
Filter Pruning via Automatic Pruning Rate
Search⋆

Qiming Sun1, Shan Cao1, and Zhixiang Chen2

1 Shanghai University, Shanghai 200444, China
cshan@shu.edu.cn

2 The University of Sheffield, Sheffield, S1 4DP, UK

Abstract. Model pruning is important for deploying models on devices
with limited resources. However, the searching of optimal pruned model
is still a significant challenge due to the large space to be exploited.
In this paper, we propose an Automatic Pruning Rate Search(APRS)
method to achieve automatic pruning. We reveal the connection between
the model performance and Wasserstein distance to automatic searching
optimal pruning rate. To reduce the search space, we quantify the sen-
sitivity of each filter layer by layer and reveal the connection between
model performance and Wasserstein distance. We introduce an end-to-
end optimization method called Pareto plane to automatically search for
the pruning rate to fit the overall size of the model. APRS can obtain
more compact and efficient pruning models. To verify the effectiveness
of our method, we conduct extensive experiments on ResNet, VGG and
DenseNet, and the results show that our method outperforms the state-
of-the-art methods under different parameter settings.

Keywords: Filter pruning · Pruning rate search · Pareto optimization.

1 Introduction

Convolutional neural networks (CNNs) have achieved great success in com-
puter vision applications such as image classification [12,31,28], object detection
[61,62], and segmentation [60]. However, most state-of-the-art CNNs are difficult
to run in real-time on resource-limited embedded terminals due to high require-
ments on computing power and memory footprint. Reducing the computational
cost and model size is an eternal and important requirement. To achieve this,
prevalent technologies include network pruning [33,22,34,35,36,32], weight quan-
tization [37,38,39,40,41], knowledge distillation [42,43,44,45,46], and low-rank
decomposition [47,48,49].

CNN pruning can be viewed as a search problem in the pruning solution
space. The solution space of pruning consists of the pruning rate of each layer,
and each pruning solution corresponds to a sub-net or pruned candidate. In huge

⋆ This work is supported by National Natural Science Foundation of China
(No.61904101) and Shanghai Committee of Science and Technology of China
(No.21ZR1422200).

4293



2 Q. Sun et al.

Global

Filter SelectionFilter Preserved Filter

Preserved FilterFeature Map

Convolution

Filter

WS Distance

Filter
...

...

...

O

*

conv1

conv2

conv3

...

...

...

...

1

2

3

L1/L2

1 N

N 1 N

(a) Pruning pipeline based on individual filter

1

i
O

3

l
O

Filter Selection
APRSFilter Preserved Filter

Preserved Filter

1i
O

1 2 3, ,

conv1

conv2

conv3

...

...

...

2

3

O

3

2

1

Sensitivity
Structure

...

...

...

O

*

Sensitivity Measure

1

1

2

3

Model Reduction

T
o
ta
l
S
e
n
si
ti
v
it
y Optimal Structure

Structure

3

i
O2

i
O

N

N N

1
i

N

i
N

3

i
O

4

i
O

3

i

i

4

i
O

2

i
O

2

i
O

2

i
O

3

i
O

3

i
O

1

i
O

4

i
O

4

i
O

1

i
O

1

i
O

1

i

4

i

1
i

N

2

i

(b) Pruning pipieline based on feature maps before and after pruning

Fig. 1: Two pipelines for pruning tasks. γi is the pruning rate of i-th layer.
Fig.1(a) shows a traditional pipeline based on weight attribute sorting. The
left and right are the result and process of manually setting the pruning
rate. (b) is our pipeline based on the information difference of feature maps
before and after pruning. (Left) Determining optimal pruned structure us-
ing automatic structure redistribution. (Right) Filter selection using the
wasserstein distance.

search space, the task of pruning is to get a more compact and efficient model to
adapt to more application scenarios and devices. Filter pruning is dedicated to
searching for filters that can satisfy the accuracy under the target model size. Its
process has two steps, filter sorting and pruning rate selection. In the first step,
measurement criteria are usually designed based on weights or output feature
maps to evaluate the importance of filters, and eliminate the weights with less
importance in units of filters. Filter sorting is mainly based on experience to
propose custom metrics.

Pruning Rate Selection: After sorting the importance of filters, it is nec-
essary to find the pruning rate to prune the pre-trained model. The choice of
pruning rate in CNN has a huge impact on performance [10]. When a suitable
pruning rate is used, the accuracy of the pruned model can even exceed the
original model [65]. The choice of pruning rate can be divided into two ways:
pre-defined and automatic search [1]. Pre-defined methods manually specify the
clipping rate of each layer and determine the target structure in advance. Such
methods usually remove parameters in each layer with fixed pruning rate [2,6], as
shown on the left side of Fig. 1(a). Despite the target model size can be achieved,
each layer retains a large amount of redundancy. The pre-defined methods cannot
compare the pros and cons of different pruning rates, and it is difficult to prove
the correctness of the pre-defined pruning rates. Moreover, the optimal prun-
ing rate combination will change with the requirements of the model size, so the
pre-defined method requires a lot of manual labor. Automatic search for pruning
rates has begun to emerge, and more suitable pruning rates are automatically
obtained through theoretical guidance, enabling end-to-end fine-tuning without

4294



Filter Pruning via Automatic Pruning Rate Search 3

(a) Visualize the sensitivity of
different layers on VGG-16.

0 1 2 3 4 5 6 7 8 9 10 11 12

Wasserstein Distance 10
6

85

86

87

88

89

90

91

92

93

94

95

96

T
o

p
-1

(%
)

ResNet-56

ResNet-110

(b) The effect of distance.

