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Abstract. For the past ten years, CNN has reigned supreme in the
world of computer vision, but recently, Transformer has been on the
rise. However, the quadratic computational cost of self-attention has be-
come a serious problem in practice applications. There has been much
research on architectures without CNN and self-attention in this context.
In particular, MLP-Mixer is a simple architecture designed using MLPs
and hit an accuracy comparable to the Vision Transformer. However, the
only inductive bias in this architecture is the embedding of tokens. This
leaves open the possibility of incorporating a non-convolutional (or non-
local) inductive bias into the architecture, so we used two simple ideas
to incorporate inductive bias into the MLP-Mixer while taking advan-
tage of its ability to capture global correlations. A way is to divide the
token-mixing block vertically and horizontally. Another way is to make
spatial correlations denser among some channels of token-mixing. With
this approach, we were able to improve the accuracy of the MLP-Mixer
while reducing its parameters and computational complexity. The small
model that is RaftMLP-S is comparable to the state-of-the-art global
MLP-based model in terms of parameters and efficiency per calculation.
Our source code is available at https://github.com/okojoalg/raft-mlp.

Keywords: Image classification · Network architecture · Multilayer per-
ceptron.

1 Introduction

In the past decade, CNN-based deep architectures have been developed in the
computer vision domain. The first of these models was AlexNet [24], followed by
other well-known models such as VGG [34], GoogLeNet [35], and ResNet [15].
These CNN-based models have exhibited high accuracy in various tasks, in-
cluding image classification, object detection, semantic segmentation, and image
generation. Adopting convolution, they employ the inherent inductive bias of
images. Meanwhile, Transformer [45] has been winning success in recent years
in the field of Natural Language Processing (NLP). Inspired by this success,
Vision Transformer (ViT) [11] has been proposed. ViT is a Transformer-based
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Fig. 1. The whole architecture of RaftMLP

visual model that replaces CNN with the self-attention mechanism. The main
idea of ViT is to divide the image into patches based on their spatial locations
and apply the Transformer using these patches as tokens. Immediately after the
ViT paper appeared, various related works [1, 4, 10, 12, 13, 29, 46, 56, 52, 55] have
been done. They have shown that Transformer-based models are competitive
with or even exceed CNN-based models in various image recognition and gener-
ation tasks. Although Transformer-based models have a reduced inductive bias
for images compared to CNN-based models, they compensate for this lack by
using a vast array of parameters and computational complexity instead. More-
over, it is successful because it can capture global correlations due to replacing
the local receptive fields of convolution with global attention.

More recently, there has been a growing interest in improving the computa-
tional complexity of computationally intensive self-attention. Some works [31, 40,
41] claim that Multi Layer Perceptron (MLP) alone is sufficient for image tasks
without self-attention. In particular, MLP-Mixer [40] has performed a wide va-
riety of MLP-based experiments, and the accuracy of image classification is not
better than ViT, but the results are comparable. The MLP-based model, like
ViT, first decomposes an image into tokens. A combined operation of MLP,
transposition, and activation functions follows the tokenization. The significant
point to note is that the transposition operation switches from token-mixing
block to channel-mixing block and vice versa. While the channel-mixing block is
equivalent to 1x1 convolution in CNN, the token-mixing block is a module that
can capture the global correlations between tokens.
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The wonderful thing about the MLP-Mixer is that it exhibited the possibil-
ity of competing with the existing models with a simple architecture without
convolution nor self-attention. In particular, the fact that a simple MLP-based
model could compete with current models leads us to think about successors to
convolution. This idea has triggered the interest of many researchers on whether
computer vision tasks can outgrow the classical convolution paradigm that has
been in the mainstream for ten years. Motivated by the MLP-Mixer, some archi-
tectures have been proposed that inject convolutional local structures in pursuit
of accuracy. We call the models with such structures local MLP-based mod-
els. In contrast, models such as MLP-Mixer, which adopt a design to capture
global correlations without local operation, are called global MLP-based mod-
els. The global MLP-based model, including MLP-Mixer, has a shortcoming with
the models. Unlike convolution, the resolution of the images used for training
and inference is fixed, and thwarts the application to downstream tasks such as
object detection and semantic segmentation. This paper aims to achieve cost-
effectiveness with fewer resources in developing a global MLP-based model. The
contributions of this study are as follows.

