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1 Endress + Hauser, Maulburg, Germany
{jawad.tayyub,nicolas.schoenborn}@endress.com

2 Norwegian University of Science and Technology, Trondheim, Norway
muhammad.sarmad@ntnu.no

Abstract. Explaining decisions made by deep neural networks is a rapidly
advancing research topic. In recent years, several approaches have at-
tempted to provide visual explanations of decisions made by neural net-
works designed for structured 2D image input data. In this paper, we
propose a novel approach to generate coarse visual explanations of net-
works designed to classify unstructured 3D data, namely point clouds.
Our method uses gradients flowing back to the final feature map layers
and maps these values as contributions of the corresponding points in the
input point cloud. Due to dimensionality disagreement and lack of spatial
consistency between input points and final feature maps, our approach
combines gradients with points dropping to compute explanations of dif-
ferent parts of the point cloud iteratively. The generality of our approach
is tested on various point cloud classification networks, including ’single
object’ networks PointNet, PointNet++, DGCNN, and a ’scene’ net-
work VoteNet. Our method generates symmetric explanation maps that
highlight important regions and provide insight into the decision-making
process of network architectures. We perform an exhaustive evaluation
of trust and interpretability of our explanation method against compara-
tive approaches using quantitative, quantitative and human studies. All
our code is implemented in PyTorch and will be made publicly available.

Keywords: Point Cloud · Explainability · Deep Neural Networks

1 Introduction

The black-box nature of deep neural networks is a major hindrance in their
utilization and wide-acceptance in real-world and safety-critical scenarios. This
trust deficit can be mitigated by interpreting the reasoning behind a network’s
behaviour. Researchers have made significant progress in proposing explana-
tion methods [22, 33, 20, 3] for demystifying CNN networks for image processing.
However, interpretation of deep networks designed for 3D data, namely point
clouds [16, 17, 26, 15], remain an understudied area. Point clouds are an unstruc-
tured representation as opposed to regular grids such as images or voxel grids.

⋆ These authors contributed equally.
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2 Tayyub et al.

Therefore, direct application of existing interpretation methods for image-based
deep networks is not suitable for point cloud deep networks.

Objects Scene

Fig. 1. Point Cloud Heatmaps Our proposed approaches highlight the salient re-
gions in single object and scene point clouds that are critical for the decision-making
of a point cloud processing network.

Firstly, typical CNNs progressively apply convolution and pooling operations
to images resulting in low-resolution final feature maps while preserving spatial
consistency. Therefore, explanation values generated through logging gradients
back to final feature layers of CNN’s [20, 33] can be mapped to the input image
through bi-linear scaling. For unstructured point cloud data, such spatial con-
sistency cannot be guaranteed, and therefore mapping logged gradients back to
the input points is non-trivial. Second, the correspondence between each input
point and the final feature layer neurons cannot be asserted in point cloud net-
works. Furthermore, image based explanation techniques such as gradients [22]
or deconvolutions [30] operate directly at the input pixel-level resulting in fine
and grainy explanations, making them difficult for humans to interpret.

In this work, we address these challenges and propose accumulated piece-
wise explanations (APE) which is a general explanation approach applicable to
a wide variety of deep networks for point clouds. APE computes a point cloud
heatmap which highlights each input point’s contribution towards the network’s
decision. The generated heatmaps are interpretable and provide visual insight
into the network’s behavior. Our method logs gradients (computed for a preset
target class) from each neuron in the final feature extraction layer of the net-
work. These are then mapped to the input point cloud to generate the point
cloud heatmap as seen in Fig.1. Gradients are computed w.r.t. the final feature
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Explaining Deep Neural Networks for Point Clouds 3

maps of a point cloud processing network architecture. These values can be used
to demystify a network’s inner workings. Since the feature extraction layers of
a network reduce resolution through pooling operations, a direct mapping only
reveals an explanation for a small segment of the point cloud. To resolve this,
we propose to iteratively explain segments of the point clouds by dropping ex-
plained points from the previous iteration, allowing for explanation values to be
computed for a different segment. Heatmaps gathered from each iteration are
concatenated to generate a complete heatmap. Finally, this heatmap is refined
through a second iterative process that recomputes heatmaps while dropping
the lowest relevant points from the previous iteration. A weighted maximum
over heatmaps from all iterations yields a high-fidelity point cloud heatmap. A
key feature of our approach is that the generated heatmaps highlight semantic
segments of a 3D shape regardless of the network architecture and therefore ex-
hibit human friendly visual representation. We refer to this property as ’human
interpretability’. The heatmaps generated by our method do not just look aes-
thetically pleasing, but also correctly highlight critical points. This is verified
quantitatively in experiments. Our contributions are summarised below:

– We propose a general algorithm to explain 3D point cloud deep networks by
generating human interpretable heatmaps.

