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Abstract. Advertisement video editing aims to automatically edit ad-
vertising videos into shorter videos while retaining coherent content and
crucial information conveyed by advertisers. It mainly contains two stages:
video segmentation and segment assemblage. The existing method per-
forms well at video segmentation stages but suffers from the problems
of dependencies on extra cumbersome models and poor performance at
the segment assemblage stage. To address these problems, we propose
M-SAN (Multi-modal Segment Assemblage Network) which can per-
form efficient and coherent segment assemblage task end-to-end. It uti-
lizes multi-modal representation extracted from the segments and follows
the Encoder-Decoder Ptr-Net framework with the Attention mechanism.
Importance-coherence reward is designed for training M-SAN. We exper-
iment on the Ads-1k dataset with 1000+ videos under rich ad scenarios
collected from advertisers. To evaluate the methods, we propose a unified
metric, Imp-Coh@Time, which comprehensively assesses the importance,
coherence, and duration of the outputs at the same time. Experimental
results show that our method achieves better performance than random
selection and the previous method on the metric. Ablation experiments
further verify that multi-modal representation and importance-coherence
reward significantly improve the performance. Ads-1k dataset is available
at: https://github.com/yunlong10/Ads-1k.

Keywords: Ad Video Editing · Segment Assemblage · Advertisement
Dataset · Multi-modal · Video Segmentation · Video Summarization.

1 Introduction

With the boom of the online video industry, video advertising has become pop-
ular with advertisers. However, different online video platforms have different
requirements for the content and duration of ad videos. It is time-consuming
and laborious for advertisers to edit their ad videos into a variety of duration

⋆ Corresponding author

3519



2 Y. Tang et al.

tailored to the diverse requirements, during which they have to consider which
part is important and whether the result is coherent. Therefore, it is of great
importance to automatically edit the ad videos to meet the requirements of du-
ration, and the edited videos should be coherent and retain informative content.

Ad video editing is a task aiming to edit an ad video into its shorter ver-
sion to meet the duration requirements, ensuring coherence and avoiding losing
important ad-related information. Video segmentation and segment assemblage
are the two main stages in ad video editing task [20], as Fig. 1 shows. An ad
video will be cut into several segments with a small duration during the video
segmentation stage. At the segment assemblage stage, the output will be pro-
duced by selecting and assembling a subset of the input segments of the source
ad video. The key to video segmentation is to preserve the local semantic in-
tegrity of each video segment. For instance, a complete sentence of a speech or
caption in the source video should not be split into two video segments. Existing
method [20] has achieved this by aligning shots, subtitles, and sentences to form
the segments. However, at the segment assemblage stage, the only pioneer work
[20] suffers the following problems: (1) To calculate the individual importance of
each segment and the coherence between segments, extra models are required to
perform video classification [21, 14] and text coherence prediction [7], which is
inefficient during inference. (2) Without globally modeling the context of videos,
graph-based search adopted by [20] produces results with incoherent segments
or irrelevant details.

Fig. 1. The two stages of ad video editing: video segmentation and segment assemblage.

To tackle these problems, we propose an end-to-end Multi-modal Segment
Assemblage Network (M-SAN) for accurate and efficient segment assemblage. It
is free of extra cumbersome models during inference and strikes a better balance
between importance and coherence. Specifically, we obtain segments at the video
segmentation stage by boundary detection and alignment. Different from daily
life videos, ad videos usually have sufficient multi-modal content like speech
and caption, which contain abundant video semantics [13]. Therefore, pretrained
unimodal models are applied to respectively extract the representation of shots,
audios, and sentences, which are concatenated together yielding a multi-modal
representation of segments. During the assemblage stage, we adopt a pointer
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network with RNN-based decoder to improve the temporal dependency between
selected segments. Importance-coherence reward is designed for training M-SAN
with Policy Gradient [35]. Importance reward measures the amount of important
ad-related information contained in the output. Coherence reward measures the
text coherence between every two adjacent selected segments, which is computed
as the mean of PPL (perplexity) [30] of sentences generated by concatenating
the two texts extracted from adjacent selected segments.