Spatial structure As shown in Fig. 1, we propose a module in which the to-
ken mixing block is divided into vertical and horizontal mixing blocks in series.
In the standard MLP-Mixer, the relevance of patches has no inductive bias in
the vertical and horizontal directions in the original two-dimensional image. In
our proposed model, we implicitly assume as an inductive bias that patch se-
quences aligned horizontally have similar correlations with other horizontally
aligned patch sequences. The same can be said for vertically aligned patch se-
quences—additionally, groups of channels are jointed in tensors before inputting
into vertical-mixing and horizontal-mixing blocks. Jointed channels are shared
with both mixing blocks. Thus, we assume that there are objects and their visual
patterns are often distributed linearly over an image and geometrical relation
among some channels.

Multi-scale patch embedding While ViT and MLP-Mixer patch embedding was
a simple method; we added a hierarchical structure. That is multi-scale patch
embedding, which embeds information around the patch in the original patch
embedding, as shown in Fig. 3. The multi-scale patch embedding method, which
also embeds information around the patch in the embedding of the original patch,
helped us increase the accuracy at the cost of a small amount of computation
and memory consumption.

We will demonstrate that the proposed model with a simple inductive bias
without excessive spatial locality as convolution is superior to MLP-Mixer and
comparable to global MLP-based models. In addition, we will mention that the
proposed method is a model that can achieve accuracy at a reduced cost com-
pared to previous studies. In the appendix, we will study the applicability of
the proposed model to downstream tasks such as semantic segmentation, in-
stance segmentation, and object detection. The results will encourage the future
possibilities of architectures without self-attention and with less spatial locality.
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2 Related Work

Transformer-based models Originally proposed for NLP, Transformer [45] soon
began to be applied to other domains, including visual tasks. In particular, in
image recognition, the attention-augmented convolution has been introduced in
[3, 19, 48]. Stand-alone attention for visual task, rather than an augmentation
to convolution, is studied in [33], where it was shown that fully self-attentional
version of ResNet-50 outperforms the original ResNet in ImageNet classification
task.

More Transformer-like architectures, process input tokens by self-attention,
rather than augmenting CNNs by attention, were studied in [6] and [11]. In
particular, in [11], ViT based on a BERT-type pure Transformer was proposed
to deal with high-resolution inputs such as the ImageNet dataset. ViT was pre-
trained using a large-scale dataset and transferred to ImageNet, which gave
superior results compared to state-of-the-art CNNs.

Inspired by ViT, various transformer-like architectures have been proposed.
The most relevant one to our study is CrossFormer [47], which includes a hierar-
chical structure and Cross-scale Embedding for patch embedding at each level.
Cross-scale Embedding effectively injects inductive biases for image domain by
using convolution with multiple kernel sizes to perform patch embedding, and it
resembles our proposed Multi-scale Patch Embedding in the basic idea. In addi-
tion, CrossFormer also proposes a method called Long Short Distance Attention,
in which self-attention is divided into two parts, one for long-distance and one
for short-distance.

