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Abstract. Extracting appropriate temporal differences and ignoring ir-
relevant backgrounds are two important perspectives on preserving suffi-
cient motion information in video representation, such as driver behavior
monitoring and driver fatigue detection. In this paper, we propose a uni-
fied contrastive learning framework called Temporal Contrasting Video
Montage (TCVM) to learn action-specific motion patterns, which can
be implemented in a plug-and-play way. On the one hand, Temporal
Contrasting (TC) module is designed to guarantee appropriate temporal
difference between frames. It utilizes high-level feature space to cap-
ture raveled temporal information. On the other hand, Video Montage
(VM) module is devised for alleviating the effect from video background.
It demonstrates similar temporal motion variances in different positive
samples by implicitly mixing up the backgrounds of different videos. Ex-
perimental results show that our TCVM reaches promising performances
on both large action recognition dataset (i.e. Something-Somethingv2)
and small datasets (i.e. UCF101 and HMDB51).

1 Introduction

Video representation learning is a fundamental task in computer vision, which
promotes the performance of related downstream tasks, e.g., action recogni-
tion[45, 32, 12], video retrieval[47], and temporal action detection[33]. Especially,
in auto-piloting[4] or co-piloting[31] areas, video representation learning is sig-
nificant for driver fatigue detection and driver abnormal behavior detection.
Unlike image-related tasks, video representation learning needs neural networks
to capture both spatial and temporal features, which makes the problem more
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complicated and challenging. Moreover, compared with image labeling, video
labeling is relatively cumbersome and time-consuming work. Many researchers
have turned to self-supervised learning methods recently.

There are several mainstream directions in self-supervised video representa-
tion learning, including pretext task designing and contrastive learning. Some
studies focus on designing video-related pretext tasks, such as solving video
jigsaw puzzles[1, 24, 28], predicting video clip order[47] and predicting video
speed[3, 43, 23]. Besides, contrastive representation learning shows great poten-
tial in computer vision tasks. Some researcher turn to design effective contrastive
learning frameworks, e.g. MoCo[20], BYOL[16], SimCLR[7]. VideoMoCo[35] and
Feichtenhofer et al.[13] try to apply these contrastive learning methods to video
representation learning.

Fig. 1: The ability of extracting motion information in video stream is severely
constrained by the complex combinations of views, backgrounds, and motions.

Although previous studies have gained great achievements, there still exist
two main problems in video contrastive learning. i) Extracting motion infor-
mation. On the one hand, in a specific video clip, frames with high similarity
easily contributes to similar representations. On the other hand, some videos con-
tains interrupting background and camera movements (shown in Fig. 1(b) and
Fig. 1(c)), which affects the localization to action subject. The above aspects
make it difficult to extract motion variances. ii) Unavoidable scene-bias.
Actions and backgrounds are mutually relevant. For example, playing football
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often happens in playground, and swimming pool obviously implies swimming.
The apparently distinguishable backgrounds provide a shortcut for discriminat-
ing positive and negative samples, which drastically affects the performance of
contrastive learning.

In order to tackle the above problems and capture more action-specific motion
patterns in video representation learning, we propose a unified framework called
Temporal Contrasting Video Montage (TCVM), which contains two modules
Temporal Contrasting (TC) and Video Montage (VM). The TC module utilizes
high-level feature differences among neighboring frames to model temporal in-
formation, and simultaneously retains necessary spatial features in videos, which
does not need to pre-process dataset in advance or to add extra datas in other
modalities. The VM module mixes up all background information of different
videos within a batch to decrease the differences of background bias between
positive and negative samples, which improves the performance of contrastive
learning. Overall, the proposed TCVM framework can be efficiently inserted into
2D or 3D CNN models with ease.

The contributions are summarized as follows.

– We propose a plug-and-play framework called Temporal Contrasting Video
Montage (TCVM) for video contrastive learning, which can improve the
ability of extracting motion information and alleviate negative scene bias.

– We propose the Video Montage module that implicitly mixes up different
video backgrounds for erasing the irrelevant background noises. To demon-
strate motion features, we present the Temporal Contrasting module that
models frame-wise foreground variances in videos.