To evaluate our methods, we propose the new metric, Imp-Coh@Time, which
takes the importance, coherence, and duration of the outputs into considera-
tion at the same time instead of evaluating importance or coherence respec-
tively. We experiment on the Ads-1k dataset with 1000+ ad videos collected
from advertisers. Experimental results show that our method achieves better
performance than random selection and the previous method [20] on the met-
ric. Ablation experiments further verify that multi-modal representation and
importance-coherence reward significantly improve the performance.

Our work mainly focuses on segment assemblage in ad video editing, and its
main contributions can be summarized as follows:

• We propose M-SAN to perform segment assemblage efficiently and improve
the result of ad video editing, without relying on an extra model when in-
ference.

• We propose importance-coherence reward and train M-SAN with policy gra-
dient to achieve a better trade-off between importance and coherence.

• We collect the dataset Ads-1k with 1000+ ad videos and propose Imp-
Coh@Time metrics to evaluate the performance of ad video editing methods.
Our M-SAN achieves state of the art on the metrics.

2 Related Work

2.1 Video Editing

There are three main categories of automated video editing [20]. They’re video
summarization, video highlight detection, and task-specific automated editing.
Video Summarization. The most relevant task to ad video editing is video
summarization. It is a process that extracts meaningful shots or frames from
video by analyzing structures of the video and time-space redundancy in an
automatic or semi-automatic way. To perform video summarization, a load of
work focuses on supervised learning based on frames [11, 34, 8, 23], shots [9, 39,
16], and clips [19]. Other than these works, DSN [40] is the first proposed unsu-
pervised video summarization model training with diversity-representativeness
reward by policy gradient. Without utilizing annotation, the method reached
fully unsupervised. Our rewards design mainly refers to [40].
Video Highlight Detection. Learning how to extract an important segment
from videos is the main motivation we focus on video highlight detection. [31]
proposed frameworks that exploit users’ previously created history. Edited videos
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created by users are utilized in [38] to achieve highlight detection in an unsuper-
vised way since human-edited videos tend to show more interesting or important
scenes. [36] presents an idea that shorter videos tend to be more likely to be se-
lected as highlights. Combining the above ideas, we exploit the ability of MSVM
[20] which extracts potential selling points in segments that tend to be of higher
importance when performing assemblage.
Task-specific Automated Editing. Videos can be presented in various forms
such as movies, advertisements, sports videos, etc. To extract a short video from
a long video also exists in specific scenarios of movies [15, 2, 37]. [15] pointed
out that a movie has the trait that its computational cost is high. Also, sports
videos have been explored to extract highlights [25, 26] for sports having the
characteristic that they are high excitement. Advertisements are rich in content
and they vary in duration among different platforms [20].

2.2 Text Coherence Prediction and Evaluation

Text information is extracted in the stage of video segmentation. When assem-
bling segments, texts that are concatenated act as a reference to coherence. [4]
proposed narrative incoherence detection, denoted semantic discrepancy exists
causes incoherence. In [20], next sentence prediction (NSP) [7] is exploited to
assess coherence. Although our work is inspired by their thoughts, we use per-
plexity as the coherence reward and metric to evaluate sentence coherence.

2.3 Neural Combinatorial Optimization

Combinatorial optimization problem is a problem that gets extremum in discrete
states. Common problems like Knapsack Problem (KP), Travelling Salesman
Problem (TSP), and Vehicular Routing Problem (VRP) belong to combinato-
rial optimization problem. Pointer Network (Ptr-Net) is proposed in [33] and
performs better than heuristic algorithm in solving TSP. Later, Ptr-Net has
been exploited with reinforcement learning [3, 29, 6, 18, 12]. In [10], Ptr-Net is
used to solve the length-inconsistency problem in video summarization. In our
network, Ptr-Net is used to model the video context and select the tokens from
the input sequence as output.

