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Abstract. Recently, the transformer model has been successfully em-
ployed for the multi-view 3D reconstruction problem. However, chal-
lenges remain in designing an attention mechanism to explore the multi-
view features and exploit their relations for reinforcing the encoding-
decoding modules. This paper proposes a new model, namely 3D coarse-
to-fine transformer (3D-C2FT), by introducing a novel coarse-to-fine
(C2F) attention mechanism for encoding multi-view features and rectify-
ing defective voxel-based 3D objects. C2F attention mechanism enables
the model to learn multi-view information flow and synthesize 3D sur-
face correction in a coarse to fine-grained manner. The proposed model
is evaluated by ShapeNet and Multi-view Real-life voxel-based datasets.
Experimental results show that 3D-C2FT achieves notable results and
outperforms several competing models on these datasets.

Keywords: Multi-view 3D reconstruction - Coarse-to-fine transformer
- Multi-scale attention.

1 Introduction

Multi-view 3D reconstruction infers geometry and structure of voxel-based 3D
objects from multi-view images. The definition of the voxel is essentially 3D
pixels in cube size. Theoretically, voxel representation is the perfect modeling
technique for replicating reality [9, 10, 13]. Hence, voxel representation can easily
resemble real-world objects into more accurate 3D objects in the virtual envi-
ronment [14]. Therefore, the multi-view 3D reconstruction plays a crucial role in

*The authors have contributed equally to this work.
fCorresponding author.

1438



2 L. Tiong et al.

robot perception [2, 22], historical artifact [16, 12], dentistry [20, 21], etc. Predica-
ments in estimating 3D structure of an object include solving an ill-posed inverse
problem of 2D images, violation of overlapping views, and unconstrained environ-
ment conditions [7]. Here, the ill-posed inverse problem refers to the voxel-based
3D objects estimation problem when disordered or limited sources of the inputs
are given as inputs [6]. Accordingly, multi-view 3D object reconstruction remains
an active topic in computer vision.

Classical approaches to tackle multi-view 3D reconstruction are to introduce
feature extraction techniques to map different reconstruction views [24,5, 26,
31]. However, these approaches hardly reconstruct a complete 3D object when
a small number of images, e.g., 1-4, are presented. With the advances of deep
learning (DL), most attempts utilize an encoder-decoder network architecture
for feature extraction, fusion, and reconstruction. Existing DL models usually
rely on the convolutional neural networks (CNN) or recurrent neural networks
(RNN) to fuse multiple deep features encoded from 2D multi-view images [3,
25]. However, the CNN encoder processes each view image independently, and
thus, the relations in different views are barely utilized. This leads to difficulty
designing a fusion method that can traverse the relationship between views.
Although the RNNs can rectify the fusion problem, the model suffers a long
processing time [3].

Recently, transformers [27] have gained exponential attention and proved
to be a huge success in vision-related problems [4,18]. In the multi-view 3D
reconstruction problem, [28] and [35] propose a unified multi-view encoding,
fusion, and decoding framework via a transformer to aggregate features among
the patch embeddings that can explore the profound relation between multi-
view images and perform the decent reconstruction. However, both studies only
consider single-scaled multi-head self-attention (MSA) mechanism to reinforce
the view-encoding. Unfortunately, the native single-scaled MSA is not designed
to explore the correlation of relevant features between the subsequent layers for
object reconstruction.

Considering the limitations above, we propose a new transformer model,
namely 3D coarse-to-fine transformer (3D-C2FT). The 3D-C2FT introduces a
novel coarse-to-fine (C2F) attention mechanism for encoded features aggrega-
tion and decoded object refinement in a multi-scale manner. On top of exploring
multi-view images relationship via MSA in the native transformer, the C2F at-
tention mechanism enables aggregating coarse (global) to fine (local) features,
which is favored to learn comprehensive and discriminative encoded features.
Then, a concatenation operation is used to aggregate multiple sequential C2F
features derived from each C2F attention block. In addition, a C2F refiner is
devised to rectify the defective decoded 3D objects. Specifically, the refiner lever-
ages a C2F cube attention mechanism to focus on the voxelized object’s attention
blocks that benefit coarse-to-fine correction of the 3D surface. In general, C2F
attention utilizes the coarse and fine-grained features to be paired and promotes
the information flow that helps the 3D objects reconstruction task.