Fig. 2: Visualization of the pruning loss. (a) is the sensitivity of some filters in convo-
lutional layers of VGG-16. (b) reveal the connection between the model performance
and wasserstein distance for ResNet-56 and ResNet-110.

manual labor. A specific compression rate on a continuous space can be auto-
matically generated using the DDPG algorithm in reinforcement learning [17].
Singh et al [7] models the pruning problem as a min-max optimization problem,
and control the accuracy loss by adjusting the pruning rate. Automated deep
compression [8] uses reinforcement learning to learn the optimal sparsity rate for
each layer according to different requirements such as guaranteeing accuracy or
limiting the amount of computation. However, in general, the current automatic
methods do not quantitatively analyze the importance of each filter, and cannot
maximize the perfermance improvement brought by the pruning rate.

Inspired by automatic pruning, the sensitivity analysis of each filter is in-
troduced in our APRS to quantitatively prune the redundancy of the model
, so as to search for a more suitable pruning rate. As shown in Fig. 1(b), we
use Wasserstein distance to calculate the sensitivity and reveal that there is a
strong correlation between the sensitivity of the pruned structure and the ac-
curacy after fine-tune, this can help us quickly estimate the accuracy. Fig. 2(b)
analyzes the relationship between the sub-network performance and sensitivity
of ResNet-56 and ResNet-110. When the distance is within 7M, the sub-network
accuracy exceeds the baseline, which means that the network can be more com-
pact and efficient. The role of sensitivity can be explained in terms of the relative
importance of the filters. We visualize the sensitivities of different layers and use
the flatness of the sensitivity curves to characterize the relative contributions of
the filters. As shown in Fig. 2(a), Layers with large curve fluctuations have high
redundancy and vice versa. As the number of layers deepens, the redundancy
increases greatly. APRS automatically assigns larger pruning rates to sensitive
layers. The pruning rate depends on the number of filters retained in each layer.
The filters retained under quantitative sensitivity analysis constituted a large
number of sub-structure candidates. In this paper we attain a appropriate prun-
ing rate by searching the sub-structure with Pareto optimization algorithm.

To sum up, our main contributions are three-fold:

4295



4 Q. Sun et al.

1. Based on extensive statistical validation, we demonstrate that the impact of
pruning can be effectively measured by Wasserstein distance. We were the
first to introduce Wasserstein distance to predict model performance.

2. We propose an automatic search method to assign optimal pruning power
without manual labor, which greatly saves the computational cost of auto-
matic search for pruning rate.

3. APRS achieves state-of-the-art pruning performance compared to many more
sophisticated methods. In the VGG-16 experiments, APRS can help us get
1.3% to 2.8% higher accuracy than the state-of-the-art algorithms. Mean-
while, it can greatly reduce the FLOPs of the model for computationally
intensive devices.

2 Related Works

Different approaches have been proposed to obtain more compact, faster and
more efficient networks, mainly including efficient neural network design [12,31,28,2],
pruning [19,21,34,18,14,13], quantization [24,41,39], and distillation [44,45,46,43].
This paper briefly discusses related work on filter pruning and automated ma-
chine learning for pruning.

CNN pruning is mainly divided into unstructured pruning [4,11,69], where
arbitrary parameters can be removed, and structured pruning [6,32,36], where a
set of weights is removed. Structured pruning is divided into filter pruning and
channel pruning [64], etc. Filter pruning removes filters under certain metric.
Since the original convolutional structure in filter prunnnig is still preserved,
no dedicated hardware is required for implementation. [5] uses l1-norm as an
indicator for judging the importance of filters. [10] uses the rank of the feature
map of each layer to judge the importance of the filter, [16] uses the geometric
median to prune the model, and delete the filter with a lower median. Some
works judge whether the filter contributes [14] according to the importance of
the output channel, and discard the unimportant filters. [15] prunes filters using
Taylor expansion as a measure of pruning criteria. Channel Pruning regards
the same output channel of different filters as a group, [13] proposes to prune
channels through LASSO regression-based channel selection and least squares
reconstruction. [6] uses the scaling factor γ in the BN layer to measure the
importance of channels. Mitsuno et al. [25] analyzes the effect of channels of
different convolutional layers on model performance.

AutoML Based Pruning. Traditional manual pruning methods rely heav-
ily on expert experience to balance the amount of calculation, parameter size and
accuracy, and usually cannot obtain the best pruning rate strategy. Liu et al [1]
proposed that pruning can be solved by automated machine learning (AutoML),
which determines hyperparameters through learning. After the emergence of Au-
toML, it was quickly combined with the network structure search method [66],
and model pruning was performed by searching for the structure of the model.
Most of the previous AutoML-based pruning methods are layer-by-layer pruning.
The typical work [17] proposes to adaptively determine the compression rate of

4296



Filter Pruning via Automatic Pruning Rate Search 5

Table 1: Comparison of APRS and other state-of-the-art methods on VGG16 with CI-
FAR10, ”No FT” means no fine-tuning is required, ”Layer-wise” stand for hierarchical
reallocation. ”Auto-P” means automatically assign optimal pruning substructure.