– We extensively evaluate our explanation heatmaps on various point cloud
classification architectures, namely PointNet, PointNet++, DGCNN, and
VoteNet. Deteriorating performance of networks is shown by dropping high
relevance points identified by our approach. We also evaluate our method
against a existing work and demonstrate SOTA performance.

– We demonstrate that our approach outputs higher fidelity heatmaps than
existing explanation methods for point clouds and images. Moreover, our
strategy highlights biases and failure modes of point cloud networks and
provides in-depth insights.

2 Related Work

Deep Learning on Point Cloud Processing a 3D point cloud directly via deep
networks has recently gained attention. Much work in this area has surfaced
attempting to solve a wide array of vision problems for point clouds [16, 17, 26,
19, 1, 24, 21]. Our work aims to analyse these opaque models and generate visual
explanations for them. Seminal work on point clouds classification includes [16,
17, 15, 26]. We demonstrate that these approaches benefit from our explainability
method, providing clear insight into the network’s decision-making process.

Explainability Methods for CNNs The availability of large datasets [4, 10, 27] and
discovery of CNNs have provided breakthroughs on various challenges in the vi-
sion community [6, 8, 9]. Efforts to visualize CNNs date back to their discovery,
and many methods have been proposed in literature [20, 33, 11, 22, 34, 13, 3, 12].
Pope et al. [14] have extended CNN explainability methods to graph CNNs.
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4 Tayyub et al.

Selvaraju et al. [20] proposed Grad-CAM which generates gradient-based visual
explanations. Grad-CAM proposes to log gradients at intermediate layers rather
than input layers to generate a heatmap that reflects each activation’s impor-
tance. This heatmap is overlaid onto the input image by simple bilinear scaling
to represent contributions of pixels in the image for a given task, e.g., classifica-
tion. Since later feature layers capture higher-level semantic features, observing
these gradients allows for computing coarse explanation values that are human-
interpretable. However, application of image-based explanation approaches for
point clouds is non-trivial due to their unstructured nature.

Explainable Methods for Point Cloud Based Deep Networks There is little work
on visualizing deep networks that process 3D data such as point clouds. Zhang
et al. [31] have visualized PointNet; however, they utilize class attentive features
and modify PointNet’s architecture. Our technique does not require any modi-
fication in the architecture. Qiu et al. [18] visualize the layers of their proposed
point cloud processing pipeline, but they do not employ any gradient-based vi-
sualizations. Zheng et al. [32] propose a differentiable point shifting process that
simulates point dropping and computes contribution scores to input points ac-
cording to the loss value. This approach identifies highly accurate contributions
of individual points; however, it compromises global interpretability. Computed
heatmaps resemble fine details similar to gradients [22] or LRP [3] methods in
images. In contrast, our method offers semantic visualisations which provide a
global overview of the network’s focal points. We argue that a heatmap that
highlights point cloud’s segments that correspond to semantic parts of a shape,
e.g., the legs of a chair, builds higher trust than fine-grained explanations.

3 Preliminaries

A point cloud is defined as a set P = {P1, ..., Pn} of n points where each point
is denoted by its 3D coordinates (x, y, z). A deep neural network f : X → C
is any trained classifier which maps an input point cloud P ∈ X to a class
c ∈ C. Then, given a target class c, our goal is to find an explanation heatmap
L = {(P1, ℓ1), ..., (Pn, ℓn)} where each ℓi ∈ [0, 1] represents the contribution of
corresponding point Pi towards the network’s decision. L denotes the point cloud
heatmap of the input point cloud P.