1439



3D-C2FT: Coarse-to-fine Transformer 3

Besides that, we compile a new dataset called Multi-view Real-life dataset
for evaluation. However, unlike existing dataset such as ShapeNet [32] that is
assembled from synthetic data, our dataset is composed of real-life single or
multi-view images taken from internet without ground truth. We propose this
dataset to support real-life study for multi-view 3D reconstruction evaluation.
The contributions of this paper are summarized as follows:

— A novel multi-scale C2F attention mechanism is outlined for the multi-view
3D reconstruction problem. The proposed C2F attention mechanism learns
the correlation of the features in a sequential global to the local manner, on
top of exploring multi-view images relation via MSA. Accordingly, coarse-
grained features draw attention towards the global object structure, and the
fine-grained feature pays attention to each local part of the 3D object.

— A novel transformer model, namely 3D-C2FT, for multi-scale multi-view im-
ages encoding, features fusion, and coarse-to-fine decoded objects refinement
is proposed.

— Extensive experiments demonstrate better reconstruction results on stan-
dard benchmark ShapeNet dataset and challenging real-life dataset than
several competing models, even under stringent constraints such as occlu-
sion.

This paper is organized as follows: Section 2 reviews the related works of the
DL-based multi-view 3D reconstruction. Then, Section 3 presents our proposed
method. Next, the experimental setup, results, and ablation study are presented
in Section 4. Finally, the conclusions are summarized in the last section.

2 Related Works

This section reviews several relevant works of DL-based multi-view 3D recon-
struction. We refer the readers to a more comprehensive survey on this subject

[7].

2.1 CNN and RNN-based Models

Early works [3] and [11] utilize modified RNN to fuse information from multi-
view images and reconstruct the 3D objects. However, both works have their
limitations; for instance, when given the same set of images but in different
orders, the model fails to reconstruct the 3D objects consistently. This is due to
both models being permutation-variant and relying on the ordered sequence of
the input images for feature extraction.

[33], [34] and [36] propose a CNN-based model to address randomly ordered
and long sequence forgetting issues of the RNNs. However, these works follow
the divide-and-conquer principle by introducing a CNN-based single-view en-
coder, a single-view decoder, and a fusion model, which work independently.
Therefore, the encoder and decoder hardly utilize the relations between dif-
ferent views. Instead, the network relies on the fusion model to integrate the
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arbitrary ordered multi-view features for reconstruction. Results suggest that
designing a robust fusion method with a CNN-based approach is challenging.
Furthermore, these works suffer from the model scaling problem while preserv-
ing permutation-invariant capability. For instance, if the input views exceed a
specific number, such as 10-16 views, the reconstruction performance level-off,
implying the hardness of learning complementary knowledge from a large set of
independent inputs.

2.2 Transformer-based Models

Recently, [28] and [35] put forward the transformer-based models that perceive
multi-view 3D reconstruction problems as a sequence-to-sequence prediction
problem that permits fully exploiting information from 2D images with differ-
ent views. [28] leverages native multi-head self-attention (MSA) mechanism for
feature encoding, fusing, and decoding to generate a 3D volume for each query
token. However, this model only relies on the MSA to explore the relation of
multi-view images by fostering different representations of each view. Hence,
it falls short in analyzing the low to high-level interactions within multi-view
images that signify the global structure and local components of the 3D objects.

Yagubbayli et al. [35] proposes another transformer model simultaneously
along with [28] known as Legoformer. This model adopts an encoder with pre-
norm residual connections [17] and a non-autoregressive decoder that takes ad-
vantage of the decomposition factors without explicit supervision. Although this
approach is more effective, the model only focuses on learning 3D objects re-
construction parts by parts. Such a strategy is deemed local-to-local attention,
which does not benefit low-level interaction to support information flow across
local parts of 3D objects.

Considering the limitations of the previous transformer-based models, we
are motivated to design a new attention mechanism by introducing a C2F patch
attention mechanism in the encoder to extract multi-scale features of the multi-
view images. Furthermore, we also put forward a C2F cube attention mechanism
in the refiner to rectify the reconstructed object surface in a coarse to fine-grained
manner.