Method No FT Layer-wise Auto-P Param.↓(%) Acc.(%)

L1 [5] ✗ ✓ ✗ 64.0 93.40
EagleEye [23] ✓ ✗ ✓ - -
Hrank [10] ✗ ✓ ✗ 82.1 93.43
ABCPruner [22] ✗ ✗ ✓ 88.7 93.08
AutoCompress [65] ✗ ✓ ✓ 89.0 93.21
APRS(ours) ✓ ✓ ✓ 89.9 94.21

each layer through reinforcement learning. In addition, A platform-aware neu-
ral network adaptation (NetAdapt) method [67] was proposed to sequentially
obtain suitable pruning rate through progressive compression and short-term
finetune. The work of [68] uses layer-by-layer greedy search to automate com-
pression models. Currently, some AutoML based pruning methods pay attention
to the compression rate of pruning. Table 1 shows the exploration of pruning
rates by recent automatic methods. HRank [10] introduces manually predefined
hierarchical pruning rates, but cannot search for more accurate pruning rates.
EagleEye [23] proposes to find the relative optimal pruning rate, but it can only
be selected from several candidate models. [22] supports automatic search of
pruned structures, but cannot be pruned hierarchically and cannot achieve high
compression rates. Due to the lack of sensitivity analysis and subsequent opti-
mization of pruning schemes in previous AutoML based methods, it is difficult to
find the optimal number of filters for each layer of convolution. Newer research
shows that the essence of pruning is to determine the number of filters, not to
choose the important filter/channel [1]. Cai et al [24] proposes to measure the
sensitivity of each quantization scheme to obtain a quantization scheme with
less loss. Inspired by [1,24], the APRS proposed in this paper considers the total
sensitivity and regards the problem of automatic pruning as searching for an ap-
propriate number of filters. Pareto optimization is applied to model formulation
for the first time, which can accurately reduce parameters size or computational
cost.

3 Methodology

In this paper, our task is to automatically obtain a more compact and efficient
network given a large pre-trained model, while minimizing accuracy reduction
and minimizing computational cost and memory consumption. APRS will auto-
matically find filter pruning rates for each layer, and possible pruning rate com-
binations γ1, γ2, ..., γL for L layers. We focus on finding suitable structure vectors
to search for sub-structures, and acquire the target pruned model after optimiza-
tion in our method. As shown in Fig. 3, first we measure the Wasserstein distance

4297



6 Q. Sun et al.

Filter

Wasserstein Allocation Parato Optimization

Parameter Reduction

T
o
ta
l
S
e
n
si
ti
v
it
y

3

1

1
3

2

1

Optimal

Structure

Finetune

...

...

...

Optimal

Pruned Rate

conv1

conv2

conv3

3

2

1

...

...

...

2

1

3

...

...

...

Optimal Structure

Structure

4

1

3

...

...

...

1

2

3

Preserved Filter

...

...

...

Structure 1 Structure 2

Structure 4Structure 3 Optimal Pruned

Network

9.7%

91.1%

95.5%

1

2

3

Fig. 3: Framework of our accurately filter pruning method (ASPR) for automatically
optimizing pruning rates.

of all filters, which will guide us how to sort, called the sensitivity coefficient.
According to the sensitivity coefficients, the unimportant filters in each layer
can be roughly sorted and removed, which initially reduces the solution space in
our APRS. The remaining filters are then reorganized across layers to construct
as many the number of filter combinations(sub-structure vectors) as possible,
and the total sensitivity of each sub-structure is calculated. All sub-structure
vectors are sent into the Pareto plane, and its position on the Pareto plane can
be determined according to the size and sensitivity of the sub-structure, so the
sub-structure vector with the least perturbation can be intuitively locked under
the constraint of model size. The sub-structure vector with the least sensitivity
is output by the Pareto plane, and the pruning rate of each layer is fed back to
the model to help us find the best sub-structure with minimal loss of accuracy.
Finally, the sub-structure is fine-tuned end-to-end, and the fine-tuned model is
used as the output of APRS. The raw optimization objective of pruning can be
expressed as

argmax
γ1,γ2,...,γL

acc (M(γ1, γ2, ..., γL;Ttrain);Ttest) , (1)

where γL is the pruning rate applied to the L-th layer,M is the pre-trained model
with L layers. Ttrain and Ttest represent the training dataset and test dataset
respectively, acc is the model accuracy. The optimization goal is to achieve the
highest accuracy acc on the test dataset. Given constraints such as targeted
model size or FLOPs, a set of suitable pruning rates γ1, γ2, ..., γL are automati-
cally searched in APRS.

3.1 Notations

Assume a pre-trained CNN model consists of L convolutional layers, where Cl

represents the l -th convolutional layer. The output channels (i.e., feature maps)
of the l -th layer, are denoted as Ol =

{
o1l , o

2
l , ..., o

nl

l

}
ϵ Rnl×g×hl×wl , nl rep-

resents the number of filters in Cl, g is the size of input images. hl and wl are the
height and width of the feature map, respectively. The parameter of the Cl layer
can be described as a series of matriesWCl

=
{
w1

l , w
2
l , ..., w

nl

l

}
ϵ Rnl×nl−1×al×al ,

where the i -th filter of the l -th layer wi
l ϵ Rnl−1×al×al can generate the i-th

4298



Filter Pruning via Automatic Pruning Rate Search 7

1 2 3 4 5 6 7 8 9 10 11 12 13

Layer Index

0.001

0.8343

1.6675

2.5008

3.334

4.1673

5.0005

5.8338

6.667

7.5003

8.3335

9.1668

10

T
o

ta
l 
S

e
n

s
it

iv
it

y

10
6

VGG-16

VGG-16-BN

Fig. 4: Sensitivity of VGG-16 and its variant. In general, deeper convolutional layers
have lower sensitivity.

channel oil. al refers to the kernel size. In our APRS, for the l -th layer, We
get pruned output feature maps O1

l , O
2
l , ..., O

nl

l , where O1
l =

{
0, o2l , ..., o

nl

l

}
. For

convenience, we assign zero to the activation value corresponding to the pruned
channel. We compute the difference Qi

l between the original output feature map
and the output feature map after pruning the i-th filter. So we get the difference
set: Ql =

{
Q1

l ,Q2
l , ...,Q

nl

l

}
where Qi

l is the distance after removing the i -th filter
oil of the l -th layer. We prune filters with sequential traversal, so the number of
distances is equal to the number of filters. In this paper, we call Qi

l as sensitivity
and use the Wasserstein distance to calculate it: Qi

l = was
{
Ol, O

i
l

}
.