– Experimental results show that the proposed method outperforms significant
margin on Something-Somethingv2 action classification task and achieves a
significant improvement on UCF101 and HMDB51.

2 Related works

Video representation learning from pretext tasks. Learning video representa-
tions from pretext tasks aims to design a task that generates pseudo video la-
bels. There are some methods that extend successful pretext tasks from image
domain to video domain, such as solving video jigsaw puzzle[1, 24, 28], identify-
ing video clips rotation[26] and video colorization[42]. However, these methods
cannot capture strong spatio-temporal video representations. By the nature of
temporal consistency in videos, researchers design different pretext tasks such as
identifying video clip order[14, 41], sorting video frames[30], and predicting video
clip order[47]. Besides, many recent studies focus on predicting video speeds [3,
43, 23] or relative playback speed of the same video[6]. However, the represen-
tations learned by these methods are similar to the designed tasks and often
irrelevant to downstream tasks[34].

Video contrastive learning. Contrastive learning-based methods aim to build
representations by maximizing the similarity of the same instance with different
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views (positive pairs) and minimizing similarity of different instances (nega-
tive pairs). Recently, contrastive representation learning shows great potential
in computer vision tasks. MoCo[20] presents a contrastive learning framework
that uses a momentum encoder to build dynamic negative pairs. To explore
the ability in video representation learning, some methods research on designing
basic contrastive learning frameworks. [35] and [13] try to extend successful im-
age contrastive learning methods to videos. CVRL[37] indicates the importance
of temporal consistency in different views of videos. TCLR[10] tries to model
video representation by local-local and global-local contrastive pairs. Due to the
unique temporal features in video domain compared to images, Some researchers
start to design contrastive pairs for learning more temporal representations. For
example, DPC[17] and Mem-DPC[18] try to learn temporal representations by
contrasting the predicted frame features.

Motion Learning in Videos The motion information in video plays an important
role in video representation learning. But existing methods often pay insufficient
attention to temporal features. Ding et al.[11] presents a self-supervised con-
trastive learning method that merges different foregrounds and backgrounds in
videos. Choi et al.[9] propose to mask actors with a human detector and fur-
ther present a novel adversarial loss. On the other hand, many researchers focus
on multi-view video contrastive learning methods[2, 40, 36]. For example, con-
trastive learning with the optical flow is widely researched in recent years and
achieves impressive results[19, 46]. Besides, Huang et al.[22] presents a video
representation learning that naturally uses different types of frames in com-
pressed video streams to decouple the motion and context information. The
above-mentioned methods try to learn motions by prepossessing the input videos
or adding another modality. Our paper focuses on modeling motion features ex-
tracted from the encoders.

3 Method

Given only RGB video clips, the proposed method builds the video represen-
tations in a contrastive learing way. Like all contrastive learning methods, our
approach has an encoder that maps the input videos to latent representations
in a unit sphere, and supervises it by the contrastive loss to identify the repre-
sentations from the same or different video clips. Unlike other video contrastive
learning methods, the proposed method employs modeling the high-level video
representations and adopts recognizing similar actions in different videos for
learning motion representations.

3.1 Overview of Temporal Contrasting Video Montage Framework

The overview of the proposed method is shown in Fig. 2. First, the Video Mon-
tage module distributes clips with the same motion patterns to different videos.
In this way, it generates a video with several clips that share similar motion
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Fig. 2: The overview of the proposed method. First, the input videos are
re-organized for sharing similar motion clips in different videos by the proposed
Video Montage framework. Second, the generated videos are fed into the back-
bone encoder to extract frame-wise features of each clip. Third, the clip features
are introduced into Temporal Contrasting module and Original Feature Con-
trasting module for video contrastive learning.

representation with other clips in other videos. Second, the generated videos are
introduced to the backbone encoder to extract the frame-wise spatio-temporal
features, before the representations are re-organized. Third, to model the motion
information in videos, the extracted features are introduced into the Temporal
Contrasting (TC) module for erasing background bias in each clip and building
the temporal representations. The video representations from TC module are su-
pervised by Ldiff . On the other hand, to ensure that the model learns necessary
scene features in videos, Original Feature Contrasting (OFC) module projects
the extracted features to a lower dimension and supervises it by the contrastive
loss Lorigin. The goal of contrastive learning is to pull together positive samples
and push away negative samples. The loss function is defined as the following
equations.