3 3D Coarse-to-fine Transformer

3D coarse-to-fine transformer (3D-C2FT) consists of an image embedding mod-
ule, a 2D-view encoder, a 3D decoder, and a 3D refiner, as illustrated in Fig. 1.
Specifically, the encoder accepts either single or multi-view images in the embed-
ding form, which are managed by the image embedding module and then C2F
patch attention is used to aggregate the different views of inputs by extract-
ing feature representations for the decoder to reconstruct 3D volume. Finally,
the refiner with the C2F cube attention mechanism is to rectify the defective
reconstructed 3D volume. The 3D-C2FT network is explained in detail in the
following subsections.
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Fig. 1. The architecture of 3D-C2FT. The network comprises an image embedding
module - DenseNet121, a 2D-view encoder, a 3D decoder, and a 3D refiner.

3.1 Image Embedding Module

We leverage DenseNet121 [8] as an image embedding module for the proposed
3D-C2FT. For the details, readers are referred to the supplementary materials
Section 6.1. Given a set of n view images of a 3D object X = {X!, X2 ... X"}
each view image X" is fed into the image embedding module to obtain patch
embeddings P" € R'*¢, where d is the embedding dimensions. We follow the
ViT setting where d is fixed at 768.

3.2 2D-view Encoder

The encoder of 3D-C2FT receives patch embeddings of view n, P" as well as
its associated positional embeddings. These patches and positional embeddings
are sent to a C2F patch attention block that consists of I-layer of MSA [27] and
multilayer perceptron (MLP), which is simply a fully connected feed forward
network, as shown in Fig. 1. The C2F patch attention block is repeated J times.
Thus, the output of the C2F patch attention block, ET ; is calculated as follows:

E'; = MSA(Norm(P[", ;) + Pp (1)

i—1,50
E}'; = MLP(Norm(E}";)), (2)

where Norm(-) denotes layer normalization, i is the layer index of E}'; where
i =1,---,I and I is empirically set to 4 in this paper. j is the block index of
E?;, where j =1,---,J.

Each C2F patch attention block is responsible to extract the features i.e.,
ET ; in a coarse to fine-grained manner by shrinking the dimension of E7 ; in a

ratio of two. Thereafter, we fuse each E7 ; from J blocks by concatenation to
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produce a C2F patch embedding, F" € RIX[d+d/24,++d/2"V] which captures
the aggregation of global and local multi-scale features. Since d is set to 768 in
this work and based on our experimental settings and computational complexity
concerns, we set J=3 as shown in supplementary materials Section 6.1. The C2F
patch embedding F™ can be determined as follows:

F" :Norm([E?,lvE?,Z"" ’E?,J])v (3)

where [-] refers to the concatenation operator.

3.3 3D Decoder

As shown in Fig. 1, the 3D decoder learns and explores the global correlation
between the multi-view images for reconstruction. The decoder only consists of
a single 3D reconstruction block which is crucial for integrating and convert-
ing F™ to a 3D volume D with size 32 x 32 x 32. The attention module of
the 3D reconstruction block accepts both view interpretation matrix H and
F™ to project different views of F"™ into the D. Specifically, given F™ and
H € R9xld+d/2+4d/27 D] the decoder can easily aggregate the n-view of
F™ together and share across all potential inputs in the network. Here, H is a
randomly initialized learnable weight matrix that plays a role in interpreting and
addressing F'", and g denotes the number of cube embeddings that are required
to assemble the D. In this paper, we set g=8 x 8 x 8 = 512. The 3D volume
output of the decoder, D, is specified as:

D = o (MLP(MSA(H, F"))) € R??x32x32, (4)

where o(-) is a sigmoid activation function. However, the reconstructed 3D vol-
ume, D at this stage is defective (Section 4.3) due to simplicity of the decoder.
Therefore, a refiner is needed for further rectification.

3.4 3D Refiner

We propose a C2F cube attention mechanism intending to correct and refine
the D surface for the refiner. The refiner is composed of L C2F cube attention
blocks where each block consists of K layers of ViT-like attention module (Fig
1). Here, we set K'=6, which the experiments determine. In addition, L=2 is
set in this work as the reconstructed volume resolution is a mere 32 x 32 x 32.
Therefore, a larger L can be used for high-resolution volume.

