network Architecture

We chose the MPANet as our baseline model. It has 3 main characteristics,
Modality Alleviation Module (MAM) eliminates the modality-related informa-
tion, Pattern Alignment Module (PAM) discovers nuances in images to increase
the recognizability of features, and Modal Learning (ML) mitigates modal differ-
ences with mutual mean learning. We chose this baseline for two main reasons.
First, it provides a framework to learn modal invariant features of the person.
Secondly, the performance of this network is very superior.

The architecture of SCFNet is shown in Fig. 1. First, we preprocess the visible
images using local random channel enhancement(CA) and random grayscale(RG).
Then the infrared image and the processed visible image are put into a backbone
network consisting of Resnet50 and MAM to extract features. The 3D features
map obtained are represented X ∈ RC×H×W . In MPANet, the authors use the
PAM to extract nuances features from multiple patterns in the channel dimen-
sion. But in the spatial dimension, some detailed features of a person should
also be included. Therefore, we introduce a spatial feature extraction module to
extract local information about the person from the space dimension.

To extract the spatial feature, a simple method referring to [20] and [21] is
to cut the feature map horizontally and extract each small piece of feature as

Fig. 1. The architecture of the proposed SCFNet.
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a representation of local features. As shown in Fig. 1, we divide the obtained
3D feature map X in the horizontal direction, evenly into p parts. The features
of each small segment are denoted as Xi ∈ RC×H

p ×W , i ∈ {1, 2, . . . , p}. Then,
each local feature is reshaped into a d-dimensional vector using pooling and
convolution operations. The formula is expressed as Si ∈ Rd, i ∈ {1, 2, . . . , p},
where

Si = Reshape(Conv(pool(Xi))) (1)

Finally, all local features are concatenated as the final spatial feature represen-
tation S ∈ RD1 , where D1 = p× d.

For channel features, we directly use the PAM in MPANet. However, to
decrease the number of parameters during computation, we downsampled the
features by adding a 1 × 1 convolutional layer at the end. Finally, the channel
features obtained after the reshaping operation are represented as C ∈ RD2 . For
the convenience of calculation, the value of D2 we set is equal to D1.

Since local features are susceptible to factors like occlusion and pose vari-
ations, we also incorporate global features. The global feature representation
G ∈ RD3 is obtained by directly using pooling and reshaping operations on the
3D feature X. Finally, we join S, C, and G as the final feature representation in
the inference stage.

3.2 Loss Function

Triplet loss serves an essential role in VI-ReID. Traditional triplet losses are de-
signed by constraining the samples, but the heterocentric triplet loss [20] replaces
the samples with the center of each class. It is formulated as follows:

Lhc_tri =

P∑
i=1

[ρ+ ||civ − cit||2 − min
n∈{v,t}

j ̸=i

||civ − cjn||2]+

+

P∑
i=1

[ρ+ ||cit − civ||2 − min
n∈{v,t}

j ̸=i

||cit − cjn||2]+ (2)

where ρ is the margin parameter for heterocentric triplet loss, [x]+ = max(x, 0)
denotes the standard hinge loss, and ||xa − xb||2 denotes the Euclidean distance
of two feature vectors xa and xb. P denotes the total number of different classes
in a mini-batch. civ and cit denote the central features of the visible and infrared
class i in a mini-batch, respectively. They are obtained by averaging the samples
of all classes i in the respective modalities, which are calculated as follows:

civ =
1

K

K∑
j=1

vij (3)

cit =
1

K

K∑
j=1

tij (4)
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where vij and tij denote the feature representation of the jth visible image and
the jth infrared image of class i respectively.

The heterocentric triplet loss uses class centers instead of samples, relaxing
the tight constraint in traditional triplet loss and alleviating the effects caused
by anomalous samples, allowing the network to converge better. However, opti-
mizing only the central features means that the change for each sample feature is
small. If the mini-batch is large, then the constraints assigned to each sample are
small. This will cause the network to have a slow convergence rate. Therefore,
we propose to optimize the central features while also applying constraints to
each sample, so that each sample is closer to its central features. We refer to this
as heterocentric sample loss, which calculation formula is shown in Eq. 5. where
δ is a balance factor.