Lorigin =
∑

j∈Po(i)

−log
exp(cos(zi, zj)/τ)∑

k∈Ao
exp(cos(zi, zk)/τ)

, (1)

Ldiff =
∑

j∈Pd(i)

−log
exp(cos(zi, zj)/τ)∑

k∈Ad(i)
exp(cos(zi, zk)/τ)

, (2)

where zi denotes the ith clip representation and Po(i) and Pd(i) contain all
positive sample representations of ith clip in OFC and TC module, respectively.
Ao(i) and Ad(i) include the representations of negative samples of ith clip in
OFC and TC module, separately. Cosine similarity is applied to calculate the
distance between different samples. Following [27], we use the summation over
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positive samples located outside of the log. τ indicates a temperature parameter
to control the smoothness of the distance. In this module, the final loss L is
defined as Equation (3).

L = αLorigin + βLdiff , (3)

where α and β are all set to 0.5 in this study. The model is trained in an end-
to-end manner.

3.2 Video Montage Module

Cut Shuffle

Fig. 3: Video Montage module. First, the input video is segmented into s
clips uniformly. Next, each clip is added augmentation independently. Last, the
clips are shuffle cross all batches.

The Philosophy of Video Montage Video Montage is especially designed for
video contrastive learning, which aims to alleviate negative scene-bias. Different
from adding static frames, Video Montage mixes up the background information
in positive-negative sample sets within a batch, which can decrease the dissim-
ilarity resulting from background. Video Montage mixes up the background in-
formation by model itself, rather than introducing additional operation, in which
the background information is fused after random shuffling.

Video Montage Operation To imitate recognizing the same action in different
videos by human eyes, the VM framework is proposed as shown in Fig. 3. There
are three steps in VM framework: cut, augment, and shuffle.

Cut. First, s clips with the same motion are created by segmenting videos uni-
formly. For example, the input video consists of 16 frames and suppose s = 2.
The input video is cut into 2 clips uniformly with 8 frames in each clip. In other
words, the first clip consists of the front 1-8 frames, the second clip consists of
the next 8-16 frames.
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Augment. Each clip is augmented independently as shown in Fig. 3. The clips
from the same video are considered as positive pairs. Adding independent aug-
mentation could create dissimilar positive clip pairs and hence boosts the net-
work to learn the action representation with less background bias. In this way,
the same motion clips with different background information are created as pos-
itive pairs.

Shuffle. The same motion clips are distributed in current mini-batch. The new s
clips in the same batch are concatenated in the temporal dimension to generate
the new videos. The junction of different clips is considered as an augmentation
at temporal dimension. It forces the network to separate two adjacent clips by
inner temporal similarity.

3.3 Temporal Contrasting Module

Above-mentioned contrastive learning framework could learn strong representa-
tions of videos. However, as described in Sec. 1, the network may take a short-
cut for discriminating different video clips because scenes in different videos
vary greatly. To address this issue, the TC module is proposed. Suppose X =
{x1, x2, ..., xT } as the feature tensor of a video clip extracted from the encoder.
xi ∈ RC×H×W is the ith frame feature. T is the number of video frames. In TC
module, the feature of ith frame xi is used to model the differences with its next
frame.

di =

{
xj
i − xj

i+1 j ≤ k × C,

xj
i j > k × C,

(4)

where di denotes the feature differences at the ith frame. k ∈ [0, 1] controls the
proportion of channels that calculates the current frame feature differences with
the next frame. Then, the feature di is transformed by one spatial pooling layer
and one fully connected layer with the batch normalization and the ReLU func-
tion for encoding the ith frame features. The difference information between i
and i+1 frames represents the changing information cross temporal dimension.
Besides, the original feature represents scene information in videos. The propor-
tion of the channels that model differences in each frame is important in TC,
and it is set to k = 0.5 in this study. We will discuss the k values in ablation
study.