Grobal MLP-based models Recently, several alternatives to CNN-based architec-
tures have been proposed that are simple, yet competitive with CNN despite
not using convolution or self-attention [40, 31, 41]. MLP-Mixer [40] replaces the
self-attention layer of ViT with simple cross-tokens MLP. Despite its simplicity,
MLP-Mixer achieves results that are competitive with ViT. gMLP [28] which
consists of an MLP-based module with multiplicative gating is an alternative to
MLP-Mixer, achieves higher accuracy than MLP-Mixer with fewer parameters.
Vision Permutator [17] focused on mixing in vertical and horizontal directions
like our work. Unlike ours, which employs a serialized structure, the Vision Per-
mutator incorporates a parallelized structure, which results in higher accuracy
with fewer parameters than the MLP-Mixer. sMLP [39] also shares the idea
of decomposing token mixing into vertical and horizontal information mixing.
These mixings are performed in parallel and the results are added and output
from the module. Another direction of global mixing is CCS-MLP [49] as an ex-
ample. To achieve translation invariance, CCS-MLP introduces circulant token
mixing instead of vanilla token mixing MLP.

Local MLP-based models Moving to a generic inductive bias like Transformer
and MLP has attractive possibilities, but its lack of an inductive bias like con-
volution means that its pre-training requires vast amounts of data compared to
CNNs. In order to achieve good performance without large datasets, MLP-based
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architectures have been proposed as an alternative to MLPs such as S2-MLP [50],
S2-MLPv2 [51], AS-MLP [26], CycleMLP [5], and ConvMLP [25], which incor-
porate local structures. Although these models have the name of MLP, their
essential motivation is the same as CNN in that they use the local structure
of the models to extract patterns efficiently. Hence, we call these MLP-based
architectures local MLP-based models. In contrast, architectures that mainly
utilize MLPs to capture global correlations, such as MLP-Mixer and our study,
are called global MLP-based models.

3 RaftMLP

In this section, we describe MLP-Mixer on which RaftMLP is based and the
method adopted for RaftMLP.

3.1 Background

MLP-Mixer [40] splits an inputted image into patches of the same size imme-
diately after input and is followed by MLPs that maintain the patch structure.
There are two types of MLP: The first one is the token-mixing block, another
is the channel-mixing block. We split an image with height h and width w into
tokens with height and width p. If h and w are divisible by p, by viewing this
image as a collection of these tokens, we can regard the image as an data array
of height h′ = h/p , width w′ = w/p and channel cp2 where c denotes channel of
the inputted image. The number of a token is then s = hw/p2. The token-mixing
block is map Rs → Rs that acts across axes of a token. In contrast, the channel-
mixing block is map Rc → Rc that acts across axes of a channel as well where
c is the number of channels. Both blocks contain the same modules: Layer Nor-
malization (LN) [2] for each channel, Gaussian Error Linear Units (GELU) [16]
and MLP. Concretely, the following equation gives the blocks

Xoutput = Xinput +W2GELU(W1LN(Xinput)), (1)

where Xinput denotes input tensor, Xoutput denotes output tensor, W1 ∈ Ra×aea ,
W2 ∈ Raea×a denote matrices of MLP layer, and ea denotes expansion factor.
For simplicity, the bias term in MLP was omitted. In token-mixing block, a = s
and in channel-mixing block, a = c. Moreover, the token-axis and channel-axis
are permuted between both mixings. In this way, MLP-Mixer [40] is composed
of transposition and two types of mixing blocks.

3.2 Vertical-mixing and Horizontal-mixing Block

In the previous subsection, we discussed the token-mixing block. The original
token-mixing block does not reflect any two-dimensional structure of an input
image, such as height or width direction. In other words, the inductive bias
for images is not included in the token-mixing block. MLP-Mixer [40] therefore

3176



6 Y. Tatsunami and M. Taki

has no inductive bias for images except for how the first patches are made.
We decompose this token-mixing block into two blocks that mix vertical and
horizontal axes respectively and incorporate inductive bias for image domain.
The following describes our method.

The vertical-mixing block is map Rh′ → Rh′
that acts across the vertical axis.

Precisely, this map captures correlations along the horizontal axis, utilizing the
same MLP along the channel and horizontal dimensions. The map also applies
layer normalization for each channel, GELU, and the residual connection. The
components of this mixing block are the same as the original token-mixing block.