3 Method

3.1 Problem Formulation

Given a set of N segments of ad video S = {si}1≤i≤M , our goal is to select a
subset A = {ai}1≤i≤N ⊆ S which can be combined into the output video so that
it can take the most chance to retain the important information and be coherent
as well as meeting the requirements of duration. We denote the ad importance
of the segment ai as imp(ai), the coherence as coh(ai, aj) and the duration as

3522



M-SAN with Imp-Coh Reward for Ad Video Editing 5

dur(ai). Overall the task of segment assemblage can be regarded as a constrained
combinatorial optimization problem and is defined formally as follows:

max
A⊆S

∑
ai∈A

imp(ai) +
∑

ai≺aj

coh(ai, aj) ,

s.t. Tmin ≤ τ(A) ≤ Tmax, and ∀ai, aj ∈ A, ai ̸= aj ,

(1)

where

• Tmin and Tmax are the lower and upper bound of requirement duration,
• τ(A) =

∑
ai∈A dur(ai),

• ai ≺ aj is defined as (ai, aj ∈ A) ∧ (i < j) ∧ (∀ak ∈ A, k < i ∨ k > j).

This is an NP-hard problem that can not be solved in polynomial time. Instead of
utilizing graph modeling and optimization [20] to search for an optimal solution,
we adopt a neural network with pointer [33] that follows the framework of neural
combinatorial optimization to optimize the objective directly.

3.2 Architecture

The architecture of M-SAN is shown as Fig. 2. It incorporates a multi-modal
video segmentation module [20] (MVSM), multi-modal representation extraction
module (MREM) and assemblage module (AM). To preserve the local semantic
integrity of each segment, we adopt MVSM to obtain video segments with rea-
sonable boundaries. With ASR and OCR, MVSM also captures the texts from
each segment. Given the segments and the corresponding texts, MREM extracts
the segment-level representations of shots, audios, and texts, which are further
jointed into the multi-modal representations. AM utilizes these representations
to model the context of video and make decisions by a pointer network [33].

Video Segmentation Module. At the video segmentation stage, we first apply
MVSM [20] to obtain the segments of each input video. MVSM splits a video
into the video track and audio track and extracts shots {vi}, audios {αi}, ASR
and OCR results Ωi = {ωi} (a sentence with words ωi) from video to generate
the boundaries of the content in each modality. The boundaries of audio space
and textual space are first merged to form the joint space, followed by merging
the boundaries of visual space and joint space to yield the final segments set
{si}. The segment si = ({vp0

, ..., vq0}, {αp1
, ..., αq1}, Ωi) preserves the integrity

of local atomic semantic, where p(·) < q(·).

Multi-modal Representation Extraction Module. MREM integrates three
kinds of representation extractors: pre-trained Swin-Transformer [24], Vggish
[14] and BERT [7] models. The Swin-Transformer extracts the visual representa-
tions {ṽp0

, ..., ṽq0} from shots {vp0
, ..., vq0} in each segment {si}, and a segment-

level visual representation is computed as the mean of single shot-level represen-
taton. Vggish and BERT model extract audio representations {α̃p1

, ..., α̃q1} and
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Fig. 2. The Architecture of M-SAN

text representations Ω̃i, respectively. Similarly, a segment-level audio represen-
tation ᾱi is given by the mean of {α̃p1

, ..., α̃q1}. Since each segment contains at

most one sentence, it is Ω̃i that is the segment-level text representation. These
three modalities will be jointed by concatenating directly to yield the final multi-
modal representation of segment s̃i = [v̄i, ᾱi, Ω̃i]

T .

Assemblage Module. The output of an Encoder-Decoder Ptr-Net [33] is pro-
duced by iteratively copying an input item that is chosen by the pointer [27],
which is quite suitable for segment assemblage task. Therefore, our assemblage
module (AM) follows this framework.

The encoder integrates a linear embedding layer and a bi-directional GRU. To
enhance interactions between modalities, the linear embedding layer will perform
preliminary a fusion of the three modalities and produce embedding token xi

corresponding to segment si. To enhance the interaction between segments and
model the context of the whole video, a Bi-GRU is adopted to further embed
the tokens:

H = GRUe(X) , (2)

where X = [x1, ..., xM ], H = [h1, ..., hM ], and the hidden state hi is the context
embedding for segment si.