Another challenge is how to fuse the feature difference information for the
final video representation. Temporal pooling operation is widely used in recent
self-supervised video representation learning methods[14, 35, 1]. This operation
may not be appropriate for fusing the feature difference information. First, the
feature difference information is well-ordered in temporal dimension. Videos are
generated from the first frame to the last frame. The feature difference infor-
mation between two ordered frames represents the changing information in the
video. However, the pooling operation is irrelevant in time. If we flip frame-
wise features in temporal dimension, the final video representation ought to be
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different. Unfortunately, the representation is the same with non-flipped fea-
tures by using the temporal pooling. Second, pooling operation would destroy
the difference information between two neighboring frames. Since the difference
information is calculated by the subtraction of two neighboring frames, the ad-
dition among temporal dimension equals to adding the first and the last frame
features and omits the information in other frames. To model the difference in-
formation at every frame, one fully connected layer f is used to project the ith

frame difference information di from C dimensions to C/T dimensions. The final
difference feature Fdiff is conducted by the following equation.

Fdiff = concat{f(d1), f(d2), ..., f(dT )}. (5)

The dimensions of the final difference features equals to C. In this way, the final
representation contains the motion difference information among all temporal
frames.

The network extracts the features of the generated videos without any down-
sampling operation at the temporal dimension. Then the frame-wise features are
cut to k segments uniformly representing the feature of s video clips. Clips’ fea-
tures from the same videos are positive pairs. Besides, the features from different
videos are negative pairs. Last, the network will learn from the features of each
clip by using the TC module and the OFC module.

4 Results

4.1 Implementation Details

Backbone selections To have an apple-to-apple comparison, we follow the com-
mon practices[13, 37] and choose the Slow path in SlowFast[12] as the R3D50
backbone. We also use the TSM50[32] model as a strong backbone to test the
potential of the proposed method. To use our framework, all the down-sampling
operations in temporal dimension are removed.

Self-supervised pre-training We conduct experiments on Kinetics-400[5] (K400)
dataset. K400 is a large scale action recognition dataset. It contains about 240k
videos in training dataset and 20k validation videos. We use the training videos
without any labels for pre-training our models. 32 frames sampled from each
video with the temporal stride 2 are segmented into s = 4 clips in our experi-
ments. Each clip consists of 8 frames. The image size in each frame is set as 112×
112. We follow [8] and use the random grayscale, random color jitter, random
gaussian blur, random horizontal flip for augmentation. Temperature parameter
τ is set to 0.07 following [20]. The model is trained for 200 epochs. SGD is used
as our optimizer with the momentum of 0.9. Batch size is set to 4 per GPU and
we use 8 NVIDIA 2080ti GPUs in self-supervised pre-training. The learning rate
is set as 0.1 decaying as 0.1× at 50, 100, and 150 epochs.
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Method Year Pretrain Network Input Size Params Epoch Top1 Top5