Similarly, the horizontal-mixing block is map Rw′ → Rw′
, and shuffle the

horizontal axis. The structure is dual, only replacing vertical and horizontal
axes. We propose replacing token-mixing with a successive application of vertical-
mixing and horizontal-mixing, assuming meaningful correlations along vertical
and horizontal directions of 2D images. This structure is shown in Fig. 1. The
formula is as follows:

U∗,j,k =X∗,j,k +W2,verGELU(W1,verLN(X∗,j,k)),

∀j = 1, . . . , w′, ∀k = 1, . . . , c, (2)
Yi,∗,k =Ui,∗,k +W2,horGELU(W1,horLN(Ui,∗,k)),

∀i = 1, . . . , h′, ∀k = 1, . . . , c, (3)

where W1,ver ∈ Rh′×h′e, W2,ver ∈ Rh′e×h′
,W1,hor ∈ Rw′×w′e, and W2,hor ∈

Rw′e×w′
denote MLP weight matrices and U,X, and Y denote feature tensors.

Vertical-mixing

Skip ConnectionSkip Connection

Constructing Rafts

ChannelChannel

Mix

Mix

Deconstructing Rafts

ChannelChannel

Horizontal-mixing

Fig. 2. The architecture of the raft-token-mixing block. Channels are rearranged with
raft-like structure, and then vertical and horizontal mixed.

3.3 Channel Raft

Let us assume that several groups of feature map channels have correlations
originating from spatial properties. Under this assumption, some feature maps
would have some patterns across vertical or horizontal directions. To capture
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such spatial correlations, we integrate feature maps into the vertical and hori-
zontal shuffle. As shown in Fig. 2, this can be carried out by arranging the feature
maps in h′r×w′r, which is reshaping the h′ ×w′ × c tensor into a h′r×w′r× c′

tensor with c′ = c/r2 channels. We then perform the vertical-mixing and the
horizontal-mixing blocks for this new tensor. In this case, the layer normaliza-
tion done in each mixing is for the original channel. We refer to this structure
as channel raft. The combination of vertical- and horizontal-mixing blocks and
the channel raft is called raft-token-mixing block in this paper. The pseudo-
code for the raft-token-mixing block is given in Listing 1.1. The combination of
raft-token-mixing block and the channel-mixing block is referred to as RaftMLP
block.

1 # b: size of mini -batch , h: height , w: width ,
2 # c: channel , r: size of raft , o: c//r,
3 # e: expansion factor ,
4 # x: input tensor of shape (h, w, c)
5

6 def __init__(self):
7 self.lnv = nn.LayerNorm(c)
8 self.lnh = nn.LayerNorm(c)
9 self.fnv1 = nn.Linear(r * h, r * h * e)

10 self.fnv2 = nn.Linear(r * h * e, r * h)
11 self.fnh1 = nn.Linear(r * w, r * w * e)
12 self.fnh2 = nn.Linear(r * w * e, r * w)
13

14 def forward(self , x):
15 y = self.lnv(x)
16 y = rearrange(y, ’b (h w) (r o) -> b (o w) (r h)’)
17 y = self.fcv1(y)
18 y = F.gelu(y)
19 y = self.fcv2(y)
20 y = rearrange(y, ’b (o w) (r h) -> b (h w) (r o)’)
21 y = x + y
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22 y = self.lnh(y)
23 y = rearrange(y, ’b (h w) (r o) -> b (o h) (r w)’)
24 y = self.fch1(y)
25 y = F.gelu(y)
26 y = self.fch2(y)
27 y = rearrange(y, ’b (o h) (r w) -> b (h w) (r o)’)
28 return x + y

Listing 1.1. Pseudocode of raft-token-mixing block (Pytorch-like)

3.4 Multi-scale Patch Embedding

The majority of both Transformer-based models and MLP-based models are
based on patch embedding. We propose an extension of this method named
multi-scale patch embedding, which is a patch embedding method that better
represents the layered structure of an image. The main idea of the proposed
method is twofold. The first is to cut out patches in such a way that the regions
overlap. The second is to concatenate the channels of multiple-size patches and
then project them by a linear embedding layer. The outline of the method is
shown in Fig. 3, and the details are explained below. First, let r be an arbitrary
even number. The method performs zero-padding of (2m − 1)r/2 width on the
top, bottom, left, and right sides then cut out the patch with 2mr on one side
and r stride. In the case of m = 0, the patch is cut out the same way as in
conventional patch embedding. After this patch embedding, the height h′ = h/p
and width w′ = w/p of the tensor is the same, and the output channel is 22mr2.
Here, we describe the implementation of multi-scale patch embedding.