Lhc_tri =

P∑
i=1

[ρ+ ||civ − cit||2 − min
n∈{v,t}

j ̸=i

||civ − cjn||2]+

+

P∑
i=1

[ρ+ ||cit − civ||2 − min
n∈{v,t}

j ̸=i

||cit − cjn||2]+

+ δ

K∑
j=1

[||vij − civ||2 + ||tij − cit||2] (5)

The heterocentric sample loss is based on the heterocentric triplet loss and adds
the constraint that the Euclidean distance between the sample feature and the
central feature should be as close as possible. In this way, the samples of the
same class will be more compact in the feature space. The difference between the
heterocentric triplet loss and the heterocentric sample loss is shown in Fig. 2(a)
and (b).

 

:  push far :  pull close

(a) (b)

Fig. 2. Comparison of Heterocentric Triplet Loss (a) and Heterocentric Sample Loss
(b). Different colors represent different modalities, and different shapes represent dif-
ferent classes. Graphs with dashed borders and no color fills represent sample charac-
teristics. A color-filled graph represents the central feature computed from the sample
features of the corresponding color.
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Heterocentric sample loss reduces both cross-modality variation and inter-
modal variation in a simple way. It has two main advantages: (1) It is not a strong
constraint, so it can be robust to abnormal samples. (2) By constraining the
relationship between samples and centers, each sample is brought near the center
of its class, thus making the final features more compact and discriminative, and
also speeding up the convergence rate.

Besides triplet loss, identity loss is also often used in the VI-ReID. Given an
image y, pi denotes the class predicted by the network, qi denotes the true label,
and the identity loss is denoted as:

Lid = −
n∑
1

qi log pi (6)

Let the total loss of the baseline model MPANet be denoted as Lbase, from
which the central cluster loss is removed and denoted as L

′

base. We use the
identity loss Ls

id and heterocentric sample loss Lhcs for spatial features, the
central cluster loss Lcc and identity loss Lc

id for channel features, and L
′

bass for
total features (as shown in Fig. 1). Finally, the total loss of SCFNet is defined
as:

Loss = L
′

bass + Lhcs + Ls
id + Lcc + Lc

id (7)

3.3 Local Random Channel Enhancement

There is naturally a large difference in appearance between infrared and visible
images, which is the most significant cause of modal differences. We observe that
the infrared images and the images extracted from each channel of visible im-
ages separately are similar to the grayscale images in appearance. Therefore, we
propose a local random channel enhancement method to alleviate the influence
of modal differences.

Fig. 3. Local Random channel enhancement. a, b, c, and d correspond to the 4 con-
versions, respectively.
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The specific operation of local random channel enhancement is as follows.
Given a visible image, we randomly select a region in the visible light image and
randomly replace the pixel value of the region with one of the pixel values of the
R, G, B channel or the gray value. Fig. 3 shows the effect before and after the
transformation.

Local random channel enhancement makes visible and infrared images more
similar in appearance by changing the pixel values of the images, while this
random enhancement also forces the network to be less sensitive to color changes
and facilitates its learning of color-independent features. In our experiments, we
use a combination of random channel enhancement and random grayscale. With
only a slight increase in computational effort, the model’s performance can be
effectively improved.

4 Experiments

4.1 Experimental Setting

Datasets. We conducted experiments on two public VI-ReID datasets, SYSU-
MM01 [5] and RegDB [22]. For a fair comparison, we report the results of Rank-k
and mAP on each dataset.

SYSU-MM01 is the first and the largest public dataset proposed for VI-
ReID. It was captured by 6 cameras. The training set has 22258 visible pictures
and 11909 infrared pictures and the testing set has 3803 infrared pictures and
301 visible pictures. We followed the evaluation protocol proposed in [5] for the
SYSU-MM01 and mainly reported the results for single and multi-shot settings
in all and indoor search modes.

The RegDB dataset has 412 person IDs with 10 visible and 10 infrared images
for each person. 206 person IDs are randomly selected for training in the training
phase and the remaining 206 person IDs are used for testing. For the RegDB
dataset, we used the two most common search settings: "Infrared to Visible" and
"Visible to Infrared".