Modist[46] 2021 K400 R3D50 16×224×224 31.8M×2 600 54.9

RSPNet[6] 2021 K400 R3D18 16×224×224 33.2M 50 44.0

RSPNet[6] 2021 K400 S3D-G 16×224×224 11.6M 50 55.0

MoCo[13] 2021 K400 R3D50 8×224×224 31.8M×2 200 54.4

BYOL[13] 2021 K400 R3D50 8×224×224 31.8M×2 200 55.8

SwAV[13] 2021 K400 R3D50 8×224×224 31.8M×2 200 51.7

SimCLR[13] 2021 K400 R3D50 8×224×224 31.8M×2 200 52

MoCo♢[8] 2020 K400 R3D50 8×224×224 31.8M×2 200 54.6 84.3

Random 2022 R3D50 8×224×224 31.8M 54.2 82.9

Supervised 2022 K400 R3D50 8×224×224 31.8M 55.9 84.0

Ours 2022 K400 R3D50 8×224×224 31.8M 200 55.8 84.6

Ours† 2022 K400 R3D50 8×224×224 31.8M 200 59.3 87.2

Random 2022 TSM50 8×224×224 24.3M 56.7 84.0

Random‡ 2022 TSM50 8×224×224 24.3M 57.6 84.8

Supervised 2022 K400 TSM50 8×224×224 24.3M 58.5 85.2

Supervised‡ 2022 K400 TSM50 8×224×224 24.3M 60.8 86.5

Ours 2022 K400 TSM50 8×224×224 24.3M 200 58.5 85.2

Ours‡ 2022 K400 TSM50 8×224×224 24.3M 200 60.7 86.6

Table 1: Action recognition results on SSv2. Epoch denotes the pretraining
epoch. ♢ denotes the MoCo result from our implementation. † denotes the results
from 10×3 view evaluation following the common practice [12, 37, 13]. ‡ denotes
the results from 2×3 view evaluation following [32].

Downstream action classification. We found an interesting phenomenon that dif-
ferent activity datasets are related to motion information at different levels[21].
As shown in Table 3b, It remains a relatively high action recognition accuracy on
K400 dataset by randomly selecting one frame in each video to train and test the
network. In contrast, the action recognition performance decreases dramatically
on Something-Somethingv2 (SSv2) with the same training strategy. Fig. 4 could
explain these experimental results. Some classes in K400 dataset are more related
to their static scene information. In contrast to SSv2 dataset, videos share simi-
lar appearances and backgrounds. Temporal information among different frames
plays a more important role in the action classification task. Considering this
observation, it is more appropriate to use SSv2 rather than K400 for evaluating
the video representation ability of the proposed method.

Something-Something v2[15] (SSv2) is a large and challenging video clas-
sification dataset. We fine-tune the pre-trained model on SSv2 dataset with a
learning rate of 0.005. Following[47], the models are loaded with the weights
from the pre-trained model except for TC module and the final fully-connected
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Method Year Pretraining Dataset Backbone Top1 Top5 Top10

Huang[22] 2021 UCF101 C3D 41 41.7 57.4

PacePred[43] 2021 K400 C3D 31.9 49.7 59.2

PRP[48] 2020 UCF101 R3D 22.8 38.5 46.7

Mem-DPC[18] 2020 K400 R3D18 20.2 40.4 52.4

TCLR [10] 2021 K400 R3D18 56.2

SpeedNet[3] 2020 K400 S3D-G 13.0 28.1 37.5

CoCLR[19] 2020 UCF101 S3D 53.3 69.4 76.6

CSJ[25] 2021 K400 R3D34 21.5 40.5 53.2

MoCo♢[20] 2020 K400 R3D50 45.0 61.4 70.0

Ours 2022 K400 R3D50 54.2 70.2 78.2

Ours 2022 K400 TSM50 55.5 71.5 79.1

(a) Action retrieval results on UCF101.

Method Year Pretraining Dataset Backbone Top1 Top5 Top10

Huang[22] 2021 UCF101 C3D 16.8 37.2 50.0

PacePred[43] 2021 K400 C3D 12.5 32.2 45.4

PRP[48] 2020 UCF101 R3D 8.2 25.3 36.2

Mem-DPC[18] 2020 K400 R3D18 7.7 25.7 40.6

BE[44] 2021 UCF101 R3D34 11.9 31.3

TCLR [10] 2021 K400 R3D18 22.8

CoCLR[19] 2020 UCF101 S3D 23.2 43.2 53.5

MoCo♢[20] 2020 K400 R3D50 20.7 41.3 55.5

Ours 2022 K400 R3D50 25.4 47.5 60.1

Ours 2022 K400 TSM50 25.9 49.8 64.1

(b) Action retrieval results on HMDB51.

Table 2: Action retrieval results on UCF101 and HMDB51. ♢ denotes the MoCo
result from our implementation.

layer with randomly initialized. The video is sampled to 8 frames with 224 ×
224 resolutions following [12].

