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Abstract. Deep neural architecture plays an important role in under-
water image enhancement in recent years. Although most approaches
have successfully introduced different structures (e.g., U-Net, generative
adversarial network (GAN) and attention mechanisms) and designed
individual neural networks for this task, these networks usually rely
on the designer’s knowledge, experience and intensive trials for vali-
dation. In this paper, we employ Neural Architecture Search (NAS)
to automatically search the optimal U-Net architecture for underwa-
ter image enhancement, so that we can easily obtain an effective and
lightweight deep network. Besides, to enhance the representation capa-
bility of the neural network, we propose a new search space including
diverse operators, which is not limited to common operators, such as
convolution or identity, but also transformers in our search space. Fur-
ther, we apply the NAS mechanism to the transformer and propose
a selectable transformer structure. In our transformer, the multi-head
self-attention module is regarded as an optional unit and different self-
attention modules can be used to replace the original one, thus deriving
different transformer structures. This modification is able to further ex-
pand the search space and boost the learning capability of the deep
model. The experiments on widely used underwater datasets are con-
ducted to show the effectiveness of the proposed method. The code is
released at https://github.com/piggy2009/autoEnhancer.

Keywords: Underwater image enhancement · Neural architecture search
· Transformer.

1 Introduction

Image enhancement which aims to improve the quality and recover the original
information content by giving a low-quality image is a fundamental technique
for image/video processing, such as video tracking [41], object recognition [19],
and so on. Recently, image enhancement technologies are usually deployed in
autonomous vehicles to assist the driving at night and in extreme weather [25]
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(a) Input (b) Deep SESR (c) Ours (d) GT

Fig. 1. Illustration of different enhance-
ment methods. (a) Input images. (b) results
from Deep SESR enhancer [18]. (c) Our en-
hanced images. (d) Ground truths.
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Fig. 2. Comparisons with state-of-the-art
enhancers in terms of PSNR metric (Y
axis), SSIM metric (X axis) and parame-
ters (circular area) on UIEB dataset. Ours
is competitive against WaterNet [28], FU-
nIE [19], UGAN [9], UIE-DAL [40], Ucolor
[27] and Ushape [35].

or remotely operated underwater vehicle (ROV) to explore marine life and pro-
tect ecosystem [23]. Accordingly, underwater image enhancement (UIE) has re-
cently become an interesting and meaningful research topic in computer vision
tasks. However, UIE is still very challenging, because the underwater scenario
is complex and diverse. For example, due to the different underwater depths,
the collected images are suffering from different visual qualities, especially im-
age brightness, which is significantly decreased with the depth. Additionally, the
objects in underwater scenes are diverse. The stones, animals and plants present
different colors or textures by the strong absorption and scattering, which also
increases the difficulty for the enhancement algorithms to recover their original
appearance from underwater scenarios.

Early approaches [6,8,26] mainly rely on a physical model, called Retinex the-
ory [24], whose purpose is to estimate an accurate medium transmission. Then,
the quality degradation values can be deduced by the medium transmission.
These methods are able to improve the quality of some images in simple scenes
like the shallow sea and weak ambient light. However, facing complex cases, such
as turbid water, and extremely dark, these physical model-based methods always
fail to estimate medium transmission, even these basic physical models are not
always correct in some complicated scenes.

To enhance the image quality of severe conditions, many deep learning-based
methods have been proposed [28,9,18] in the underwater image enhancement.
Since it is difficult to prepare sufficient labeled data in underwater scenes, weakly
supervised strategy [29] or generative adversarial network (GAN) [19,20] is used
at the early stage. However, these deep models are still difficult to recover the
objects’ color in some complex scenes. As shown in Figure. 1, Deep SESR, which
is a GAN-based method [18], cannot accurately restore the color of marine or-
ganisms. Recently, as U-Net architecture is able to effectively encode multi-level
features for clear image reconstruction and easy implementation, most of the
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existing methods adopt this structure as a base network, and then design some
specific modules for UIE. For example, the tailored attention module [27] and
transformer module [35] are applied to the U-Net architecture. These modules
are effective to boost performance, but their specific structures mainly rely on
designers’ experience and the heavy computational cost of repeated trials for val-
idation. Additionally, in order to achieve competitive performance, the tailored
modules are more and more complicated and significantly increase the parame-
ters of models. The performance and model size of recent methods are shown in
Figure. 2.