Given the output of encoder H and X, the GRU [5] decoder with Attention
mechanism [1] predicts the probability distribution of segment to be selected
from S at every time-step t to get the result A:

pθ(A|S) =
N∏
t=1

pθ(at|a1:t, S) =
N∏
t=1

pθ(at|a1:t−1, H,X) =

N∏
t=1

pθ(at|at−1, dt) , (3)
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where θ is the learnable parameter, and dt is the hidden state computed by the
decoder at time-step t. With dt as the query vector, the decode will glimpse
[32] the whole output of encoder H to compute the bilinear attention. Instead of
utilizing the additive attention adopted in [10, 12], we compute bilinear attention
µt with less computational cost:

µt = Softmax(HTWatt1dt) . (4)

Until now, the attention µt is used as the probability distribution to guide the
selection in most of Ptr-Net framework [10, 12]. To dynamically integrate infor-
mation over the whole video [28], we further calculate the context vector ct of
encoder output and update query vector dt to d̃t by concatenating it with ct
(Eq. 5). Then we compute attention a second time to obtain the probability
distribution of segment selection at current time-step t (Eq. 6).

ct = Hµt =

M∑
m=1

µ
(m)
t hm, d̃t =

[
dt
ct

]
, (5)

µ̃t = Softmax(MHTWatt2 d̃t) , (6)

pθ(at|at−1, dt) = µ̃t , (7)

where M can mask the position i corresponding to selected segment ai to −∞.
The segment at this position will be not selected at later time-steps, since
Softmax(·) modifies the corresponding probability to 0. Finally, the segment
selected at time-step t will be sampled from the distribution:

at ∼ pθ(at|at−1, dt) . (8)

If the sum of duration of selected segments τ(A) exceeds the tolerable duration
limit [Tmin, Tmax], the current and following segments selected will be replaced
by [EOS] token [17].

3.3 Reward Design

Importance Reward. To extract important parts from original ad videos,
rewards related to the importance of selected segments should be fed back to
the network during training. We design importance reward Rimp:

Rimp =
1

|A|
∑
ai∈A

imp(ai) , (9)

imp(ai) =
1

|Lai
|
∑

ℓ∈Lai

wl · ℓ , (10)

where A is the set of selected segments, Lai
stands for the total number of labels

of the selected segment, ℓ ∈ {1, 2, 3, 4} is narrative techniques label hierarchy,
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and wl is the weight of one label. According to Eq. 9, the importance of a single
segment is the weighted average of its annotated labels’ weight. The labels listed
in the supplementary are divided into four groups with four levels ranging from
1 to 4 according to their ad-relevance. We compute the importance reward of
one output as the mean of the importance of single segments.

Coherence Reward. Importance reward mainly focuses on local visual dy-
mantics within the single segment, neglecting temporal relationships between
adjacent segments. We introduce a linguistic coherence reward to improve the
fluency of caption descriptions of two segments.

Specifically, the extracted texts from adjacent segments are combined in pairs
while retaining the original order, that is, preserving the same order of the orig-
inal precedence. Then we compute the perplexity [30] (PPL) for each combined
sentence by GPT-2 pre-trained on 5.4M advertising texts:

PPL(Ω1, Ω2) = p(ω
(1)
1 , ω

(1)
2 , ..., ω(1)

m , ω
(2)
1 , ω

(2)
2 , ..., ω(2)

n )−1/(m+n)

= m+n

√√√√m+n∏
i=1

1

p(ωi|ω1, ω2, ..., ωi−1)
,

(11)

where Ωi = (ω
(i)
1 , ..., ω

(i)
m ) is one sentence with m words. PPL reflects the in-

coherence of a sentence. We also maintain a PPL map to store the PPL of
sentences in pairs as Fig. 3 shown. The grey parts represent invalid PPL values,

Fig. 3. PPL map and coherence reward

which means sentence pairs that violate the original orders have no valid PPL
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value. The rest means valid PPL values vary from high to low as the color of red
deepens. Since the smaller the PPL, the better the text coherence, the coherence
reward is computed with a transfer function:

Rcoh = exp(− 1

N − 1

∑
ai≺aj

PPL(Ω(ai), Ω(aj))) , (12)

where N = |A| is the total number of selected segments, Ω(ai) is the sentence
recognized from segment ai. The exp(·) ensures the Rcoh at the same order of
magnitude with Rimp.