Point cloud classification networks are categorised into fixed and variable
networks. As illustrated in Fig. 2, an input point cloud P ∈ Rn×3 of n points
transforms into K feature maps A ∈ Rn′×K each of length n′. Fixed networks,
such as PointNet [16] or DGCNN [26], preserve the dimensionality of P and
subsequent feature maps. In these networks, convolutions are applied to each
point resulting in a feature map per point hence satisfying n = n′. In variable
networks, such as PointNet++ [17] and VoteNet [15], feature maps in subsequent
layers reduce or accumulate input points by various methods e.g sampling and
grouping, clustering, etc. In these networks, n′ is often less than n. Most other
models either fall into the first or the second category depending on their design.
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Explaining Deep Neural Networks for Point Clouds 5

Fig. 2. Approach Overview. Our approach maps gradients logged at the feature
maps layer to the point cloud for a target class e.g. ‘Airplane’. Gradients are computed
w.r.t to the feature maps A. Lj denotes the computed partial heatmap with elements
having the form (Pi, li) where each point coordinate is augmented with an explanation
value. This is a weighted sum of the feature maps followed by ReLU. This partial
heatmap only explains n′ points of the point cloud since there are n′ features per
feature map. Explained points in Lj are removed from P iteratively to produce m
partial heatmaps. A concatenation of all these partial heatmaps result in a complete
initial heatmap L. An IHU step, detailed in text, refines the initial heatmap to produce
the final point cloud heatmap L.

We also define a point dropping operation as the removal of points from a
point cloud P. For consistency, our point dropping mechanism is similarly to
[32] whereby point coordinates are shifted to the spherical core (centre) of the
point cloud P neutralising their effect to a high degree.

4 Accumulated Piecewise Explanations (APE)

In this section, we present our approach called accumulated peiecewise explana-
tions for generating highly interpretable point cloud heatmaps L, Fig. 2. An input
point cloud P is first classified using a network f , such as PointNet, PointNet++
etc. The final feature maps A, before task-specific fully connected layers, capture
high-level semantics which are used for generating coarse conceptual explana-
tions. Therefore, we compute gradients with respect to the final feature maps
A. These feature map gradients can be used to gain insight into the network’s
decision. The gradients are then globally average pooled (GAP) per feature map
to create a weighting α which reflects the contribution of neurons in each fea-
ture map. A partial heatmap Lj is then constructed by taking a weighted sum of
feature maps A representing the aggregated contribution of corresponding input
points n′. However, since feature extraction layers are of a lower resolution from
the input point cloud, partial heatmap Lj at this stage only reveals contributions
of a subset of the point cloud P. To generate contributions of the other segments
of P, the subset of points explained by Lj are dropped from P iteratively where
j denotes the iteration. This allows for explanation values to be computed for
a different segment. All partial heatmaps (L1, ..., Lm) are then concatenated to
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6 Tayyub et al.

form an initial point cloud heatmap L. A second iterative process called iter-
ative heatmap update (IHU) refines this output by iteratively dropping lowest
relevance points to generate a high quality final point cloud heatmap L. This
process is further detailed in subsequent section.

Algorithm 1 presents a formal description of our APE method. This algorithm
comprises of two nested loops. The inner loop computes partial heatmaps Lj from
feature maps A whereas the outer loop refines these heatmaps L by dropping
lowest relevance points nL iteratively recomputing L in each iteration. This
process iterates λ times and heatmaps gathered from different iterations are
combined by a weighted maximum to produce the final point cloud heatmap L.
Next, we explain the partial heatmap Lj compution followed by the complete
point cloud heatmap L in higher detail.

Algorithm 1 Accumulated Piecewise Explanations (APE)

Require: λ: number of IHU iterations. c: target class.

Input: Point cloud P, Point Cloud classifier f .

Output: Point Cloud heatmap L.
1: for i = 1....λ do
2: j = 0
3: while P is not empty do
4: yc = f(P)
5: αc

k = 1
n′

∑
n′

δyc

δAk
n′

6: Lj = ReLU(
∑

k α
c
kA

k)
7: P = P − Lj (Drop explained points)
8: Increment j
9: end while
10: Li = concatenate(L1, L2, ..., Lm)
11: Drop nL lowest contribution points from P.
12: end for
13: L = maxi=1,..,λ wil

i
j , ∀j = 1, ..,m where li ∈ LA

i

4.1 Partial Heatmap Lj

To compute the partial heatmap Lj , first gradient values corresponding to each
of the neurons in the final feature map A are computed. Algorithm 1 details this
step in lines 4-6. Input point cloud P is classified to produce yc which denote the
classification score of a given target class c (line 4). Gradients are then computed
w.r.t to the final feature maps A = {A1, ..., AK}. Each feature map Ak ∈ Rn′

is
of length n′. The calculated gradients are then globally average pooled (GAP)
per Ak to generate a contribution weight αc

k for the kth feature map (line 5).