Multi-scale patch embedding is a generalization of conventional patch em-
bedding, but it is also slightly different from convolution. However, by injecting
a layered structure into the embedding, it can be said to incorporate the induc-
tive bias for images. As the m increases, the computational complexity increases,
so we should be careful to decide which m patch cutout to use. Our method is
similar to convolutional embedding, but it slightly differs because it uses a linear
layer projection after concatenating. See the appendix for code details.

3.5 Hierarchical Design

In the proposed method, hierarchical design is introduced. Our architecture used
a four-level hierarchical structure with channel raft and multi-scale patch embed-
ding to effectively reduce the number of parameters and improve the accuracy.
The hierarchical design is shown in Fig. 1. In this architecture, the number of lev-
els is L = 4, and at level l, after extracting a feature map of h/2l+1×w/2l+1×cl
by multi-scale patch embedding, the RaftMLP block is repeated kl times. The
embedding is done using multi-scale patch embedding, but for l = 1, 2, 3, the
feature maps for m = 0, 1 are concatenated, and for l = 4, conventional patch
embedding is used. We prepared a hierarchical RaftMLP model with multiple
scales. By settling c′l, the number of channels for the level l, and Nl, the number of
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RaftMLP blocks for the level, we developed models for three scales: RaftMLP-
S, RaftMLP-M, and RaftMLP-L. The common settings for all three models
are vertical dilation expansion factor ever = 2, horizontal dilation expansion
factor ehor = 2, channel dilation expansion factor ecan = 4, and channel raft
size r = 2. For patch embedding at each level, multi-scale patch embedding is
utilized, but for the l = 1, 2, 3 level, patch cutting is performed for m = 0, 1
and then concatenated. For the final level, conventional patch embedding to re-
duce parameters and computational complexity is utilized. For the output head,
a classifier with linear layers and softmax is applied after global average pool-
ing. Refer to the appendix for other settings. Our experiments show that the
performance of image classification improves as the scale is increased.

3.6 Impact of Channel Raft on Computational Costs

We will discuss the computational complexity of channel raft, ignoring normal-
ization and activation functions. Here, let h′ denote the height of the patch
placement, w′ the width of the patch placement, and e the expansion factor.

Number of parameters The MLPs parameter for a conventional token-mixing
block is

h′w′(2eh′w′ + e+ 1). (4)

In contrast, the parameter used for a vertial-mixing block is

h′r(2eh′r + e+ 1), (5)

and the parameter used for a holizonal-mixing block is

w′r(2ew′r + e+ 1). (6)

In other words, the total number of parameters required for a raft-token-mixing
block is

h′r(2eh′r + e+ 1) + w′r(2ew′r + e+ 1). (7)

This means that if we assume h′ = w′ and ignore e+1, the parameters required
for a conventional token-mixing block in the proposed method are 2(r/h′)2 times
for a conventional token-mixing. In short, if we choose r to satisfy r < h′/

√
2,

the memory cost can be reduced.

Number of multiply-accumulate If we ignore the bias term, the MLPs used for
a conventional token-mixing block require e(h′w′)4 multiply-accumulates. By
contrast, a raft-token-mixing block requires only er4(h′4 + w′4). Assuming h′ =
w′, a raft-token-mixing requires only multiply-accumulate of 2r4/h′4 ratio to
conventional token-mixing block. To put it plainly, if r is chosen so that r <
h′/2

1
4 , then multiply-accumulation has an advantage over a conventional token-

mixing block.
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Table 1. Accuracy of the models to be compared with the accuracy of the models
derived from the experiments with ImageNet-1k. The throughput measurement infers
16 images per batch using a single V100 GPU. Performance have been not measured
for S2-MLP-deep because the code is not publicly available.