3.2 Sensitivity Measurement

Wasserstein distance is used to measure the difference between two distributions,
specifically, which describes the minimum cost required to transform from one
distribution to the other.

was (O1, O2) = inf
γ(x,y)∈Z

∑
x,y

∥x− y∥

= inf
γ∼Z(O1,O2)

E(x,y)∼γ ∥x− y∥ ,

s.t. x ∈ O1, y ∈ O2

(2)

Intuitively, E(x,y)∼γ ∥x− y∥ can be understood as the consumption required to
move O1 to O2 under the path planning of γ. Z is the set of all possible joint
distributions that combine the O1 and O2 distributions. The Wasserstein dis-
tance is the minimum cost under the optimal path planning. Compared with
using Kullback–Leibler(KL) divergence as the post-quantization sensitivity [24]
in parameter quantization, the advantage of Wesserstein distance is that even if
the support sets of the two distributions do not overlap or overlap very little,
they can still reflect the distance of the two distributions. Since the activation
values are relatively concentrated, to a certain extent, it is more friendly to use
Wesserstein distance to calculate the distance.

4299



8 Q. Sun et al.

So the importance of a single filter is obtained, so that we can flexibly choose
the filters we need to delete according to the objective requirements, such as
pre-trained model based on VGG-16 with CIFAR-10, if we need to get a 2.6M
model, we can find a set of the most suitable filter pruning schemes. In this
case, the accuracy of the model is up to 94.5%, which is theoretically the best.
Assuming that the sensitivity measured by Wasserstein is:

Qi (γi) =
1

N

Ndist∑
j=1

was
(
M (ni, Oi) ,M

′ (
ni ∗ γi, O

′
i

))
s.t. ni ∗ γi ⩽ Isize

(3)

where ni is the number of filters for the i -th layer, and Isize refers to the limit
of model size. The output of the sub-net is close to the output of the pre-trained
model when Qi(γi) is small, so it is relatively insensitive when pruning ni ∗ γi
filters for i -th layer, and vice versa.

3.3 Pareto Optimization

Pareto optimization is a scientific research method that has recently been used in
mixed-precision quantization [24,26] to find the most suitable solution. The im-
plementation principle of Pareto optimization is as follows. Given target model
size Isize, we measure the total sensitivity of pruned model for each combina-
tion of pruning rate. We choose the pruning rate corresponding to the smallest
disturbance in Fig. 5. In detail, we solve the following optimization problem:

argmin
γ1,γ2,...,γL

Qsum =

L∑
i=1

ni∑
n=1

Qi (γi) s.t.

L∑
i=1

ni ∗ γi ⩽ Isize (4)

Note that we verify the sensitivity of different filters independently (since prun-
ing multiple channels and pruning these channels separately are very close in
sensitivity). Using dynamic programming methods, we can get optimal solu-
tions in different sets. Benefiting from the Pareto optimization algorithm, APRS
can fulfill a batter balance between model size and sensitivity. Given a target
model size Isize, the pruning combination candidate with the smallest overall
sensitivity is search as the optimal pruning scheme.

Suppose our final solution space is P =
∏L

l=1 nl. Here, the nominal goal is to
maximize the sub-nets performance on the validation set by solving the follow-
ing optimization problem: argminγ1,γ2,...,γL

Qsum. The computational cost of the

Pareto plane is reduced from O(NΠL
i=1ni) to O(N

∑L
i=1 ni) by calculating the

sensitivity of each layer separately. That is to say, we compute N total sensitivi-
ties Qsum for allN different pruning choices, while the computational complexity
of each sub-nets is O(

∑L
i=1 ni). The dynamic programming algorithm traverses

sensitivity caused by each filter and obtains all the pruned sub-nets at the filter
level, so theoretically can find the best pruning rate configuration among the set.
Our experiments show that the final subnet achieves state-of-the-art accuracy
with a smaller amount of parameters compared to the original pretrained model.

4300



Filter Pruning via Automatic Pruning Rate Search 9

×10
6

12 144 6

Parameter Reduction(MB)

8 1095 7 11 13

T
o
ta
l
S
e
n
si
ti
v
it
y

0

1

2

3

4

5

6

7

8

Pareto Optimization

Fig. 5: The Pareto plane of VGG-16 on CIFAR-10. Each point shows a sub-structure
vector setting. The x-axis is the parameter size of each configuration, and the y-axis is
the total sensitivity. Then Pareto plane method chooses a sub-structure vector config-
uration with minimum perturbation given the model size.

APRS can also be used as a plug-and-play module, which can be combined with
other filter pruning methods to bring a lot of improvement without changing the
original algorithm. Further results may be found in supplementary material.

4 Experiments

4.1 Experimental Settings

Datasets and CNNs. In order to get a rigorous pruning result, we conducted
experiments on the classic classification datasets CIFAR-10 [27] and ImageNet
[70]. Mainstream CNN models was introduced into our ASPR experiments, in-
cluding VGG-16 [31], Resnet-50/110 with residual module [28], and DenseNet-40
with a dense block [29], which is relatively simple and easy to implement in hard-
ware. For each sub-net, we calculate the Wasserstein distance and use this as a
theoretical guide for pruning rate search.