Implementation details. This paper implements an improved model based
on Pytorch. All evaluation indicators are trained on the Sitonholy SCM artificial
intelligence cloud platform, using a single Tesla P100-SXM2 graphics card on
Ubuntu operating system. Our network uses the Adam optimizer with training
epochs of 140 generations and an initial learning rate of 3.5× 10−4, at the 80th
and 120th generations time decay. In the spatial feature extraction module, the
number of blocks that the feature map is divided is 6, and each local feature
is represented as a 512-dimensional vector. Therefore, the final dimension of
the spatial feature is D1 = 3072. In the channel feature extraction module, the
dimension D2 of the downsampled channel feature is also set to 3072. The final
dimension D3 = 2048 of the global feature. For the loss of heterocentric samples,
after experimental comparison, we set the marginal ρ to 0.9 and δ to 0.1 on the
SYSU-MM01 dataset and set the marginal ρ to 0.3 and δ to 1 on the RegDB
dataset. The probabilities used for local random channel enhancement and global
grayscale are 0.8 and 0.3, respectively.
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4.2 Ablation Experiment

Effectiveness of the components. To validate the effectiveness of each mod-
ule of SCFNet, we conducted ablation experiments on two public datasets. The
SYSU-MM01 dataset tests the single-shot settings in all search mode, and the
RegDB dataset tests the settings from visible to infrared. The results of the
ablation experiments are shown in Table 1 and Table 2. Among them, "CL" in-
dicates that the channel feature extraction module is used, "SL" indicates that
the spatial feature extraction module is used, "CA" indicates that the local ran-
dom channel enhancement is used, and "HCS" indicates that the heterocentric
sample loss is used. For the RegDB dataset, the spatial feature extraction mod-
ule is not used and the Center Cluster Loss of the channel feature extraction
module is replaced by the heterocentric sample loss. This is because RegDB is a
small dataset, using the channel feature extraction module is enough to extract
effective features, and using a too complex structure will increase the difficulty
of network convergence.

From the comparison between version 1 and version 2 in Table 1, it can be
found that using the spatial feature extraction module can improve Rank1 and
mAP by 1.22 and 0.88, respectively, compared to the situation of not using it.
This illustrates the effectiveness of the method to mine person feature informa-
tion from the spatial dimension. From version 2 and version 3 in Table 1, and
version 1 and version 2 in Table 2, it can be seen that using local random channel
enhancement can enhance the model performance. This indicates that the use
of local random channel enhancement can reduce the sensitivity of the model to
color. From the comparison of version 2 and version 4 in Table 1, and version
1 and version 3 in Table 2, it can be seen that the use of heterocentric sample

Table 1. Performance evaluation of each component on the SYSU-MM01 dataset.

Version CL SL CA HCS Rank1 mAP

Version1 ✓ 68.14 65.17
Version2 ✓ ✓ 69.36 66.05
Version3 ✓ ✓ ✓ 71.46 67.36
Version4 ✓ ✓ ✓ 71.60 67.80
Version5 ✓ ✓ ✓ ✓ 72.96 69.37

Table 2. Performance evaluation of each component on the RegDB dataset.

Version CL CA HCS Rank1 mAP

Version1 ✓ 83.11 80.58
Version2 ✓ ✓ 84.91 81.61
Version3 ✓ ✓ 84.52 81.11
Version4 ✓ ✓ ✓ 86.33 82.10
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(a) (b)

Fig. 4. Evaluating the weight parameter δ in the loss of heterocentric samples. (a)
shows the results in SYSU-MM01, and (b) shows the results in RegDB.

loss can improve the mAP by 1.75 and the Rank1 by 2.24 on SYSU-MM01 and
improve the mAP by 0.53 and the Rank1 by 1.41 on RegDB. This is because the
heterocentric sample loss reduces intra-class separability and makes the model
feature distribution more compact. So it is easier to distinguish different classes.
We can see from Table 1 version 5 and Table 2 version 4, the best results were
achieved by using these modules together. This illustrates that these modules
are complementary in terms of performance and combining them allows us to
achieve the highest performance of our model.

Discussion on δ of Heterocentric Sample Loss. The hyperparameter δ is
a balancing factor whose value can greatly affect the performance of the model.
So we conduct several experiments to determine the value of δ in Eq 5. The
experimental results are shown in Fig 4.

On the SYSU-MM01 dataset, the network is very sensitive to changes in δ.
We changed δ from 0 to 0.3, as can be seen from Fig 4(a), when δ is less than
0.1, the Rank1 and mAP of the network tend to rise, and when δ is greater
than 0.1, the performance of the network begins to gradually decline, especially
when δ = 0.3, its Rank1 and mAP drop to around 60% and 55%, respectively.
Therefore, on this dataset, δ is taken as 0.1. On the RegDB dataset, the change
of the network to δ is quite different from SYSU-MM01. When δ takes 0, the
loss function degenerates into a heterocentric loss, and in our network structure,
Rank1 and mAP are only about 61% and 56%. When δ takes a small value
of 0.1, the performance of the network increases rapidly, which also shows the
effectiveness of the loss of heterocentric samples. When the value of δ is between
0 and 1, the performance of the network gradually increases. When the value of
δ is between 1 and 3, the Rank1 and mAP of the network only change slightly.
When the value of δ is greater than 3, the Rank1 and mAP of the network begin
to have a downward trend. So, on this dataset, we set the value of δ to 1.