Point cloud P has n points whilst 1
n′

∑
n′ is global average pooling and δyc

δAk
n′

are the gradients. This results in a weight vector where each weight αc
k gives a
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Explaining Deep Neural Networks for Point Clouds 7

relevance weighting of the neurons in the kth feature map. The partial heatmap
Lj is then computed by taking the positively contributing gradients only through
utilising ReLU (line 6) normalized in the range [0, 1]. Lj computed at this stage
reflects the contributions of n′ neurons in the final feature maps and not the
input point cloud P.

4.2 Point Cloud Heatmap

Depending on the network architecture (fixed or variable), Lj may be of lower
dimensionality than P, i.e. n′ ≤ n. We utilise an iterative mechanism whereby
explained points are dropped in each iteration, and a new partial heatmap is
computed for a different segment of the input point cloud. This is repeated un-
til explanation values are computed for the complete point cloud. This method
provides an exact contribution estimate for each point compared to trivial in-
terpolation. Due to tracked associations from Lj to P, the subset of points
explained by Lj are identified and dropped from P (line 7). The resulting point
cloud is again passed as input to the network in the next iteration to generate a
new partial heatmap Lj+1 explaining a different subset of points. This process
is repeated (j = 1, ...,m) until all points in the input point cloud have been
explained. A concatenation of Lj from all iterations produces an initial point
cloud heatmap L (line 10). Note that we concatenate the raw value of the par-
tial heatmap and then normalise instead of normalising and concatenating. This
procedure is valid since it preserves the relative importance of a particular point
w.r.t others.

To create the final point cloud heatmap L, the IHU step is introduced. This
step computes initial point cloud heatmaps Li iteratively, whereby in each ith

iteration, lowest relevance value points nL are dropped from P (line 11) where
nL is a empirically set hyperparameter. The resulting point cloud is reclassi-
fied to compute a new initial point cloud heatmap Li+1. After λ iterations, all
points have been dropped from P and λ feature heatmaps (L1, ..., Lλ) have been
computed. The final point cloud heatmap L is then computed by merging the
different initial heatmaps (line 13), where li are components of Li and weights
w are hyperparameters which are empirically set. Fig. 6 presents a visual illus-
tration of this process. Removing the least significant points in each iteration
allows for a better explanation of the remaining points. This enhances expla-
nations by highlighting significant salient areas of the point cloud, which are
suppressed by low-contributing points. Explanations over these suppressed ar-
eas are revealed by removing low-contributing points iteratively. Also, by taking
the max explanation value of points over all iterations, the discovery of most
liberal explanation is ensured.

Fixed and Variable Network Architectures The proposed algorithm is applicable
for both fixes and variable network architectures. Fixed networks preserve the
dimensionality of input point cloud P to the feature maps A, a simple bijec-
tive mapping of A to P is sufficient to create a final point cloud heatmap since
n′ = n. Therefore the inner loop only has one iteration in these cases, namely
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8 Tayyub et al.

PointNet and DGCNN. Note that the partial heatmap module can be applied to
any layer before task-specific layers to generate the final point cloud heatmap.
Variable networks produce lower-dimensional feature maps. This property is sim-
ilar to image domain CNNs where, through convolution and pooling operations,
computing an explanation heatmap at any intermediate layer results in a lower
resolution heatmap than the input image. Similarly, parital heatmaps computa-
tion on intermediate feature maps of variable networks for point clouds produce
a sparse heatmap since n′ ≤ n. In the case of images, since CNN preserves
spatial consistency, a simple bi-linear scaling of partial heatmaps to the input
image results in the final heatmap reflecting pixel-wise explanations. However,
for point clouds, scaling is infeasible since points in a point cloud are unordered
and precise association of all points to feature maps is not known. Our proposed
algorithm effectively scales up sparse partial heatmaps to the input point cloud’s
size through the described iterative process.