Backbone Model #params FLOPs Top-1 Top-5 Throuput
(M) (G) Acc.(%) Acc.(%) (image/s)

Low-resource Models
(#params × FLOPs less than 50P)

CNN
ResNet-18 [15] 11.7 1.8 69.8 89.1 4190
MobileNetV3 [18] 5.4 0.2 75.2 - 1896
EfficientNet-B0 [37] 5.3 0.4 77.1 - 1275

Local MLP CycleMLP-B1 [5] 15.2 2.1 78.9 - 904
ConvMLP-S [25] 9.0 2.4 76.8 - 1929

Global MLP
ResMLP-S12 [41] 15.4 3.0 76.6 - 2720
gMLP-Ti [28] 6.0 1.4 72.3 - 1194
RaftMLP-S (ours) 9.9 2.1 76.1 93.0 875

Middle-Low-resource Models
(#params × FLOPs more than 50P and less than 150P)

CNN ResNet-50 [15] 25.6 3.8 76.3 92.2 1652
EfficientNet-B4 [37] 19.0 4.2 82.6 96.3 465

Transformer

DeiT-S [42] 22.1 4.6 81.2 - 1583
T2T-ViTt-14 [52] 21.5 6.1 81.7 - 849
TNT-S [13] 23.8 5.2 81.5 95.7 395
CaiT-XS24 [43] 26.6 5.4 81.8 - 560
Nest-T [55] 17.0 5.8 81.5 - 796

Local MLP AS-MLP-Ti [26] 28.0 4.4 81.3 - 805
ConvMLP-M [25] 17.4 3.9 79.0 - 1410

Global MLP

Mixer-S/16 [40] 18.5 3.8 73.8 - 2247
gMLP-S [28] 19.4 4.5 79.6 - 863
ViP-Small/7 [17] 25.1 6.9 81.5 - 689
RaftMLP-M (ours) 21.4 4.3 78.8 94.3 758

Middle-High-resource Models
(#params × FLOPs more than 150P and less than 500P)

CNN
ResNet-152 [15] 60.0 11.0 77.8 93.8 548
EfficientNet-B5 [37] 30.0 9.9 83.7 - 248
EfficientNetV2-S [38] 22.0 8.8 83.9 - 549

Transformer
PVT-M [46] 44.2 6.7 81.2 - 742
Swin-S [29] 50.0 8.7 83.0 - 559
Nest-S [55] 38.0 10.4 83.3 - 521

Local MLP

S2-MLP-deep [50] 51.0 9.7 80.7 95.4 -
CycleMLP-B3 [5] 38.0 6.9 82.4 - 364
AS-MLP-S [26] 50.0 8.5 83.1 - 442
ConvMLP-L [25] 42.7 9.9 80.2 - 928

Global MLP
Mixer-B/16 [40] 59.9 12.6 76.4 - 977
ResMLP-S24 [41] 30.0 6.0 79.4 - 1415
RaftMLP-L (ours) 36.2 6.5 79.4 94.3 650

High-resource Models
(Models with #params × FLOPs more than 500P)

Transformer

ViT-B/16 [11] 86.6 55.5 77.9 - 762
DeiT-B [42] 86.6 17.6 81.8 - 789
CaiT-S36 [43] 68.2 13.9 83.3 - 335
Nest-B [55] 68.0 17.9 83.8 - 412

Global MLP gMLP-B [28] 73.1 15.8 81.6 - 498
ViP-Medium/7 [17] 55.0 16.3 82.7 - 392
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4 Experimental Evaluation

In this section, we exhibit experiments for image classification with RaftMLP.
In the principal part of this experiment, we utilize the Imagenet-1k dataset [8]
to train three types of RaftMLP and compare them with MLP-based models
and Transformers-based models mainly. We also carry out an ablation study to
demonstrate the effectiveness of our proposed method, and as a downstream task,
we evaluate transfer learning of RaftMLP for image classification. Besides, We
conduct experiments employing RaftMLP as the backbone for object detection
and semantic segmentation.