For this phenomenon, we speculate that this is due to the different data
distributions in these two datasets. In the RegDB dataset, there is a one-to-one
correspondence between the poses in the infrared image and the visible image
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Fig. 5. Influence of the number p of spatially local features

Fig. 6. The histogram of sample-to-center distance.

for the same person, so its intra-class discrepancy is smaller than that of SYSU-
MM01. The δ control item in Eq 5 is to shorten the distance between the sample
and the center and reduce the intra-class discrepancy. Therefore, the RegDB
dataset is less sensitive to δ changes than the SYSU-MM01 dataset.

Discussion on the number p of spatial feature divisions. The number
of spatial features that are divided determines the size of each local feature and
also affects the representability of each local feature. We design some experi-
ments to compare the number of segmented spatial features. Experiments are
carried out with the number of divisions being 4, 6, and 8 respectively in SYSU-
MM01 dataset. The experimental results are shown in Fig 5. It can be seen that
when the number of divisions is 6, the effect is the best, with Rank1 and mAP
being 69.36% and 66.05%, respectively. When the number of divisions is 4, the
granularity of the obtained local features is not fine enough, and it is difficult to
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capture more detailed features. The experimental results drop again when the
number of divisions is 8. This is because features with too small a granularity
are easily affected by noise, so it is hard for the network to capture effective
local information. After comparison, the number of divisions of 6 is a reasonable
value, so in the experiment, we take p=6.

Visualization of sample-to-center distance. To demonstrate the perfor-
mance of heterocentric sample loss more precisely, we train two models on the
spatial branch of SCFNet using heterocentric triplet loss and heterocentric sam-
ple loss respectively. Then, the data from all test sets are fed into the network
and the distance to the center is calculated for each category. These distances

Table 3. Comparison of SYSU-MM01 dataset with state-of-the-art methods in all
search and indoor search modes. 1st and 2nd best results are marked in red and blue,
respectively.

Method Single-Shot Multi-Shot
R1 R10 R20 mAP R1 R10 R20 mAP

All Search
Zero-Pad[13] 14.80 54.12 71.33 15.95 19.13 61.4 78.41 10.89
cmGAN[23] 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27
D2RL[6] 28.90 70.60 82.40 29.20 - - - -

HI-CMD[15] 34.94 77.58 - 35.94 - - - -
HPILN[24] 41.36 84.78 94.51 42.95 47.56 88.13 95.98 36.08

AlignGAN[5] 42.40 85.00 93.70 40.70 51.50 89.40 95.70 33.90
AGW[7] 47.50 - - 47.65 - - - -
DDAG[8] 54.75 90.39 95.81 53.02 - - - -
DGTL[25] 57.34 - - 55.13 - - - -

cm-SSFT[26] 61.60 89.20 93.90 63.20 63.40 91.20 95.70 62.00
HcTri[20] 61.68 93.10 97.17 57.51 - - - -
MSA[28] 63.13 - - 59.22 - - - -

SFANet[29] 65.74 92.98 97.05 60.83 - - - -
MPANet[9] 70.58 96.21 98.80 68.24 75.58 97.91 99.43 62.91

Ours 72.96 96.67 98.82 69.37 78.50 97.67 99.19 63.99
Indoor Search

Zero-Pad[13] 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64
cmGAN[23] 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76
HPILN[24] 45.77 91.82 98.46 56.52 53.50 93.71 98.93 47.48

AlignGAN[5] 45.90 87.60 94.40 54.30 57.10 92.70 97.40 45.30
AGW[7] 54.17 - - 62.97 - - - -
DDAG[8] 61.02 94.06 98.41 67.98 - - - -
DGTL[25] 63.11 - - 69.20 - - - -

cm-SSFT[26] 70.50 94.90 97.70 72.60 73.00 96.30 99.10 72.40
HcTri[20] 63.41 91.69 95.28 68.17 - - - -
MSA[28] 67.18 - - 72.74 - - - -