Importance-Coherence Reward. To balance the importance and coherence
of the selection, we make Rimp and Rcoh complement each other and jointly
guide the learning of M-SAN:

R = β ·Rimp + (1− β) ·Rcoh , (13)

where the coefficient of reward β is a hyperparameter.

3.4 Training

Policy gradient (a.k.a. REINFORCE algorithm [35]) is adopted during training:

∇θJ(θ) ≈
1

K

K∑
k=1

N∑
t=1

(R(A(k))− b(k))∇θ log pθ(a
(k)
t |a(k)t−1, d

(k)
t ) , (14)

where K denotes the number of episodes, at stands for the actions (which seg-
ment to choose) and dt is the hidden state estimated by the decoder. R(A) is
the reward calculated by Eq.13. A baseline value b so that the variance can be
reduced. For the optimization, neural network parameter θ is updated as:

θ = θ − η∇θ(−J(θ)) , (15)

where η is the learning rate.

4 Experiments

4.1 Dataset

In [20], there are only 50 ad videos used in experiments. To obtain better training
and evaluation, we collect 1000+ ad videos from the advertisers to form the Ads-
1k dataset. There are 942 ad videos for training and 99 for evaluation in total.
However, the annotation methods of the training set and test set are somehow
different. Instead of preparing the ground-truth for each data, we annotate each
video with multi-labels shown in the supplementary.
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Table 1. Dataset statistics. Nseg and Nlabel are respectively the average number of
segments and labels of each video. Dseg and Dvideo are the average duration of a
segment and a video, respectively.

Dataset Nseg Dseg(s) Dvideo(s) Nlabel

Training Set 13.90 2.77 34.60 30.18
Test Set 18.81 1.88 34.21 35.77
Overall 14.37 2.68 35.17 30.71

We counted the average segment number for videos, the average length of
segments in seconds, the average duration of each video in seconds, and the av-
erage label number for each video for the training set, test set, and the whole
dataset respectively. The results are shown as Tbl. 1. Besides, the number of an-
notated segment pairs and the proportion are counted. The number of coherent,
incoherent, and uncertain pairs are 6988, 9551, and 2971, occupying 36%, 49%,
and 15%, respectively.

4.2 Metric

Imp@T. We define the score of ad importance given the target duration T as
follows:

Imp@T =
1

|A|
∑
ai∈A

imp(ai) · I[c1 · T ≤ τ(A) ≤ c2 · T ] , (16)

where A is the set of selected segments, imp(ai) is defined by Eq. 10. I(·) is the
indicator function. c1 and c2 are two constant that produced a interval based on
given target duration T . We set c1 = 0.8 and c2 = 1.2, since a post-processing
of 0.8× slow down 1.2× or fast forward can resize the result close to the target
T without distortion in practice. Take T = 10 as example, the interval will be
[8, 12], which means if the duration of result τ(A) =

∑
ai∈A dur(ai) ∈ [8, 12]

then this result is valid and gain the score.

Coh@T. The coherence score given the target duration T is defined as follows:

Coh@T =
1

|A| − 1

∑
ai≺aj

coh(ai, aj) · I[c1 · T ≤ τ(A) ≤ c2 · T ] , (17)

where the coh(ai, aj) is the coherence small score between the text of segment i
and the text of segment j. With the annotation for coherence on test set, we can
score the results produced by our models. When scoring, for each combination
of consecutive two segments i and j in output, if it is in the coherent set, the
coh(ai, aj) will be 1. If it is in the incoherent set, the coh(ai, aj) will be 0.
Otherwise, it is in the uncertain set, the coh(ai, aj) will be 0.5.
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Imp-Coh@T. The overall score is defined as follows:

ImpCoh@T =
Imp@T

|A| − 1
·
∑

ai≺aj

coh(ai, aj) , (18)

where Imp@T is defined in Eq. 16. The score reflects the ability of trade-off
among importance, coherence and total duration.