4.1 ImageNet-1k

To evaluate the training results of our proposed classification models, RaftMLP-
S, RaftMLP-M and RaftMLP-L, we train them on ImagNet-1k dataset [8]. This
dataset consists of about 1.2 million training images and about 50,000 validation
images assigned 1000 category labels. We also describe how the training is set up
below. We employ AdamW [30] with weight decay 0.05 and learning schedule:
maximum learning rate batch size

512 × 5 × 10−4, linear warmup on first 5 epochs,
and after cosine decay to 10−5 on the following 300 epochs to train our models.
Moreover, we adopt some augmentations and regularizations; random horizontal
flip, color jitter, Mixup [54] with α = 0.8, CutMix [53] with α = 1.0, Cutout [9]
of rate 0.25, Rand-Augment [7], stochastic depth [20] of rate 0.1, and label
smoothing [36] 0.1. These settings refer to the training strategy of DeiT [42].
The other settings are changed for each experiment. Additionally, all training
in this experiment is performed on a Linux machine with 8 RTX Quadro 8000
cards. The results of trained models are showed in Table 1. In Fig. 4, we compare
our method with other global MLP-based models in terms of accuracy against
the number of parameters and computational complexity. Fig. 4 reveals that
RaftMLP-S is a cost-effective method.

4.2 Ablation Study

In order to verify the effectiveness of the two methods we propose, we carry out
ablation studies. The setup for these experiments is the same as in Subsection
4.1.

Channel Raft (CR) We have carried out experiments to verify the effectiveness
of channel rafts. Table 2 compares and verifies MLP-Mixer and MLP-Mixer with
the token mixing block replaced by channel rafts. Although we have prepared
architectures for r = 1, 2, 4 cases, r = 1 case has no raft structure but is just a
conventional token-mixing block vertically and horizontally separated. Table 2
has shown that channel rafts effectively improve accuracy and costless channel
raft structure such as r = 2 is more efficient for training than increasing r.
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Fig. 4. Accuracy per parameter and accuracy per FLOPs for the family of global MLP-
based models

Table 2. An ablation experiment of channel raft. Note that Mixer-B/16 is experi-
mented with our implementation

Model r #Mparams GFLOPs Top-1 Acc.

Mixer-B/16 - 59.9 12.6 74.3%

Mixer-B/16 with CR
1 58.1 11.4 77.0%
2 58.2 11.6 78.3%
4 58.4 12.0 78.0%

Multi-scale Patch Embedding (MSPE) RaftMLP-M is composed of three multi-
scale patch embeddings and a conventional patch embedding. To evaluate the
effect of multi-scale patch embedding, we compared RaftMLP-M with the model
with multi-scale patch embeddings replaced by conventional patch embeddings
in RaftMLP-M. The result is shown on Table 3. As a result of comparing the
models with and without multi-scale patch embedding, RaftMLP-M with multi-
scale patch embedding improves the accuracy by 0.7% compared to the model
without multi-scale patch embedding.

Table 3. An ablation experiment of multi-scale patch embedding

Model #Mparams GFLOPs Top-1 Acc.