Evaluating Indicator. We adopt general evaluation indicator, i.e., the
number of weights and overall FLOPs (refers Float Points Operations) in the
convolutional layer, to describe model size and floating-point operations of the
sub-net. We adopt the variation of top-1 accuracy to compare model perfor-
mance. To evaluate performance on specific tasks, we furnish top-1 and top-5
accuracy of pruned models and the pruning rate (denoted as PR) on CIFAR-10
and ImageNet.

Configurations. The implementation environment of APRS is pytorch [30].
The batch size, learning rate and momentum are set to 128, 0.01 and 0.9, re-
spectively. We train on two NVIDIA Tesla P40 GPUs. It is worth noting that

4301



10 Q. Sun et al.

Table 2: Comparison results on VGG-16 for the CIFAR-10 dataset. Acc(%)↓ refers
Top-1 accuracy decrease.

Model Top-1(%) Top-5(%) Acc(%)↓ Parameters FLOPs

VGG-16 93.87 99.47 0 14.98M 313.73M

L1 [5] 93.40 99.40 0.47 5.4M 206.00M
SFP [54] 92.08 - 0.28 5.4M 113.23M
Zhao et al. [51] 93.18 99.12 0.63 3.92M 190.00M
GAL-0.05 [18] 92.03 98.95 1.84 3.36M 189.49M
SSS [50] 93.02 99.40 0.85 3.93M 183.22M
Hinge [53] 93.59 - 0.28 2.98M 191.16M
APRS(ours) 94.73 99.61 -0.86 2.92M 109.09M

GAL-0.1 [18] 90.73 - 3.14 2.67M 171.92M
HRank [10] 92.34 - 1.53 2.64M 108.61M
Guo et al. [71] 93.76 - 0.11 2.85M -
APRS(ours) 94.49 99.67 -0.65 2.64M 91.57M

ABCPruner [22] 93.08 - 0.79 1.67M 82.81M
HRank [10] 91.23 - 2.64 1.78M 73.70M
HAP [52] 93.66 - 0.21 1.51M 93.18M
APRS(ours) 94.21 99.57 -0.34 1.51M 87.23M

APRS obtains substructure vectors based on the analysis results of one-off prun-
ing all layers. But after getting the sub-structure vector, we employ progressive
fine-tuning to restore the accuracy during the fine-tuning stage.

4.2 Results and Analysis

Results on CIFAR-10. We analyzed the performance of the mainstream net-
work mentioned above on CIFAR-10. A variant of VGG [5] and DenseNet-40 with
3 dense blocks and 2 translation layers are used in our experiments, respectively.

Once the final sub-structure vector is determined, we immediately calculate
the corresponding layer-by-layer pruning rates and guide the pruning to obtain
the determined pruning model. The pruned model inherits the weights and is
then fine-tuned. Take account of one-off pruning too many parameters may affect
the network performance and fail to recover accuracy, we adopt a progressive fine-
tune scheme, pruning a small number of filters, and fine-tuning the remaining
network multiple times. In the fine-tune stage, we prune and fine-tune layer by
layer to minimize the loss. We take the performance of the pre-trained model as
the baseline and compare with other pruning methods. The experiment results
show the accuracy of pruned sub-nets in proposed APRS outgo the original
baseline.

VGG-16. VGG-16 only consists of plain layers, so we can easily calculate
the sensitivity of each filter in each layer to guide pruning. We determine the
number of filters in each layer, then divide by the total number of filters in

4302



Filter Pruning via Automatic Pruning Rate Search 11

Table 3: Pruning results of ResNet-110 on CIFAR-10. Acc(%)↓ refers Top-1 accuracy
decrease. ResNet-110 denotes the baseline in our APRS. PR refers the pruning rate.

Model Top-1(%) Top-5(%) Acc(%)↓ Parameters(PR) FLOPs(PR)

ResNet-110 93.53 99.81 - 1.72M(0.0%) 252.89M(0.0%)

L1 [5] 93.55 - -0.02 1.68M(2.3%) 213.00M(15.8%)
GAL-0.05 [18] 92.55 - 0.98 0.95M(44.7%) 130.20M(48.5%)
HRank [10] 94.23 - -0.70 1.04M(39.5%) 148.70M(41.2%)
APRS(ours) 94.39 99.82 -0.77 0.99M(42.4%) 139.27M(45.0%)

ABCPruner [22] 93.58 - -0.05 0.56M(67.4%) 89.87M(64.5%)
APRS(ours) 93.97 99.29 -0.44 0.53M(69.2%) 87.86M(65.3%)

the current layer to get the pruning rate. The sub-network with the smallest
overall sensitivity is searched through Pareto front planning until the limit of
Isize is reached, so as to obtain the most accurate combination of L-layer pruning
rates. Table 2 shows the performance of different methods, including filter sorting
methods such as L1, and several adaptive importance-based methods [50,18].
Compared with the state-of-the-art Hessian-Aware Pruning [52] recently, APRS
has achieved a very big leap. Compared to [10], we achieved a 2.11% improvement
in accuracy, reaching 94.49% top-1 accuracy. For intuitive comparison, we set
the similar model target size. When the model size Isize is set as 2.64M, the top-
1 accuracy of APRS is 3.76% higher than that of GAL-0.01 [18], 2.15% higher
than that of HRank [10], and the FLOPs almost half as those of GAL-0.01.

ResNet-110. Table 3 is the comparison result with other methods on ResNet-
110. With parameter reductions and FLOPs close to the GAL [18], APRS
achieves excellent top-1 accuracy (94.39% vs. 92.55%), which is better than the
baseline model. Compared with HRank [10], APRS has advantages in all aspects
(45.0% vs. 41.2% in FLOPs reduction, 42.4% vs. 39.5% in parameters reduction,
94.39% vs. 94.23% in top-1 accuracy). Compared with another automatic search
pruned model method [22], APRS also attains better top-1 accuracy (93.97% vs.
93.58%) with slightly smaller parameters and FLOPs. Therefore, the Wasserstein
distance can effectively reflect the relative importance of filters. Theoretically,
APRS can fully remove the redundancy of the network since all channels can
hypothetically be combined greedily.