Video Retrieval. The proposed method is also tested on UCF101[39] and HMDB51[29]
datasets for video retrieval task. Because these datasets are relative small and
easy to overfit, results may be quite different without some specific tricks in fine-
tuning stage. In contrast, video retrieval task only uses the representations from
the encoder, which could reveal the representation ability of the encoder more
fairly by using different self-supervised methods. We only report their video re-
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Method Dataset
TC VM OFC UCF101 HMDB51 SSv2

✓ 28.2 14.0 53.9
✓ ✓ 31.5 13.8 55.0

✓ ✓ ✓ 56.1 25.6 55.8

(a) Ablation study on the proposed TC, VM, OFC.

Dataset Frames Top1

K400 1 59.22
K400 8 72.67
SSv2 1 18.42
SSv2 8 60.60

(b) Ablation study on temporal
information of K400/SSv2.

k D2 UCF101 HMDB51 SSv2

0.25 52.8 23.2 56.4
1 56.4 28.0 55.8
0.5 ✓ 55.1 26.9 55.7

0.5 57.3 25.9 58.6

(c) Ablation study on TC module.

Operation UCF101 HMDB51 SSv2

C-A 41.6 17.4 43.3
A-C-S 27.2 12.7 52.3
C-S-A 49.0 19.9 43.4

C-A-S 56.1 25.6 55.8

(d) Ablation study on VM operations.

LR Annealing Video Sampler # Frames Dataset
CosineLR StepLR TSN sampler I3D sampler 16 32 UCF101 HMDB51 SSv2

✓ ✓ ✓ 55.0 21.2 56.3
✓ ✓ ✓ 51.6 21.2 56.2
✓ ✓ ✓ 50.6 19.3 56.0

✓ ✓ ✓ 56.1 25.6 55.8

(e) Ablation study on the proposed LR annealing, video sampler, #Frames.

Table 3: Ablation studies on TCVM framework. D2 denotes that we use feature
subtraction again on the previous have-subtracted features. C, A and S sepa-
rately denote cut, argument and shuffle operation.

trieval results in this paper. After training on K400 dataset, the model is fixed
as a feature encoder to test video retrieval tasks.

4.2 Compared with state-of-the-art methods

Table 1 shows the results of the proposed method on SSv2. Since few self-
supervised learning methods focus on SSv2, we try our best to investigate all the
methods and make comparisons as fair as possible. We also implement MoCo[8]
by ourselves. We follow SlowFast[12] and TSM[32]’s evaluation settings to test
backbone R3D50 and TSM’s accuracy, which is 10×3 views and 2×3 views, re-
spectively. 1-view test results are also provided in Table 1, which means that
one video is only sampled into one clip for test. Our method’s results are com-
parative with k400 supervised results in both TSM50 and R3D50 backbone,
and the top-5 accuracy even outperforms k400 supervised model. As for TSM,
top-1 accuracy can be improved from 57.6% to 60.6% by using the proposed
method, which is only 0.1% lower than k400 supervised result. It is noticed that
MoCo, BYOL, SwAV and SimCLR[13] uses teacher-student Network architec-
ture. In contrast, the proposed method outperforms MoCo, SwAV, and SimCLR
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Fig. 4: The visualization of some frames from K400 and SSv2 datasets.

and reaches similar results with BYOL but only uses half of parameters in the
pre-training step.

Table 2a and Table 2b present the video retrieval results on UCF101 and
HMDB51 datasets. A series of state-of-the-art methods[22, 43, 48, 18, 44, 10, 19,
20, 25, 3] are also listed in the tables. For UCF101 retrieval, our method reaches
54.2% Top1 accuracy, 70.2% Top5 accuracy, and 78.2% Top 10 accuracy, re-
spectively. Furthermore, our method achieves a higher performance by using
TSM model. It is noticed that CSJ[25] presents a video jigsaw method to rea-
son about the continuity in videos. Our method makes a great improvement
compared with CSJ. Our method outperforms other methods significantly. For
HMDB51 retrieval, the proposed method achieves 25.4% Top1, 47.5% Top5, and
60.1% Top10 accuracy by using R3D50 backbone and reaches 25.9% top1, 49.8%
Top5, and 64.1% Top10 accuracy by using TSM model.