To balance the model performance and scale of parameters, our key insight
is to leverage the strategy of neural architecture search (NAS) to automatically
design an optimal U-Net framework for image enhancement instead of heavy
structure validation experiments. First, we propose a new search space for our
enhancement network. Different from [44,48] our search space is not limited to
the common and lightweight operators, such as convolution, dilated convolu-
tion, etc., but also includes transformer module. Second, we propose a selectable
transformer module, whose original multi-head self-attention is regarded as an
optional unit, so that we can apply the NAS strategy to automatically search
for an optimal self-attention module (e.g., shuffle attention [49], efficient channel
attention [37]) and then to further improve the feature representation capability
of the proposed network. In order to decrease the scale of parameters and use
arbitrary input size, we apply convolution rather than a fully-connected oper-
ator to encode features in our selectable transformer module. Third, to allow
our network to learn more color information, we introduce the images from dif-
ferent color spaces (i.e., RGB and Lab) as the network inputs, so that more
robust color features can be extracted to improve the quality of images in the
severe conditions. In the end, the contributions of our method are summarized
as follows:

– We introduce a practical solution to apply Neural Architecture Search (NAS)
to automatically build an end-to-end U-Net deep network for underwater
image enhancement, especially for severely color degraded images.

– We present a new search space, where we are not limited to applying lightweight
operators and further propose a selectable transformer module. This module
grants the neural network substantial learning capability by automatically
selecting suitable self-attention operators in the proposed network.

– The proposed architecture is able to encode the features from different color
spaces to improve the adaptation and generalization. Besides, the compre-
hensive experiments prove that the proposed approach achieves competitive
performance in different scenarios with the less parameters.

2 Related works

2.1 Image enhancement

The development of image enhancement can be briefly divided into two phases.
In the first phase, most of the approaches exploit physical models (e.g., Retinex
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model [11]) to enhance image quality. For example, Ancuti et al. [2] propose a
fusion-based model, which first tries to obtain the color-corrected and contrast-
enhanced versions of an underwater image and then compute the corresponding
weight maps to generate the final fusion result. Ancuti et al. modify the fusion
model [2] and further propose a multi-scale fusion strategy for underwater im-
age enhancement in [1]. Additionally, dynamic pixel range stretching [17], pixel
distribution adjustment [12] and color correction algorithm [2] are used in under-
water scenario. In [36], blurriness prior is proposed to improve the image quality
but fails to recover the original color of underwater objects. These approaches
can improve the quality of images to some extent, but their robustness is weak
when dealing with difficult scenes. Moreover, most of these methods are suffering
from heavy computation, thus affecting the efficiency of their models.

With the wide deployment of deep learning models, the community of image
enhancement enters the second phase. Especially, after the proposal of fully con-
volutional networks (FCN) and U-Net structure, more are more efficient deep
learning-based methods [34,3,42,46,21] are introduced into this community. For
example, WaterGAN [30] proposes to combine GAN and U-Net to solve the prob-
lem of underwater image enhancement. Meanwhile, Li et al. [29] also propose a
GAN-based weakly supervised deep models for this task. After that, Yang et al.
[45] further uses conditional GAN (cGAN) to improve the image quality. GANs
are widely applied to this task because there are few labeled datasets in the
underwater image enhancement. It is very hard to simulate a similar underwater
scenario to collect the low-quality images as inputs and its corresponding high-
quality images as ground truths. Therefore, GAN is usually used with weakly
supervised training strategies for deep network training. After that, WaterNet
[28] not only proposes a gated fusion U-Net-based model but also collects a
dataset called UIEB in this community. Moreover, their method for data col-
lecting is novel. They try to use different enhancement methods to improve the
quality of underwater images. Then, some volunteers will pick the best enhanced
result as the ground truth. Following this pipeline, Ushape [35] collects a large
underwater dataset, which contains 5004 images with labels. Moreover, Ushape
presents a new U-Net, which includes two different transformer modules to learn
robust image color and space information.