Specifically, D from Eq. 4 is transformed to the C2F cube embeddings Rk,l
by partitioning the D to Rk’l with a size of 8 x 8 x 8 in the first C2F cube
attention block. For the second block, I%kg size is further reduced by a factor
of two; thus 4 x 4 x 4. For each block, the cube attention block output can be
computed from:

Ry = MSA(Norm(Ry_1,)) + Ry—1., (5)
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Ry, = MLP(Norm(Ry,)) + Ry (6)

where k is the layer index of Ry ; where k =1,2,--- , K and [ is the block index
of R; where [ =1,2,--- , L.

By adopting the C2F notion, the proposed refiner leverages the C2F cube
attention blocks of different scales of embeddings that can benefit the structure
and parts correction of the 3D object. Furthermore, it enables the refiner to
iteratively draw attention from coarse to temperate regions by rectifying the
spatial surfaces gradually through multi-scale attention.

3.5 Loss Function

For training, we adopt a combination of mean-square-error (Lysg) loss and 3D
structural similarity (L£sp.ssmv) loss as a loss function (Liota1) to capture better
error information about the quality degradation of the 3D reconstruction. The
motivation of adopting L3p_ssmv loss [30] is for 3D-C2FT to learn and produce
visually pleasing 3D objects by quantifying volume structural differences between
a reference and a reconstructed object. Furthermore, the Lysg is used to evaluate
the voxel loss that measures the L2 differences between the ground-truth (GT)
and reconstructed objects. Thus, Liota is given as follows:

Liota(Y,Y) = Lase (YY) + Lap-ssia (Y, V), (7)
A | M oMM A
Luse(V.Y) =35> DY (Veys—Yay)?, (8)
z=0y=02=0

(2py py + 1)/ 20y + ¢2)
(15 + 12 +c)(of + 0% +ea)’

Lsp-ssa(Y,Y) =1— 9)
where Y is the GT of 3D volume and Y is reconstructed 3D volume. Note that,
in Eq. 8, M refers to the dimension of 3D volume; x, y and z are defined as the
indexes of voxel coordinates, respectively. In Eq. 9, py and py denote the mean
of the voxels; 0% and 0'327 are the variance of the voxels, respectively. In addition,

oy denotes the covariance between Y and Y. We set cp = 0.01 and ¢, = 0.03
to avoid instability when the mean and variances are close to zero.

4 Experiments

4.1 Evaluation Protocol and Implementation Details

Dataset To have a fair comparison, we follow the protocols specified by [3]
and [35] evaluate the proposed model. A subset of the ShapeNet dataset, which
comprises 43,783 objects from 13 categories, is adopted. Each object is rendered
from 24 different views. We resize the original images from 137 x 137 to 224 x 224,
and the uniform background color is applied before passing them to the network.
For each 3D object category, three subsets with a ratio of 70:10:20 for training,
validation, and testing are partitioned randomly. Note that all the 3D object
samples are provided with a low-resolution voxel representation of 32x32x32.
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8 L. Tiong et al.

Evaluation Metrics Intersection over Union (IoU) and F-score are adopted to
evaluate the reconstruction performance of the proposed model. A higher IoU
score implies a better reconstruction. A higher F-score value suggests a better
reconstruction. Therefore, the F-score@1% is adopted in this paper.

Implementation The proposed model is trained with the batch size 32 with
view input images of size 224 x 224 and the dimension of 3D volume is set to
32 x 32 x 32. For multi-view training, the number of input views is fixed to 8,
which is the best obtained from the experiments. The full-fledged results are
given in supplementary materials Section 6.1.

During training, the views are randomly sampled out of 24 views at each
iteration, and the network is trained by an SGD optimizer with an initial learning
rate of 0.01. The learning rate decay is used, and it is subsequently reduced
by 10! for every 500 epochs. The minimum learning rate is defined as 1.0 x
10~*. Our network is implemented by using the PyTorch toolkit [19], and it is
performed by an NVidia Tesla V100. The source code is provided at GitHub?.