4.3 Ablation Study

Ablations on the entire framework. To demonstrate the combinations of the pro-
posed TC and VM modules, Table 3a presents the ablation studies on the entire
module. Without the proposed VM module, the performance of self-supervised
video representation learning drops from 55.0% to 53.9% on the SSv2 action
classification task. It also leads to a bad performance on UCF101 and HMDB51
video retrieval tasks. Interestingly, by adding the OFC module, it leaves the
apparent performance gap on UCF101 and HMDB51 video retrieval task. But
on SSv2 action classification task, the performance only raises from 55.0% to
55.8%. One of the reasons is that fine-tuning on the downstream task may learn
non-linear relationship from the pre-trained models. It closes the gap between
different pretrained models.

Ablations on the TC module. We conduct ablation study of proposed TC mod-
ule, as shown in Table 3c. We first test the different proportions of k. k = 0.25
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denotes that the network uses quarter of channels to model temporal differences
among features. k = 1 means that all the channels are used for modeling re-
lationships with neighboring frames. Besides, we also try to model high level
temporal information. D2 denotes that the frame subtraction operation per-
forms again on the previous subtraction features. It can be seen that D2 shows
better performance on HMDB51 retrieval task. It means that modeling more
complicated motion information is necessary for HMDB51 dataset. Compared
with k = 1, only using half of channels for model temporal relationship with
neighboring channels may bring necessary scene motion information. There is a
clear performance gap between k = 1 and k = 0.5 on UCF101.

Ablations on the VM module. Table 3d presents the performance of two impor-
tant operations in video montage: augmentation and shuffling. ”aug before cut”
denotes that augmentations of each clip are added before video shuffling. In this
way, clips from the same videos shares the same augmentation. ”aug after shuf-
fle” denotes the augmentation is added after the pseudo videos are generated.
In this way, clips in the same pseudo videos have the same augmentation. It
can be seen that adding augmentation to each videos independently boosts the
video understanding performances in each dataset. ”wo shuffle” means that the
shuffling operation in Fig. 3 is removed. The results show that the performance
raises about 15%, 17%, 12% on UCF101 retrieval, HMDB51 retrieval and SSv2
classification tasks respectively by adding the shuffling performance.

Ablations on the training Strategy. To make a fair comparison, some other train-
ing strategies[8, 35] are also tested. In Table 3e, the ”cosinelr” means we use the
cosine learning rate decaying strategies following the common practices[8]. the
”TSN sampler” means during the self-supervised training, the input videos are
sampled by tsn sampler in [32]. And the ”I3D sampler” denotes the input video
sampling strategy that is used in the proposed method. The ”16 frames” denotes
the frame number of input videos in self-supervised training step drops from 32
to 16, which means each clip consists of 4 frames instead of 8.

4.4 Visualization Analysis

To further verify the effectiveness of the proposed method, class activation
maps[38] (CAM) results are also presented on UCF101 compared with MoCo,
as shown in Fig. 5. (a) shows that our method could localize motion areas more
precisely in static background and discriminate action. (b) shows MoCo could
easily be distracted by complex surroundings while our model still focuses on
actors. (c) implies our model could correctly capture actors’ motion clues even
when the background is quickly changing.

5 Conclusions

In this paper, we propose the Temporal Contrasting Video Montage framework
for self-supervised video representation learning. First, the input videos are pro-
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Fig. 5: CAM results on the UCF101 dataset. The first and second raws denote
the visualization results of MoCo and the proposed method, respectively.

cessed by the VM module to generate video clips. Second, video clips are in-
troduced to the encoder to extract features. Third, the proposed TC module
encodes the high-level features by the frame-wise feature differences. Last, the
features from the TC module are optimized in a contrastive learning strategy.
Experimental results present that our methods outperforms other state-of-the-
art methods for UCF101 and HMDB51 retrieval tasks and reaches the simi-
lar accuracy with supervised counterparts on the large scale action recognition
dataset SSv2. The proposed method relies on a large scale of unlabelled videos
for pretraining, which may limit its range of applications. In the future, we will
try to train the proposed method on other datasets.
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