Note that the inner loop in the APE algorithm vastly differs from the outer
loop denoted as IHU. IHU outer loop requires full heatmaps to be computed at
each iteration and is designed to refine the point cloud heatmap to gain additional
explanatory power. The inner loop operates on variable networks and handles
dimensionality disagreement between input point cloud P and final feature maps
A. Moreover, point dropping in the outer loop is guided by low-contribution
values, whilst in the inner loop, points are dropped because they have acquired
some explanation value. Finally, the generated point cloud heatmaps over all
iterations are combined by weighted maximum selection in the outer loop and
concatenating feature heatmaps in the inner loop.

5 Experiments

Datasets and Implementation Details We evaluate our proposed approach APE
on four different point cloud processing networks. Two fixed networks, namely
PointNet and DGCNN, and two variable networks, name PointNet++ and VoteNet,
are used to demonstrate our method’s strength. We use three publically available
datasets: ShapeNet-Part, Toy Flange, and SUN RGB-D dataset [23]. The first
is the ShapeNet-Part dataset [29] used for point cloud object classification with
16 categories of everyday objects. The second is the Toy Flange dataset which
comprises of 2 categories of mechanical flanges of either 4 holes (157 files) or
8 holes (280 files). This dataset will be made public. Finally, the SUN RGB-D
dataset comprises of complete scene point clouds. The first two datasets are used
to train PointNet, PointNet++, and DGCNN for classification. Our approach
then generates heatmaps on the test set during inference. The third dataset is
used to generate explanations on a pre-trained VoteNet [15]. We build on existing
open-source implementations [5, 25, 28, 7].

We compare our approach with existing techniques, namely Gradients [2,
22] and Point cloud Saliency Maps (PcSN). Gradients is an early method for
visualising networks in the images domain, whereby the gradient values of the
loss function w.r.t to image pixels are computed and visualised. We adapt this
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Explaining Deep Neural Networks for Point Clouds 9

approach to the point cloud processing networks. Point cloud Saliency Maps
(PcSN) [32] is the state-of-the-art approach for computing contributions of each
point towards the network’s decision. We demonstrate that our approach APE
outperforms both of these by generating heatmaps which not only assign reason-
able relevance scores to individual points but are also intuitive for an observer
as it highlights semantic parts of shape.

5.1 Qualitative Experiments

Fig. 3. Qualitative results of APE. The visualization show randomly selected ob-
jects which have been correctly classified for PcSN [32], Gradients [22] and our pro-
pose APE method. For each network, a Toy Flange dataset object is on the left, and
a ShapeNet object is shown on the right.

Scene Point Cloud Viewpoint = 'Table' = 'Chair' = 'Table' = 'Chair'Scene Point Cloud Viewpoint

Fig. 4. Final Heatmaps for Scenes. For VoteNet scenes, the APE approach results
in point cloud heatmaps highlighting points belonging to the queried target class yc.
Note that highlighted points correspond to semantic categories of the objects of the
selected target class.
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Point Cloud Heatmaps Evaluation Our APE approach was applied to differ-
ent point cloud networks for object classification and detection. A sample of
point cloud heatmaps generated from our approach as compared to other meth-
ods is presented in Fig. 3. Point cloud heatmaps seen here assign a number to
each point in the range [0,1], indicating low relevance (blue) to high relevance
(red). Our method identifies significant segments of objects which are critical
for decision-making for the network. It is apparent that our method generates
highly interpretable heatmaps in comparison to Gradients and PcSN. Gradients
approach produces a highly skewed explanation map where only a handful of
points are identified as relevant whilst the majority of points remain insignif-
icant. In contrast, PcSN creates an excessively high-resolution heatmap. Even
though this method effectively identifies the most significant points, the result-
ing heatmaps are grainy and incomprehensible. Our method clearly generates
intuitive point cloud heatmaps that can visually establish trust and faith in the
networks.

From our point cloud heatmaps, we notice that extremities or geometrically
varied features, such as wingtips, table corners, table corners, hole’s edges, etc.
are clearly highlighted as significant, and planar surfaces, such as tabletops,
floors, etc. are unremarkable. This is expected behaviour since planar surfaces
lack geometric texture, which allows for distinguishing object classes apart. For
VoteNet, see Fig. 4, it is shown that our approach is general for applicability
over a large scene point cloud. In such large scenes, the method highlights points
that correspond to semantic objects as set by the target class. We further note
the target class objects within the scenes (yc =‘Chair’) are spatially localized.
Furthermore, our method’s strength is apparent from the high precision of spa-
tial boundaries between objects seen in VoteNet results. For brevity, multiple
other example point cloud heatmaps for different objects have been presented
in supplementary work. The results presented here show consistent superiority
over the basic approach of Gradients [22] and the state-of-the-art method PcSN
[32].