SFANet[29] 71.60 96.60 99.45 80.05 - - - -
MPANet[9] 76.74 98.21 99.57 80.95 84.22 99.66 99.96 75.11

Ours 77.36 97.76 99.34 80.87 85.73 99.30 99.88 76.07

3563



SCFNet for Visible-Infrared Person Re-Identification 13

are plotted as histograms as shown in Fig 6, where Fig 6(a) is using heterocentric
sample loss and Fig 6(b) is using heterocentric triplet loss. We calculated their
means and variances, where means for (a) are 12.16 with a variance of 2.34 and
means for (b) are 12.96 with a variance of 3.17. This suggests that heterocentric
sample loss can make the intra-class features more compact.

4.3 Comparison with the state-of-the-art methods.

In this section, we compare our approach with some SOTA methods on SYSU-
MM01 and RegDB. The results are shown in Table 3 and Table 4, respectively.
The compared methods include Zero-Pad [13], D2RL [6], cmGAN [23], HI-CMD
[15], HPILN [24], AlignGAN [5], DDAG [8], AGW [7], DGTL [25], cm-SSFT
[26], MPMN [27], MSA [28], SFANet [29], HAT [30], HcTri [20], MPANet [9].
The results of the comparison method are directly taken from the original article,
where "-" means that the corresponding result is not reported in the correspond-
ing article.

Table 4. Comparison with state-of-the-art methods on the REGDB dataset with dif-
ferent query settings. 1st and 2nd best results are marked in red and blue, respectively.

Method R1 R10 R20 mAP
Visible to Infrared

Zero-Pad[13] 17.75 34.21 44.35 18.90
D2RL[6] 43.40 - - 44.10

AlignGAN[5] 57.90 - - 53.60
DDAG[8] 69.34 86.19 91.49 63.46
AGW[7] 70.05 - - 66.37
HAT[30] 71.83 87.16 92.16 67.56

cm-SSFT[26] 72.30 - - 72.90
SFANet[29] 76.31 91.02 94.27 68.00
MPANet[9] 83.70 - - 80.90
DGTL[25] 83.92 - - 73.78
MPMN[27] 86.56 96.68 98.28 82.91
HcTri[20] 91.05 97.16 98.57 83.28

Ours 85.79 99.80 100.00 81.91
Infrared to Visible

Zero-Pad[13] 16.63 34.68 44.25 17.82
AlignGAN[5] 56.30 - - 53.40

DDAG[8] 68.06 85.15 90.31 61.80
HAT[30] 70.02 86.45 91.61 66.30

SFANet[29] 70.15 85.24 89.27 63.77
DGTL[25] 81.59 - - 71.65
MPANet[9] 82.80 - - 80.70
MPMN[27] 84.62 95.51 97.33 79.49
HcTri[20] 89.30 96.41 98.16 81.46

Ours 86.33 99.41 99.80 82.10
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As can be seen from Table 3, on the SYSU-MM01 dataset, our method im-
proves the Rank1 and mAP of both single and multiple searches in all search
mode compared to the highest-performing MPANet. In the indoor search mode,
the mAP of only single search is slightly lower than MPANet by 0.08, and the
remaining Rank1 and mAP are 1.03 higher than MPANet on average.

Table 4 shows the comparison results on the RegDB dataset. It can be seen
that the performance of our method reaches a high level compared to cur-
rent mainstream methods. Among them, the mAP, Rank10, and Rank20 of our
method reach the highest level under the search from infrared to visible. HcTri
reaches the highest Rank1 and mAP on RegDB. This is because the HcTri is
more focused on extracting spatial features. Meanwhile, in the RegDB dataset,
there are many image pairs with one-to-one correspondence of spatial locations.
Therefore HcTri network is more advantageous. In the SYSU-MM01 dataset,
which is more in line with realistic scenarios, the results of our method are much
higher than those of HcTri.

5 Conclusion

In this paper, we propose a novel SCFNet for VI-ReID tasks. It mines the feature
information of the person in spatial and channel dimensions. To motivate the
model to learn color-independent features, we use a random channel enhance-
ment method. Also, a heterocentric sample loss optimization network training
process is introduced to make the person feature more compact and distinguish-
able. Many experiments were conducted on SYSU-MM01 and RegDB to demon-
strate the effectiveness of our proposed method. In the future, we will also explore
the generalizability of the method and its performance in single-modality person
ReID.
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