In summary, U-Net architecture is widely used in underwater image enhance-
ment. The reasons are two-fold: 1) It can effectively extract color, content and
texture features of underwater images. Then, these features are very useful to
remove the noise and reconstruct a clear image by using the end-to-end U-Net
architecture. 2) U-Net structure is easy to implement and extend. Generally,
new modules can be directly inserted into this architecture. However, due to
the diverse and complex underwater scenes, recent methods have to design more
complex modules in U-Net. They are effective but increase the complexity of
the models as well. Different from the existing methods that focus on designing
a specific deep network, we introduce NAS to automatically obtain the optimal
network for the underwater image enhancement.
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2.2 Neural architecture search

The purpose of NAS is to automatically design neural networks. Early meth-
ods often use reinforcement learning [50] or evolution algorithms [43]. However,
these methods require massive computing resources and cost much time during
the searching. To alleviate this burden, Liu et al. [33] proposed DARTS. This
method assigns weights to different operators, and then the gradient descent
algorithm (SGD) is used to simultaneously optimize the corresponding parame-
ters of different operators. DARTS is able to relieve some computation burden,
but the consumption of resources is still heavy. After that, Guo et al. [14] pro-
pose a single path one-shot, namely SPOS. SPOS decouples network searching
into supernet training and subnet searching. Firstly, a supernet that contains
all of the optional operators should be built. Then, an evolutionary algorithm is
used to search for suitable operators by using the trained supernet. Since only
one path can be activated during a training iteration, the consumption of re-
sources is much smaller than DARTS. Based on the above previous NAS models,
many methods [4,13,32] adopt it to search high-performance deep networks. For
example, LightTracker [44] introduce SPOS to search a lightweight tracker for
industrial deployments in the object tracking task. Auto-MSFNet [48] proposes
a NAS-based multi-scale fusion network for salient object detection.

3 Preliminaries

Before the introduction of the proposed method, we give a short instruction for
neural architecture search (NAS). Generally, in order to strengthen the learning
capability of the neural network, a complex topological structure, including lots
of multiple branches or skip connections, will be introduced in the search space.
However, this kind of NAS will cost a lot of computation resources and increase
search time. In this paper, to balance the resources and network performance, we
introduce some prior knowledge of network design and restrict the topology of
neural networks. Recently, the U-Net framework is straightforward and widely
deployed in the community of image enhancement. We also adopt this model
and then search its specific operators/layers. To obtain the optimal subnet, we
exploit One-Shot NAS [14] as our search strategy. The reason is that One-Shot
NAS can save computation resources (especially GPU memory), and is easier to
converge than the previous method [33].

Specifically, One-Shot NAS is regarding all network structures as different
subnets of a supernet and shares their corresponding weights between the struc-
tures with the same operators/layers. The entire process of One-Shot NAS in-
cludes three stages: supernet training, subnet searching and subnet retraining.
In the first stage, the supernet N(S,W ) is built with the search space S and
network parameters W , which are shared by all the architecture candidates. We
firstly need to train this supernet and obtain all the optimized parameters by
using the training set:

W ∗ = argmin
W

Ltrain(N(S,W )), (1)
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where Ltrain is the loss function in the training stage and W ∗ is the optimized
parameters after minimizing the loss function.

During the subnet searching, we can use the trained supernet to search the
optimal subnet s∗ on the validation set:

s∗ = argmax
s∈S

Accval(N(s,W ∗(s))), (2)

where Accval represents the accuracy of subnets on the validation set based
on the trained supernet with its parameters W ∗. During the search stage, we
choose subnets by different sampling algorithms, such as random sampling. In
this paper, we follow [44] to use evolutionary algorithms.