Insight into Network’s Decisions Given the high veracity of point cloud heatmaps
generated by our approach, it is possible to draw interesting insight into the net-
work’s decision-making process. Consider Fig. 3 DGCNN network architecture.
Recall that the flange dataset poses a binary classification problem with 4-hole
and 8-hole discrimination required. From visual inspection of our point cloud
heatmaps in the figure, it is apparent that DGCNN and PointNet both have
high focal points around the holes indicating correct network focus. A more in-
teresting insight is that DGCNN heatmaps consistently show focus on only five
out of eight holes for correct classification. This geometric feature is sensible for
segregating between 4 and 8-hole binary class problem.

We provide further examples of insights in Fig. 5. Most prominently, the
PointNet++ architecture classifies the 4-hole flange by focusing on the empty
spaces between the holes rather than the holes themselves. In other words, the
network has learned to detect the absence of holes rather than their presence.
This is a clear contradiction to common human reasoning when identifying a
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Explaining Deep Neural Networks for Point Clouds 11

Fig. 5. In-depth insight into various network architectures are revealed using our APE
approach for generating heatmaps. For example, a clear incorrect focal point is seen for
PointNet++ when classifying the 4-hole flange. Corresponding heatmaps from PcSN
are shown to lack human interpretability.

4-hole flange. We also note that important sections of the chair from PointNet
and PointNet++ are the seats, whereas DGCNN (having the most superior
classification accuracy) has identified the unique pattern of the seat back as a
discriminative feature. This focal point allows DGCNN to discriminate better
amongst other similar furniture in the dataset, e.g., sofas, thereby achieving
higher accuracy. Finally, the shape airplane shows consistent focal points, e.g.,
nose, wingtips, and tail, across all network architectures. Such in-depth insights
cannot be drawn from the PcSN heatmaps as they lack human interpretability
evident from Fig. 3 and 5.

Fig. 6. Iterative Heatmap Updating (IHU). Visual example of the low-relevance
dropping approach for PointNet at 0%, 25%, 50%, and 75% of points dropped. Note
that the highest relevance points (red) differ as the heatmap is recalculated after each
set of point drops.

IHU Low-relevance Point Dropping Fig. 6 demonstrates the effect of dropping
low-relevance points on heatmaps which are recalculated on the remaining points
at every iteration. This is the outer loop of algorithm 1. Note that the highlighted
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regions change as points are dropped, indicating that a new set of points gain
relevance for classification. It is further observed that more detailed explanations
reveal on segments of objects in later iterations; for example, the table shows one
leg being of high significance in the first column but all four legs are discovered as
highly contributing segments with 75% points dropped. The last column in Fig.
6 shows the merged point cloud, which incorporates all discovered explanations
across the different iterations. These results confirm our assertion of dropping
low-relevance points to recompute heatmaps iteratively and generate a more
representative merged final heatmap.

PointNet

H
ig
h-
D
ro
p

Lo
w
-D
ro
p

<

PointNet++ DGCNN

Fig. 7. Quantitative evaluation of APE. The point dropping curve (PDC) has
been calculated for various networks with our proposed and existing SOTA methods.
The top row presents a high-drop experiment, whereas the lower row presents low-drop
experiments. A consistent overall superiority over the existing method is evident across
all networks.

5.2 Quantitative Experiments

The point cloud heatmap obtained for various networks gives critical indica-
tions about the network’s learned parameters. This point cloud heatmap can
find critical points that can be used to assess our approaches quantitatively. In
particular, for the classification task, the point cloud heatmap provides a way to
determine the most and least relevant points in a given point cloud. To utilize the
heatmap, we use the common evaluation measure point dropping curve (PDC)
[12, 32]. The PDCs show a drop in classification accuracy of the model as points
are removed from the input point cloud. Points are dropped according to their
computed relevance values, i.e., most relevant first (high-drop) and least relevant
first (low-drop). The slope of these curves provides essential information about
the quality of the heatmap generated. In particular, high-drop PDCs should fall
steeper than the low-drop PDCs, and the accuracy should drop until its near-
random guess. This metric can then be used to compare different approaches on
the same network architecture.
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Table 1. Area Under the Curve (AUC) AUC has been calculated from the point
dropping curves for all point dropping experiments. H.D. stands for high-drop and L.D.
for low-drop. A higher value for L.D. and a lower value for H.D. is better.