DenseNet-40. Table 4 summarizes the experimental results on DenseNet-
40. We observed the potential of APRS in removing FLOPs. Despite Liu et al.
achieve a pruning performance close to the baseline [6], they only reduces FLOPs
by 38.2%. In contrast, APRS can eliminate 45.7% FLOPs while maintaining high
performance. Compared with GAL [18] and HRank [10], it has better compres-
sion rate in terms of parameters and FLOPs.

Results on ImageNet. Table 5 reflects our performance for ResNet-50 on
ImageNet to verify the proposed APRS. Generally, APRS outperforms other
pruning methods in any aspects, including top-1 and top-5 accuracies, as well

4303



12 Q. Sun et al.

Table 4: Comparison on pruning approaches using DenseNet-40 on CIFAR-10. PR
represents the pruning rate.

Model Top-1(%) Top-5(%) Parameters(PR) FLOPs(PR)

DenseNet-40 94.75 99.84 1.04M 0.282B

Liu et al.-40% [6] 94.81 - 0.66M(36.5%) 0.190B(32.6%)
HRank [10] 93.87 - 0.66M(36.5%) 0.167B(40.8%)
GAL-0.01 [18] 94.29 - 0.67M(35.6%) 0.182B(35.5%)
APRS(ours) 94.37 99.85 0.63M(39.4%) 0.153B(45.7%)

Table 5: Pruning results of ResNet-50 on ImageNet. PR represents the pruning rate.

Method Top-1(%) Parameters(PR) FLOPs(PR)

Baseline 76.15 25.50M(0.0%) 4.09B(0.0%)

CP [13] 72.30 - 2.73B(33.2%)
GAL-0.5 [18] 71.95 21.20M(16.8%) 2.33B(43.0%)
SSS [50] 74.18 18.60M(27.0%) 2.82B(31.0%)
He et al. [54] 74.61 - 2.38B(41.8%)
HRank [10] 74.98 16.15M(36.7%) 2.30B(43.7%)
MetaP [55] 72.27 15.64M(38.7%) 2.31M(43.5%)
APRS(ours) 75.58 16.17M(35.4%) 2.29B(44.0%)

HAP [52] 75.12 14.13M(53.74%) 2.70B(66.1%)
GDP [56] 71.19 - 1.88B(54.0%)
APRS(ours) 75.35 14.69M(57.6%) 1.94B(52.6%)

as FLOPs and parameters reduction. Specifically, our accuracy is improved by
3.31%(75.58% vs. 72.27%) in contrast to MetaP [55] while the parameter re-
duction and FLOPs are maintained. In detail, APRS removes 1.58× parameters
and 1.79× FLOPs and the accuracy drops by only 0.57%, which is 0.6% better
than HRank [10] under the same FLOPs and parameters, and outperforms the
state-of-the-art HAP [52]. Furthermore, APRS greatly reduces model complexity
compared to SSS [50] (44.0% vs. 31.0% for FLOPs). Summarily, more FLOPs
can be removed in our APRS than state-of-the-art methods. Our method outper-
forms previous studies when removing nearly half of the parameters. Compared
with HAP [52], we remove more parameters with almost the same performance.

Ablation Experiment. We conduct two ablation experiments using ResNet-50
on ImageNet to demonstrate the effectiveness of Wasserstein distance in APRS.
In the first ablation experiment, we apply a random constant pruning rate and
demonstrate that sensitivity-based pruning is effective. The results in Table 6
show that when the pruning rate of the parameters is more than 20% , the
accuracy of random pruning lags far behind APRS (less than 5.24%). In the
second ablation experiment we use the reverse order of what APRS recommends,

4304



Filter Pruning via Automatic Pruning Rate Search 13

Table 6: Ablation studies of sensitivity indicators for ResNet-50 on the ImageNet
dataset. Anti-APRS means pruning in the reverse order recommended by APRS,
Random is achieved by randomly assigning channel sensitivity. ↓% means the
percentage of the portion removed.

Method Acc(%) Parameters(↓%) FLOPs(↓%)

ResNet-50 76.15 0.0 0.0

Random 70.68 21.6 30.42
Anti-APRS 69.47 22.8 27.53
APRS(ours) 75.92 22.3 26.50

Random 65.44 50.7 54.41
Anti-APRS 62.37 50.0 55.77
APRS(ours) 74.72 52.9 57.21

named Anti-APRS. It can be clearly observed that Anti-APRS performs poorly
in all cases compared to APRS, with an accuracy of 62.37% at a pruning rate of
50% of the parameters. Random pruning is slightly better than Anti-APRS, while
there is still a big gap than APRS. APRS reaches a higher top-1 accuracy, which
proves that our proposed method in this paper is powerful. Table 6 confirms that
using the overall Wasserstein ranking and considering the common influence
of the sensitivity between the layers will bring greater benefits. The impact
of each layer on the overall performance is limited in spite of every filter of
the deep network can extract features. Therefore, the distribution of pruning
force should be more precise and efficient. Table 6 shows that certain more
representative filters can be selected to form more effective pruning networks
by using APRS, resulting in higher overall performance. Further details may be
found in supplementary material.