In the final stage, the optimal subnet M(·, ·) needs to be re-trained by using
the input data X from the training set to obtain the final optimized parameter
W

′
:

W
′
= argmin

W
Ltrain(M(X;W )), (3)

4 The proposed method

Our NAS-based enhancement network inherits the widely used U-Net architec-
ture, which consists of two components: encoder and decoder. Different from
the previous U-Net architectures, the original residual structures or convolu-
tion blocks are replaced by the proposed NAS blocks so that the network can
automatically select the most suitable operators and learn robust and reliable
features for image enhancement. Figure. 3 shows the proposed NAS-based frame-
work. Given the low-quality image, its two color spaces, namely RGB and Lab
images, are fed into the proposed network. In the encoder, multi-level features are
extracted by using downsampling operation and different receptive fields. Then,
these features are further upsampled and fused to recover the final enhanced
image in the decoder.

4.1 Overall pipeline

Given the underwater image Ij ∈ RH×W×3, where H × W represents the size
of the image, j denotes the color space, we use its RGB and Lab, two different
color spaces to extract features. The input images are fed into the network, which
consists of different NAS blocks. For each block, as shown in Figure. 3 (a), there
is a convolution operator for adjusting the channel number and a choice layer
for operator selection. We also employ a skip connection in the NAS block to
accelerate network convergence. This whole process can be written as below:

F j
i = Conv(F j

i−1)

F j
i+1 = op(F j

i ) + F j
i , op ∈ S,

(4)

where op(·) is an optional operation and S denotes its corresponding search
space. Conv(·) represents the convolutional operation with kernel 3 × 3. F j

i−1,
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Fig. 3. The proposed framework for network searching. In the encoder, the proposed
NAS blocks are employed to extract multi-level features from the image with multi-
color spaces. In the decoder, we recover the enhanced images by gradually fusing the
multi-level features. The core modules include: (a) NAS Block. (b) Search Space. (c)
Selectable Transformer. (d) Feature fusion from two color spaces.

F j
i , F j

i+1 are the feature maps from previous, current and next NAS block,
respectively. Taking the first NAS block as an example, the previous feature
maps F j

0 , namely the input image Ij ∈ RH×W×3 are fed into the network.

Then, through the convolution, we can obtain the feature map F j
1 ∈ RH×W×C ,

whose channel number is C. After that, the feature maps are fed into the choice
layer and generate the output F j

2 ∈ RH×W×C for the next block. Notice that
the NAS blocks in the encoder are used to extract the features from RGB and
Lab color spaces. In the training phase, the parameters of the same operator are
shared in a NAS block.

As shown in Figure. 3, starting from the input with H × W , the size is
downsampled to half of the original one and the channel number is increased
to double by using pixel-unshuffle [38]. As we introduce two color spaces, their
features at the same level are integrated before upsampling. Figure. 3 (d) shows
its structure:

Fi = Conv(||j∈ΩF
j
i ), (5)
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where || is the concatenation operation. Ω refers to the color spaces, including
RGB and Lab color spaces in our framework.

In the decoder, the fusing feature maps from the different color spaces are
further concatenated with the decoder features by skip connections to recover
gradually the original resolution by the pixel-shuffle operations [38]. In the end,
an extra convolution with kernel 1 × 1 is used to generate the final enhanced
image.

4.2 Search space

The search space contains all possible candidate operators. Traditional search
space [50,44] only uses some basic operators, such as convolution, pooling, etc.
These operators cannot fully discover spatial and color information from the
network inputs. In this paper, we further expand the search space, which includes
conventional operators, such as convolution, identity, and introduce some new
operators like transformer. The specific content is shown in Figure. 3 (b). It
contains identity, convolution with 3 × 3 kernels, dilated convolution with 3 ×
3 kernels and 2 dilations, squeeze-and-excitation block [16] and the proposed
selectable transformer.