4.3 Implementation Details

Baselines. Besides SAM (Segments Assemblage Module) proposed in [20], we
also adopt two random methods to perform the segment assemblage task, given
the segments produced by MVSM [20].

• Given the set of input segments S = {si}1≤i≤M and the target time T , Ran-
dom will first produce a random integer 1 ≤ r ≤ M . Then it will randomly
pick up r segments from S to get the result A = {ai}1≤i≤r, regardless of the
target time T .

• Given S = {si}1≤i≤M and T , Random-Cut randomly picks up segments
from S and add to A until c1 · T ≤ τ(A) ≤ c2 · T , ensuring satisfying the
requirement of duration.

• Given S = {si}1≤i≤M and T , the SAM [20] will utilize an extra model
to perform video classification or named entity recognition to obtain some
labels for each segment and compute an importance score for each segment.
It also utilizes an extra BERT [7] to perform next sentence prediction (NSP)
to compute a coherence score for each pair of segments. Then the segments
{si}1≤i≤M will be modeled as a graph with |S| nodes and |S|(|S|− 1) edges,
where the weight of nodes are the importance score and the weight of edges
are the coherence score. DFS with pruning is then adopted to search on
the graph to collect a set that maximizes the sum of importance scores and
coherence scores.

Parameters and Training Details. The Swin-Transformer [24] we used is
the Large version with an output size of 1536. The 5 shots will be extracted to
generate a visual representation every second of the video. The segment-level
representation is computed as the mean of. The output size of BERT [7] and
Vggish [14] are 768 and 128 respectively, and the sampling rate of Vggish is 5
every second to align with visual information. The dimension of s̃i is 2432. The
linear embedding layer performs a projection from 2432 to 768. We optimize the
sum reward R = 0.5 · Rimp + 0.5 · Rcoh, where the Rimp and Rcoh are given in
Eq. 9 and Eq. 12 with β = 0.5. The wl in Rimp for all ℓ are 0.25. The optimizer
we used is Adam [22]. More details can be found in supplementary.

4.4 Performance Comparison

We evaluated our M-SAN on the test set of Ads-1k with the three baselines
mentioned above. The results are provided by Tbl. 2. It shows that our M-SAN
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is state of the art on segment assemblage task given target duration T = 10
and T = 15. There is a significant improvement from Random to Random-Cut.
Therefore, simply sticking to the time limit can improve performance by leaps
and bounds. From Random-Cut to SAM, the improvement at T = 10 is also
obvious, while the difference between them at T = 15 is not. This is probably
because a longer duration budget forces Random-Cut to select more segments.
The segment pairs as result have a greater chance of being coherent pairs.

Although SAM performs better than Random-Cut, its ability to trading-off
between importance and coherence is still weak. M-SAN addresses the problem
by trained with importance-coherence reward and achieves a better performance.

Table 2. Performance comparison results. Our M-SAN is state of the art on segment
assemblage task.

Imp-Coh@10 Imp-Coh@15
Imp Coh Overall Imp Coh Overall

Random 10.68 12.57 7.92 17.04 20.49 12.71
Random-Cut 55.35 73.75 41.77 60.39 76.56 47.25
SAM [20] 72.54 86.55 65.97 63.97 78.58 58.09

M-SAN(ours) 80.29 92.16 74.19 77.00 90.83 70.28

4.5 Ablation Studies

Ablation of Modalities. We explore the effect of the representation from
different modalities. Tbl. 3 shows that incorporating the text or audio repre-
sentation can both improve the overall score while incorporating the former
have much effect. After leveraging all representations from three modalities, the
overall scores increase significantly, which has 8.7 and 3.75 gains compared with
utilizing visual information only on Imp-Coh@10 and Imp-Coh@15, respectively.
Even though adding text representation to video-audio dual modalities hurts the
Imp@15, other scores increase obviously, which demonstrates the significance of
multi-modal representation.