Method Drop Type PointNet PointNet++ DGCNN

Gradients [22] H.D.↓ 0.90 0.70 0.93
L.D. ↑ 0.91 0.95 0.96

PcSN [32] H.D. ↓ 0.89 0.80 0.93
L.D ↑ 0.92 0.83 0.96

Ours H.D. ↓ 0.53 0.68 0.82
L.D. ↑ 0.91 0.85 0.96

Evaluation Results Fig. 7 presents the PDCs for our method compared to the
PcSN approach on both fixed-size (PointNet and DGCNN) and variable-size
(PointNet++) networks. Note that we compute a final heatmap once for both
appraoches and use these during the entire point dropping experimentation.
Table. 1 present the area under the curve (AUC) values of the corresponding
PDCs in Fig. 7. It can be observed that when dropping high-contribution points
(H.D.), the accuracy of the classification network significantly drops resulting
in the AUC of our approach to be consistently lower than all comparative ap-
proaches on all networks. Furthermore, Fig. 7 illustrate this result whereby the
high-drop curve of our approach sharply deteriorates compared to PcSN. This
trend is indicative of the strength and correctness of our generated heatmaps
as they have been assigned reasonable explanation values. In the case of Point-
Net++, our method’s high drop line rises slightly above PcSN initially; however,
the overall trend remains superior to PcSN.

We also report results obtained from dropping low-contribution points (L.D.).
We observe a mixed trend and neither method has superiority over the other us-
ing this experimental scheme as seen from Fig. 7 and table 1. An exception
is seen when comparing against the Gradients approach only on PointNet++,
however, recall that qualitative results of Gradients (Fig. 3) displays no mean-
ingful coloring of the point cloud heatmap. Human studies have been conducted
to further validate the qualitative veracity of our approach, these are presented
next.

Human Study: We train a multi-label PN++ classifier with 6 object classes
namely ’chair‘, ’bike‘, ’table‘, ’plane‘, ’car‘ and ’skateboard‘. The input data
for training and testing this classifier are not single object point clouds but
rather two objects concatenated with a certain distance ensuring no overlap.
For any given point cloud pair, we generate explanation maps, using different
approaches, by setting the target class to one of the two objects in the input.
For e.g. consider an input containing an airplane and a car, then given a target
class as ‘airplane’, generated heatmap is expected to highlight this class. We
notice that our method consistently highlights the correct class in contrast to
baselines. To confirm this we perform an extensive human study where each
participant is asked to evaluate ‘which object demonstrate a better separation
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14 Tayyub et al.

of object segments?’ in a heatmap. Interestingly, our method comes out on top
with the most correct classes corresponding with the user response as shown in
Table. 2. Further details on this study are included in the supplementary work.

Table 2. Human Study Accuracies in this table display the percentage of human
users who selected the correct response. These results indicate that our approach creates
heatmaps which are interpretable by human subjects.

Saliency Maps [32] Gradients [22] Ours

Accuracy 0.44 0.51 0.72

6 Conclusions

In this work, we proposed a general approach to visually explain a wide variety
of point cloud processing deep networks. We proposed the accumulated piece-
wise explanation (APE) algorithm, which tracks gradients to the final feature
maps to generate a partial heatmap. This heatmap indicates the contribution of
each point towards the network decision. Often, networks reduce and aggregate
the features in subsequent layers. Partial heatmaps at later layers are mapped
to the input point cloud size by iteratively computing explanations for segments
of the input point cloud. These partial heatmaps are then concatenated to cre-
ate a initial point cloud heatmap. This heatmap is then refined iteratively by
dropping low-relevance points at each iteration to discover deeper explanations.
We evaluate this approach against existing approaches and demonstrate good
performance qualitatively and quantitatively. In the future, we aim to generalise
to a broader range of network architectures and tackle networks designed for
other types of unstructured data such as meshes or graphs.
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