The previous transformer modules like Vision Transformer (VIT) [7] or Class-
Attention in Image Transformers (CaiT) [39] try to encoder their features by
image patches and fully-connected layers, which are very useful to extract robust
information. However, due to the deployment of fully-connected operators in
their structures, the input feature maps need to be resized into a fixed dimension.
Moreover, with the increase of input size, the computation complexity grows
dramatically as well. In the UIE community, Ushape [35] extends VIT structure
and designs two different transformers for feature embedding, but the existing
issues are still not alleviated. Each image is warped into a fixed size to meet the
requirement of their tailored transformer structures. In real scenes, the images
are collected by arbitrary resolutions. If the input image is with high-resolution,
the computation complexity can be too heavy to be deployed in some embedded
hardware. Some content information may be lost by directly warping the images.

In this paper, inspired by [15,47], we modify the original transformer struc-
ture. First, the fully-connected operators in the transformer are replaced by
the convolutions. Second, we apply self-attention across channels rather than
the spatial dimension, thus generating the attention map in the global context.
Therefore, the feature maps with arbitrary sizes can be directly fed into the pro-
posed transformer module. Besides, the computation complexity and the scale of
parameters can be decreased remarkably. Further, combining with the NAS strat-
egy, we design a selectable multi-head self-attention module (SMHSA) (shown
in Figure. 3 (c)), where we introduce different self-attention mechanisms, in-
cluding shuffle attention [49], double attention [10], spatial group-wise enhance
[31], efficient channel attention [37], thus deriving different transformer struc-
tures. Besides, this modification can further expand the search space and boost
the feature representation capability of the proposed network. The selectable
transformer can be formulated as:
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F̂i = opa(Ln(Fi)) + Fi opa ∈ Sa

Fi+1 = FF (Ln(F̂i)) + F̂i,
(6)

where Fi, F̂i, Fi+1 ∈ RĤ×Ŵ×Ĉ represent the input, intermediate and output
feature maps of the proposed selectable transformer. The size of the feature
maps will not be changed through the proposed NAS block. Ln(·) is the layer
normalization. opa(·) denotes the optional self-attention operators, whose Sa is
the subset the proposed the search space S, namely Sa ⊂ S. FF (·) refers to
the feed-forward structure, whose fully-connected layers are also replaced by
convolutions. To the end, the search space contains 9 operators, including (1)
identity (Id), (2) convolution with 3× 3 kernels (Conv), (3) dilated convolution
with 3 × 3 kernels and 2 dilations (Dconv), (4) squeeze-and-excitation block
[16] (SE), (5) transformer with transposed attention [47] (Tta), (6) transformer
with shuffle attention [49] (Tsa), (7) transformer with spatial group-wise enhance
attention [31] (Tsge), (8) transformer with double attention [5] (Tda) and (9)
transformer with efficient channel attention [37] (Teca).

4.3 Network optimization

In our framework, following the Eq. 1 and Eq. 3, we need to optimize the su-
pernet and optimal subnet. For the objective function, we employ a combining
loss for network optimization. Given the low-quality image I ∈ RH×W×3 and
its corresponding high-quality image G ∈ RH×W×3, the proposed network can
generate the predicted image P ∈ RH×W×3. Then, the combining loss can be
formulated as:

L = α ∗ ||G− P ||1 + β ∗ ||G− P ||2 + γ ∗
∑
k

||φ(G)− φ(P )||1, (7)

From Eq. 7, we can see that three different loss functions are jointly used to
optimize the network. The first term || · ||1 represents L1 loss, which computes
the absolute distances between the true value and the predicted value in each
pixel. The second term || · ||2 is L2 loss. It is used to minimize the error by using
the squared distance. The purpose of the L1 and L2 loss functions is to optimize
the low-frequency regions. To process the high-frequency information and retain
the image style, we introduce perceptual loss, namely the third term in Eq. 7.
φ(·) denotes the embedding function, which is the output of the k-th layer in
VGG-16. Additionally, to balance the magnitude of the loss values, we introduce
three loss weights α, β, γ for each term.