5 Conclusions

In previous AutoML based methods, we found that the redundancy between con-
volutional layers varies greatly and the combination of different pruning rates
may lead to various accuracy with the same parameter reduction. To search for
a suitable pruning rate, we introduce sensitivity analysis to evaluate the im-
pact of filters in each layer. We can initially set the pruning rate of each layer
based on sensitivity analysis, then the Pareto optimization algorithm was uti-
lized to search for appropriate combination of pruning rates. We introduced the
Sinkhorn algorithm to help us solve the Wasserstein distance iteratively. Finally,
we conducted experiments on the mainstream networks VGG-16 and ResNet-
110, which proved that using sensitivity to remove the redundancy of the pre-
trained model has a good effect. For VGG-16 on CIFAR-10, the top-1 accuracy
reached 94.49% with 82.4% of the parameters are removed. In comparison to
HRank [10], we achieve up to 2.15% higher accuracy with fewer parameters and

4305



14 Q. Sun et al.

FLOPs. Moreover, for ResNet-50 APRS achieves 75.35% top-1 accuracy (0.8%
degradation) on ImageNet, after pruning 42.4% of the parameters.

References

1. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the Value of Net-
workPruning. In: ICLR (2019)

2. G.Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. In: CVPR (2017)

3. Ta, M., V.Le, Q.: EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In: International Conference on Machine Learning, PMLR (2019)

4. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both Weights and Connections for
Efficient Neural Networks. In: NeurIPS (2015)

5. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning Filters for Efficient
ConvNets. In: ICLR (2017)

6. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning Efficient Convo-
lutional Networks Through Network Slimming. In: ICCV (2017)

7. Singh, P., Verma, V.K., Piyush Rai, V.P.N.: Play and Prune: Adaptive Filter Prun-
ing for Deep Model Compression. In: IJCAI (2019)

8. He, Y., Han, S.: ADC: Automated Deep Compression and Acceleration with Rein-
forcement Learning. In: CVPR (2018)

9. Miguel Á. Carreira-Perpiñán, Yerlan Idelbayev.: “Learning-Compression” Algo-
rithms for Neural Net Pruning. In: CVPR (2018)

10. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: HRank: Filter
Pruning using High-Rank Feature Map. In: CVPR (2020)

11. Han, S., Mao, H., Dally, W.J.: Deep Compression: Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding. In: ICLR (2016)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep
Convolutional Neural Networks. In: NeurIPS (2012)

13. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: ICCV (2017)

14. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural
network compression. In: ICCV (2017)

15. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: ICLR (2017)

16. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter Pruning via Geometric Median
for Deep Convolutional Neural Networks Acceleration. In: CVPR (2019)

17. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: AMC: AutoML for model
compression and acceleration on mobile devices. In: ECCV (2018)

18. Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., Doermann, D.:
Towards optimal structured cnn pruning via generative adversarial learning. In:
ICCV (2019)

19. Lemaire, C., Achkar, A., Jodoin, P.M.: Structured pruning of neural networks with
budget-aware regularization. In: CVPR (2019)

20. You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. In: NeurIPS (2019)

21. Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y.,
Davis, L.S.: Nisp: Pruning networks using neuron importance score propagation. In:
CVPR (2018)

4306



Filter Pruning via Automatic Pruning Rate Search 15

22. Lin, M., Ji, R., Zhang, Y., Zhang, B., Wu, Y., Tian, Y.: Channel Pruning via
Automatic Structure Search. In: IJCAI (2020)

23. Li, B., Wu, B., Su, J., Wang, G.: EagleEye: Fast Sub-net Evaluation for Efficient
Neural Network Pruning. In: ECCV (2020)

24. Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: ZeroQ: A
Novel Zero Shot Quantization Framework. In: CVPR (2020)

25. Mitsuno, K., Kurita, T.: Filter Pruning using Hierarchical Group Sparse Regular-
ization for Deep Convolutional Neural Networks. In: ICPR (2020)

26. Dong, Z., Yao, Z., Cai, Y., Arfeen, D., Amir, G., Mahoney, M.W., Keutzer,
K.: Hawq-v2: Hessian aware trace-weighted quantization of neural net-works. In:
NeurIPS (2020)

27. Alex Krizhevsky, Geoffrey Hinton, e.a.: Learning multiple layers of features from
tiny images (2009), technical report, Citeseer

28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

29. Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, K.Q.: Densely connected convo-
lutional networks. In: CVPR (2017)

30. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: NeurIPS
(2017)

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

32. Zhang, T., Ye, S., Feng, X., Ma, X., Wang, Y.: StructADMM: Achieving Ultra-
high Efficiency in Structured Pruning for DNNs. In: IEEE Transactions on Neural
Networks and Learning Systems. vol. 12, pp. 1–15 (2021)

33. Mingbao, L., Rongrong, J., Shaojie, L., Qixiang, Y., Yonghong, T., Jianzhuang,
L., Qi, T.: Filter Sketch for Network Pruning. In: IEEE Computer Society. pp. 1–10
(2020)

34. Chang, J., Lu, Y., Xue, P., Xu, Y., Wei, Z.: ACP: Automatic Channel Pruning via
Clustering and Swarm Intelligence Optimization for CNN. In: CVPR (2021)

35. Xu, P., Cao, J., Shang, F., Sun, W., Li, P.: Layer Pruning via Fusible Residual
Convolutional Block for Deep Neural Networks. In: CVPR (2020)

36. Wanga, Z., Li, C., Wang, X.: Convolutional Neural Network Pruning with Struc-
tural Redundancy Reduction. In: CVPR (2021)

37. Zhu, F., Gong, R., Yu, F., Liu, X., Wang, Y., Li, Z., Yang, X., Yan, J.: Towards
Unified INT8 Training for Convolutional Neural Network. In: CVPR (2019)

38. Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N.: Binary neural networks: A
survey. In: PR (2020)

39. Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, J.: Forward and
Backward Information Retention for Accurate Binary Neural Networks. In: CVPR
(2020)

40. Kravchik, E., Yang, F., Kisilev, P., Choukroun, Y.: Low-bit quantization of neural
networks for efficient inference. In: ICCV (2019)

41. Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan, E., Wang, L., Huang, Q.,
Wang, Y., Mahoney, M., Keutzer, K.: HAWQV3: Dyadic Neural Network Quanti-
zation. In: International Conference on Machine Learning, PMLR (2021)

42. Jin, Q., Ren, J., Woodford, O.J., Wang, J., Yuan, G., Wang, Y., Tulyakov, S.:
Teachers Do More Than Teach: Compressing Image-to-Image Models. In: CVPR
(2021)

43. Guo, J., Han, K., Wang, Y., Wu, H., Chen, X., Xu, C., Xu, C.: Distilling Object
Detectors via Decoupled Features. In: CVPR (2021)

4307



16 Q. Sun et al.

44. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. In:
CVPR. p. 1789–1819 (2021)

45. Mirzadeh, S., Farajtabar, M., Li, A., Levine, N., Ghasemzadeh, H.: Improved
Knowledge Distillation via Teacher Assistant. In: AAAI (2020)

46. Tang, J., Shivanna, R., Zhao, Z., Lin, D., Singh, A., Chi, E.H., Jain, S.: Under-
standing and Improving Knowledge Distillation. In: CVPR (2020)

47. Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B.: Low-
rank matrix factorization for Deep Neural Network training with high-dimensional
output targets. In: IEEE Computer Society (2013)

48. Swaminathan, S., Garg, D., Kannan, R., Andres, F.: Sparse low rank factorization
for deep neural network compression. In: IEEE Computer Society. vol. 398, pp.
185–196 (2020)

49. Zhang, Y., Chuangsuwanich, E., Glass, J.: Extracting deep neural network bot-
tleneck features using low-rank matrix factorization. In: IEEE Computer Society
(2014)

50. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural net-
works. In: ECCV. p. 304–320 (2018)

51. Zhao, C., Ni, B., Zhang, J., Zhao, Q., Zhang, W., , Tian, Q.: Variational convolu-
tional neural network pruning. In: CVPR. p. 304–320 (2019)

52. Yu, S., Yao, Z., Gholami, A., Dong, Z., Kim, S., Mahoney, M.W., Keutzer,
K.: Hessian-Aware Pruning and Optimal Neural Implant. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3880–3891
(2022)

53. Li, Y., Gu, S., Mayer, C., Gool, L.V., Timofte, R.: Group Sparsity: The Hinge
Between Filter Pruning and Decomposition for Network Compression. In: CVPR.
pp. 8018–8027 (2020)

54. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: IJCAI (2018)

55. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., , Sun, J.: MetaPruning:
Meta Learning for Automatic Neural Network Channel Pruning. In: ICCV (2019)

56. Lin, S., Ji, R., , Y.L., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional
networks via global & dynamic filter pruning. In: IJCAI (2018)

57. Kurtz, Mark, Kopinsky, Justin, Gelashvili, Rati, Matveev, Alexander, Carr, John,
Goin, Michael, Leiserson, William, Moore, Sage, Nell, Bill, Shavit, Nir, Alistarh,
Dan: Inducing and exploiting activation sparsity for fast inference on deep neural
networks. In: International Conference on Machine Learning, PMLR. vol. 119, pp.
5533–5543. PMLR, Virtual (13–18 Jul 2020)

58. Zhang, Y., Lin, M., Lin, C.W., Chen, J., Wu, Y., Tian, Y., Ji, R.: Carrying out
CNN Channel Pruning in a White Box. In: CVPR (2022)

59. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network Trimming: A Data-Driven Neu-
ron Pruning Approach towards Efficient Deep Architectures. In: ICCV (2019)

60. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-Decoder
with Atrous Separable Convolution for Semantic Image Segmentation. In: ECCV.
pp. 801–818 (2018)

61. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. In: CVPR
(2018)

62. Xu, H., Yao, L., Zhang, W., Liang, X., Li, Z.: Auto-FPN: Automatic Network Ar-
chitecture Adaptation for Object Detection Beyond Classification. In: ICCV (2019)

63. Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., Dally, W.J.: Exploring the
Granularity of Sparsity in Convolutional Neural Networks. In: ICCV (2017)

4308



Filter Pruning via Automatic Pruning Rate Search 17

64. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Adv. Neural Inform. Process. Syst. (2016)

65. Liu, N., Ma, X., Xu, Z., Wang, Y., Tang, J., Ye, J.: AutoCompress: An Automatic
DNN Structured Pruning Framework for Ultra-High Compression Rates. In: AAAI
(2020)

66. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning Transferable Architectures
for Scalable Image Recognition. In: CVPR (2018)

67. Yang, T.J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., Adam,
H.: NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications.
In: ECCV (2018)

68. Yu, J., Huang, T.: AutoSlim: Towards One-Shot Architecture Search for Channel
Numbers. In: ICLR (2019)

69. Ye, S., Zhang, T., Zhang, K., Li, J., Xu, K., Yang, Y., Yu, F., Tang, J., Fardad, M.,
Liu, S., Chen, X., Lin, X., Wang, Y.: Progressive Weight Pruning of Deep Neural
Networks using ADMM. In: CVPR (2018)

70. Russakovsky, O., Jia Deng, H.S., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. In: IJCV (2015)

71. Guo, Y., She, Y., Barbu, A.: Network Pruning via Annealing and Direct Sparsity
Control. In: IJCNN (2021)

4309


	Filter Pruning via Automatic Pruning Rate Search