RaftMLP-M 21.4 4.3 78.8%
RaftMLP-M without MSPE 20.0 3.8 78.1%
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4.3 Transfer Learning

The study of transfer learning is conducted on CIFAR-10/CIFAR-100 [23], Ox-
ford 102 Flowers [32], Stanford Cars [22] and iNaturalist [44] to evaluate the
transfer capabilities of RaftMLP pre-trained on ImageNet-1k [8]. The fine-tuning
experiments adopt batch size 256, weight decay 10−4 and learning schedule: max-
imum learning rate 10−4, linear warmup on first 10 epochs, and after cosine decay
to 10−5 on the following 40 epochs. We also do not use stochastic depth [20] and
Cutout [9] in this experiment. The rest of the settings are equivalent to Sub-
section 4.1. In our experiments, we also resize all images to the exact resolution
224×224 as ImageNet-1k. The experiment is shown in Table 4. We achieve that
RaftMLP-L is more accurate than Mixer-B/16 in all datasets.

Table 4. The accuracy of transfer learning with each dataset

Dataset Mixer-B/16 RaftMLP-S RaftMLP-M RaftMLP-L

CIFAR-10 97.7% 97.4% 97.7% 98.1%
CIFAR-100 85.0% 85.1% 86.8% 86.8%

Oxford 102 Flowers 97.8% 97.1% 97.9% 98.4%
Stanford Cars 84.3% 84.7% 87.6% 89.0%
iNaturalist18 55.6% 56.7% 61.7% 62.9%
iNaturalist19 64.1% 65.4% 69.2% 70.1%

5 Discussion

The above experimental results show that even an architecture that does not use
convolution but has a simple inductive bias for images like vertical and horizontal
decomposition can achieve performance competing with Transformers. This is a
candidate for minimal inductive biases to improve MLP-based models without
convolution. Also, Our method does not require as much computational cost as
Transformer. In addition, the computational cost is as expensive as or less than
that of CNN. The main reason for the reduced computational cost is that it does
not require self-attention. The fact that only simple operations such as MLP are
needed without self-attention nor convolution means that MLP-based models
will be widely used in applied fields since they do not require special software or
hardware carefully designed to reduce computational weight. Furthermore, the
raft-token-mixing block has the lead over the token-mixing block of MLP-Mixer
in terms of computational complexity when the number of patches is large. As
we described in Section 3, substituting the token-mixing block as the raft-token-
mixing block reduces parameters from the square of the patches to several times
patches. In other words, the more the resolution of images is, the more dramati-
cally parameters are reduced with RaftMLP. The hierarchical design adopted in
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this paper contributes to the reduction of parameters and computational com-
plexity. Since multi-scale embedding leads to better performance with less cost,
our proposal will make it realistic to compose architectures that do not depend
on convolution. Meanwhile, the experimental results in the appendix suggest that
the proposed model is not very effective for some downstream tasks. As shown in
the appendix, the feature map of global MLP-based models differs from the fea-
ture map of CNNs in that it is visualized as a different appearance from the input
image. Such feature maps are not expected to work entirely in convolution-based
architectures such as RetinaNet [27], Mask R-CNN [14], and Semantic FPN [21].
Global MLP-based models will require their specialized frameworks for object
detection, instance segmentation, and semantic segmentation.

6 Conclusion

In conclusion, the result has demonstrated that the introduction of the raft-
token-mixing block improves accuracy when trained on the ImageNet-1K dataset
[8], as compared to plain MLP-Mixer [40]. Although the raft-token-mixing de-
creases the number of parameters and FLOPs only lightly compared to MLP-
Mixer [40], it contributes to the improvement in accuracy in return. We conclude
that adding a non-convolutional and non-self-attentional inductive bias to the
token-mixing block of MLP-Mixer can improve the accuracy of the model. In ad-
dition, due to the introduction of hierarchical structures and multi-scale patch
embedding, RaftMLP-S with lower computational complexity and number of pa-
rameters have achieved accuracy comparable to the state-of-the-art global MLP-
based model with similar computational complexity and number of parameters.
We have explicated that it is more cost-effective than the Transformer-based
models and well-known CNNs.

However, global MLP-based models have not yet fully explored their poten-
tial. Inducing other utilitarian inductive biases, e.g., parallel invariance, may
improve the accuracy of global MLP-based models. Further insight into these
aspects is left to future work.
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