5 Experiments

5.1 Experimental setting

Datasets. In this paper, in order to validate the scalability and adaptation of the
proposed approach, we introduce three underwater datasets and one low-light
dataset in the evaluation experiments. These datasets are described as follows:
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Underwater Image Enhancement Benchmark (UIEB) [28]. This dataset
contains 890 paired images, but their high-quality images are generated by en-
hancement methods. Concretely, several enhancement methods are employed to
process the low-quality images to generate the enhanced ones. After that, some
volunteers will manually choose the best as the final high-quality one. In exper-
iments, the images of UIEB are divided into the training set and testing set, in
which 800 and 90 paired images are included, respectively.

Large-Scale Underwater Image (LSUI) [35]. The collection of this dataset
almost follows the rule of UIEB, but LSUI is much larger than UIEB. In order
to satisfy the training requirements, LSUI collects 5004 underwater images and
their corresponding high-quality images. For the setting in [35], 4500 paired im-
ages are used for training. The remaining 504 images are used for testing.

Enhancement of Underwater Visual Perception (EUVP) [19]. It con-
tains large-scale paired and unpaired collections for underwater images. These
images are captured from different cameras, such as GoPro, AUV’s uEye cam-
eras, ROV’s HD camera and etc. EUVP also collects some video frames from a
few publicly available YouTube videos. Totally, the paired images contain 11435,
570, and 515 pairs for the training, validation, and testing, respectively. Due to
the low resolution of the images in this dataset, we mainly use their test set for
evaluation in our experiments.

Evaluation Metrics. In this paper, for objective comparison, we introduce
two full reference evaluation measures: Peak Signal to Noise Ratio (PSNR) and
Structure SIMilarity index (SSIM). They can measure color and structural sim-
ilarity between the enhanced images and ground truths. Both of their scores are
higher the better.

5.2 Implementation details

In this paper, we adopt PyTorch to implement the proposed approach. For our
network training, we use the Adam optimizer to minimize the loss function
with an initial learning rate of 1.0 ×10−4. The learning rate follows the “poly”
adjustment policy so that it can be gradually decreased during the network
training. For data augmentation, we use random cropping and random horizontal
flipping. The input images are cropped into 256 × 256 and the value of image
pixels is normalized to [0,1]. As the supernet training needs a GPU with large
memory, we use a PC with an NVIDIA RTX A6000 GPU. The batch size can be
set to 10. To balance their loss values, we introduce loss weights α, β, γ for L1,
L2 and perceptual loss, respectively. In our experiments, we set them as 0.25, 1,
and 0.2. As shown in Figure. 3, the channel number of the feature maps is the
multiple of C, we set it to 48 in the current network. For the network testing,
our network does not need to resize the images to a fixed resolution. The images
of any size can be directly fed into our network.

The proposed method needs to search optimal subnet by a validation set. For
the training data, there is a little different from the setting in [35]. We randomly
choose 100 images from the training set for validation. Therefore, we totally use
4400, 100, and 504 images in LSUI dataset for training, validation and testing.
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Fig. 4. The optimal network after subnet searching. During the searching, we can au-
tomatically obtain the specific operators to extract features from the RGB and Lab im-
ages in the encoder. For clear presentation, this figure only shows the chosen operators
after network searching. Please understand it together with Figure. 3 and Section. 4.2.

More specifically, we firstly use 4400 images for supernet training. Then, the 100
images are exploited for subnet searching, thus obtaining the optimal subnet.
The specific structure is shown in Figure. 4. After that, the subnet is retrained
by the training set. Finally, we evaluate the subnet and report the experimental
results on the underwater testing set of UIEB (90 paired images), LSUI (504
paired images) and EUVP (515 paired images), respectively.