Ablation of Reward and Glimpse. To verify the effectiveness of reward
and glimpse (two-stage attention calculation), we design the following ablation
experiments with target duration T = 10 and T = 15. The results in the Tbl.
4 show that M-SAN gains a higher score on all metrics than the one without
glimpse. Therefore, dynamically integrating information over the whole video
by Glimpse can improve the performance. Similarly, we perform ablation on
the rewards: importance-coherence reward (M-SAN), importance reward only,
and coherence reward only. Results in Tbl. 4 show that M-SAN trained with

3530



M-SAN with Imp-Coh Reward for Ad Video Editing 13

Table 3. Ablation study on modalities

Modalities Imp-Coh@10 Imp-Coh@15

V T A Imp Coh Overall Imp Coh Overall

✓ 78.43 89.59 65.49 74.48 87.41 66.53
✓ ✓ 78.57 89.73 71.04 76.22 89.85 68.56
✓ ✓ 79.49 91.49 72.72 77.08 90.36 69.91
✓ ✓ ✓ 80.29 92.16 74.19 77.00 90.83 70.28

importance-reward only gained relatively low scores comparing the other two
kinds of rewards. The one trained with coherence-reward only gained a higher
score than the one with importance-reward. M-SAN trained with importance-
coherence reward prominently performs better than the other two.

Table 4. Ablation study on glimpse and rewards.

Imp-Coh@10 Imp-Coh@15
Imp Coh Overall Imp Coh Overall

M-SAN 80.29 92.16 74.19 77.00 90.83 70.28
w/o glimpse 79.80 91.50 72.97 75.98 90.58 70.12
coh-rwd only 79.37 91.02 72.28 76.90 90.29 69.75
imp-rwd only 67.82 71.62 49.87 67.42 79.89 54.10

Analysis of Reward Ratio. To further figure out which reward ratio brings
the optimal results, we experiment on T = 10 and T = 15, assigning 0.0/0.3/0.5/0.7
to β. Importance score, coherence score, and overall score results are shown in
the line chart Fig. 4. The results at the T = 10 and T = 15 are presented by
lines painted in blue and orange respectively. Given target duration T = 10s,
all three scores reach a peak at β=0.5. Given target duration T = 15s, the im-
portance score and overall score reach a peak at β=0.3, which is slightly higher
than the score at β=0.5. Coherence score reaches the highest point at β=0.5.
On the whole, the performance is relatively good at the condition of β=0.5.

4.6 Qualitative Analysis

One result is shown as Fig. 5. The source video is about a collectible game
app with real mobile phones as the completion rewards. Its original duration is
36s, and the target duration is 15s. SAM [20] generates videos with too many
foreshadowing parts, which exceeds the duration limitation. M-SAN produces a
15s result and tends to select latter segments in source videos, which is reasonable
because key points usually appear in the latter part of the ad with the front part
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Fig. 4. Comparison results with β = 0.0/0.3/0.5/0.7.

doing foreshadowing. The result of M-SAN first demonstrates using the app to
get a new phone and then shows a scene where a new phone is packed, which
emphasizes the rewards of completing the game. This verifies the M-SAN focuses
on more informative segments and does better than SAM in duration control.

Fig. 5. Visualization. Source video and videos assembled by SAM and M-SAN given
target duration T = 15s. τ is the actual duration of result.

5 Conclusion

The two main stages of ad video editing are video segmentation and segment as-
semblage. Existing methods perform poorly at the segment assemblage stage. To
improve the performance of segment assemblage, we proposed M-SAN to perform
segment assemblage end-to-end. We also proposed importance-coherence reward
based on the characteristics of ad and train M-SAN with policy gradient. We col-
lected an ad video dataset with 1000+ ad videos and proposed Imp-Coh@Time
metrics. Experimental results show the effectiveness of M-SAN and verify that
multi-modal representation and importance-coherence reward bring a significant
performance boost.
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