5.3 Comparisons with the state-of-the-arts

Table. 1 firstly reports the quantitative results on UIEB dataset. In this table,
all of the state-of-the-arts are deep learning-based methods. Notice that the pro-
posed approach can achieve the best performance for both PSNR and SSIM
metrics. Especially for the PSNR metric, our method obtains performance gains
of 2.54 dB over Ushape [35]. Their model also introduces a transformer to en-
code the deep features. Although the performance of Ushape is competitive, the
input images have to be resized to a fixed resolution. The reason is that their
transformer still employs linear operators. Moreover, their transformer is based
on fully-connected operators, so their model size is much higher than ours. RCT-
Net [22] obtains favorable performance on PSNR and SSIM as well. Moreover,
its model also accepts images with an arbitrary size, but our PSNR and SSIM
are better, which provides a substantial gain of 2.18 dB on PSNR. Table. 2 shows
the results on LSUI dataset. This dataset contains diverse underwater scenes and
object categories, so it is more difficult and challenging. As we can see, without
warping the input image and their corresponding ground truths, our PSNR can
still reach 26.13 dB, which obtains significant gains of 1.97 dB over Ushape, the
original state-of-the-art method. Table. 3 presents the experimental results on
EUVP dataset. This is an early dataset and mainly collects colorful underwa-
ter creatures. Our method still outperforms significantly the other methods in
PSNR. For example, ours can surpass the previous best RCTNet [22] by 3.13 dB
and the GAN-based Deep SESR [18] by 5.35 dB. In our network, we mainly ex-
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12 Y. Tang et al.

Table 1. Quantitative comparison on the UIEB underwater dataset.

Method Param. PSNR SSIM

WaterNet [28] 25M 19.81 0.8612
FUnIE [19] 7M 19.45 0.8602
UGAN [9] 57M 20.68 0.8430
UIE-DAL [40] 19M 16.37 0.7809
Ucolor [27] 157M 20.78 0.8713
RCTNet4 [22] - 22.45 0.8932
Ushape [35] 66M 22.91 0.9100

Ours 12M 25.45 0.9231

Table 2. Quantitative comparison on the LSUI underwater dataset.

Method Param. PSNR SSIM

WaterNet [28] 25M 17.73 0.8223
FUnIE [19] 7M 19.37 0.8401
UGAN [9] 57M 19.79 0.7843
UIE-DAL [40] 19M 17.45 0.7912
Ucolor [27] 157M 22.91 0.8902
Ushape [35] 66M 24.16 0.9322

Ours 12M 26.13 0.8608

ploit effective but lightweight operators to construct the proposed search space.
Moreover, after removing the fully-connected layers in the transformer, the net-
work parameters can be dramatically decreased. Finally, our scale of parameters
achieves 12M, which is competitive against the other state-of-the-arts as well.

Figure. 5 exhibits the visual comparison between the proposed method and
the state-of-the-arts on underwater scenes. The shipwreck (the first row) demon-
strates that the underwater images may suffer from multiply noises, such as color
distortion, blurring, splotchy textures, etc. The previous approaches are able to
eliminate some noise and recover the original content to some extent. However,
their enhanced images still exist respective drawbacks. For example, FUnlE [19]
remove major distorted colors, but the left bottom and right bottom corner still
exist the irradicable noise region. WaterNet [28] and Ushape [35] can recover the
content and texture of the original image, but the color style of the entire image
is changed. Compared with their enhanced images, our result not only restores
the image content but also retains the color style as much as possible.

5.4 Ablation study

In this section, to validate the effectiveness of the different components, we design
the ablation studies. Table. 4 shows the experimental results. First, we validate
the proposed transformer module, namely the selectable transformer. We train

4 Their code is not released. We cannot obtain their accurate the scale of paramters.
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Table 3. Quantitative comparison on the EUVP underwater dataset.

Method Param. PSNR SSIM

WaterNet [28] 25M 20.14 0.6802
FUnIE [19] 7M 23.40 0.8420
UGAN [9] 57M 23.49 0.7802
Deep SESR [18] 3M 24.21 0.8401
RCTNet [22] - 26.43 0.8912

Ours 12M 29.56 0.8818

(a) Input (c) FUnIE(b) WaterNet (f) Ours (g) GT(d) Ucolor (e) Ushape

Fig. 5. Visual comparison on underwater dataset. (a) input images with low-light qual-
ity. (b) WaterNet [28]. (c) FUnIE [19] (d) Ucolor [27]. (e) Ushape [35] (f) Our enhanced
images. (g) Ground truths.

the supernet without the proposed transformer and then search for the corre-
sponding optimal subnet, whose performance is evaluated on three underwater
datasets. As shown in Table. 4, without the transformer module, the measures
of PSNR and SSIM are decreased dramatically. For instance, its PSNR drops by
2.61 dB, 0.91 dB and 1.41 dB on UIEB, LSUI, EUVP datasets, respectively. It
is an enormous degradation. Second, we validate the effectiveness of multi-color
spaces. In our framework, we use RGB and Lab two color spaces. Here, we retain
RGB images to extract features and remove Lab color space. According to the
results, we can see the Lab images are useful in the neural network. With the Lab
color space, we can boost the PSNR from 23.69 dB to 25.45 dB on UIEB and the
SSIM from 0.8666 to 0.8818 on the EUVP dataset. Although the improvement
is less than the transformer modules, multi-color space is an effective part for
the image enhancement task. Third, we evaluate the skip connection setting in
our network. As shown in our framework, we introduce a skip connection into
the proposed NAS block. The network performance will be reduced when this
operation is not employed in the NAS block. For example, the PSNR and SSIM
are decreased by 1.44 dB and 0.0106 on the LSUI dataset, respectively. These
experiments denote that all of the proposed components are effective to enhance
the quality of images.
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Table 4. Effectiveness of different modules on three datasets by using PSNR and SSIM
evaluation metrics. We validate the proposed search space, multi-color spaces inputs
and skip connection in our NAS block.

Modules
UIEB LSUI EUVP

PSNR SSIM PSNR SSIM PSNR SSIM

Full modules 25.45 0.9231 26.13 0.8608 29.56 0.8818
w/o Transformer 22.02 0.8705 25.12 0.8425 27.80 0.8624
w/o Multi-color spaces 23.69 0.8965 25.70 0.8551 28.03 0.8666
w/o Skip connection 22.82 0.8926 25.39 0.8546 28.12 0.8712

Table 5. Effectiveness of different loss functions on three datasets.

Training setting
UIEB LSUI EUVP

PSNR SSIM PSNR SSIM PSNR SSIM

Full Loss Functions 25.45 0.9231 26.13 0.8608 29.56 0.8818
w/o L1 Loss 23.16 0.9028 25.70 0.8432 28.27 0.8578
w/o L2 Loss 23.29 0.9022 25.80 0.8551 28.73 0.8724
w/o Perceptual Loss 22.95 0.8960 25.51 0.8575 28.20 0.8720

For the network optimization, we introduce three different loss functions: L1,
L2 and perceptual loss. Table. 5 shows the quantitative results by using different
losses to train the network. We gradually remove L1, L2 and perceptual loss to
optimize the network. From the results, we can see that all of them are useful
to boost network performance. Among them, the perceptual loss can retain the
original style and high-frequency information, so it is more effective to improve
the quality of images.

From the our final structure (see Figure.4), we can observe: 1) The different
deriving transformers have been chosen in the final structure, denoting those
different operators can explore larger feature spaces and can generate more suit-
able feature representations for the underwater image enhancement, 2) the trans-
former modules are mainly chosen in the deep layers, revealing that transformers
might be most suitable to encode the high-level features, and 3) using different
operators are more effective than sharing the same modules for different input
data, namely RGB and Lab images.

6 Conclusions

In this paper, we employ neural architecture search (NAS) technology to pro-
pose a NAS-based U-Net framework. It is able to automatically design a deep
model so that it can process severely degraded images, such as turbid water or
extremely dark scenes. Moreover, we introduce a search space including the com-
mon operators and the proposed selectable transformer module, which assigns
the substantial learning capability to our deep model. Besides, the proposed
architecture can exploit the multi-color spaces for the underwater scenarios. Fi-
nally, the extensive experiments demonstrate that the proposed framework can
obtain an optimal neural network and achieve competitive performance on the
widely used datasets.
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