4.2 Result

Multi-view 3D Reconstruction The performance comparisons of 3D-C2FT
against several benchmark models, namely 3D-R2N2 (RNN-based) [3], AttSets
(RNN-based) [36], Pix2Vox++/F (CNN-based) [34], Pix2Vox++/A (CNN-based)
[34], LegoFormer (transformer-based) [35], 3D-RETR (transformer-based) [23],
VoIT+ (transformer-based) [28], and EVoIT (transformer-based) [28] are pre-
sented in this subsection. To have fair comparisons, we re-implemented several
models such as AttSets, Pix2Vox++/F, Pix2Vox++/A, and 3D-RETR that were
provided by the respective authors in order to follow the same experimental set-
tings and protocols. Table 1 shows reconstruction performance over a different
number of views in terms of IoU and F-score on the ShapeNet dataset.

Compared with RNN-based and CNN-based models, it can be observed that
3D-C2FT achieves the highest IoU and F-score with all views as tabulated in
Table 1. As an illustration, we demonstrate several reconstruction instances from
the ShapeNet dataset as shown in Fig. 2 and supplementary material VideoO1.
As can be seen in Fig. 2, the objects reconstructed by the 3D-C2FT have com-
plete and smoother surfaces, even compared with the LegoFormer. These results
suggest that C2F patch and cube attention mechanisms play a crucial role in
multi-view 3D object reconstruction.

Among transformer-based models (see Table 1), 3D-C2FT outperforms Lego-
Former, VolT+, EVoIT, and 3D-RETR significantly in almost all views in terms
of IoU score and F-score, even under extreme cases where one view image is used
as input. Note VoIT+ and EVoIT are published without code availability; thus,
we only report the results for 4, 8, 12, and 20 views inputs [28]. Nevertheless, the
results reveal the distinctive advantages of the C2F patch and cube attention

*Source Code URL: https://github.com/tiongleslie/3D-C2FT/
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Table 1. Performance comparisons of single and multi-view 3D reconstruction on
ShapeNet with ToU and F-score. The best score for each view is written in bold. *
refers to re-implemented models with the same settings of this study. The ‘-’ results of
VoIT+ and EVoIT are not provided in [28] and source code is not publicly available.

Number of views

Model 1 2 3 1 5 g 12 18 20
Metric: IoU
RNN & CNN-based
3D-R2N2 (2016) 0.560 0.603 0.617 0.625 0.634 0.635 0.636 0.636 0.636
AttSets* (2020) 0.607 0.634 0.639 0.658 0.669 0.674 0.677 0.679 0.681

Pix2Vox++/F* (2019) | 0.585 0.636 0.658 0.669 0.677 0.686 0.690 0.693 0.694
Pix2Vox++/A* (2020) | 0.623 0.674 0.690 0.695 0.699 0.704 0.707 0.709 0.710
Transformer-based

LegoFormer (2021) 0.519 0.644 0.679 0.694 0.703 0.713 0.717 0.719 0.721
VoIT+ (2021) - - - 0.695 - 0.707 0.714 - 0.715
EVoIT (2021) - - - 0.609 - 0.698 0.720 - 0.738
3D-RETR* (2021) 0.608 0.661 0.672 0.679 0.682 0.685 0.687 0.688 0.689
3D-C2FT 0.629 0.678 0.695 0.702 0.708 0.716 0.720 0.723 0.725
Metric: F-score

RNN & CNN-based

3D-R2N2 (2016) 0.351 0.368 0.372 0.378 0.382 0.383 0.382 0.382 0.383
AttSets* (2020) 0.358 0.360 0.370 0.379 0.384 0.386 0.389 0.403 0.408

Pix2Vox++/F* (2019) | 0.341 0.367 0.388 0.398 0.405 0.417 0.429 0.430 0.432
Pix2Vox+-+/A* (2020) | 0.365 0.419 0.435 0.443 0.447 0.452 0.457 0.460 0.461
Transformer-based

LegoFormer (2021) 0.282 0.392 0.428 0.444 0.453 0.464 0.470 0.472 0.473
VoIT+ (2021) - - - 0.451 - 0.464 0.469 - 0.474
EVoIT (2021) - - - 0.358 - 0.448 0.475 - 0.497
3D-RETR* (2021) 0.355 0.412 0.425 0.432 0.436 0.440 0.442 0.443 0.444
3D-C2FT 0.371 0.424 0.443 0.452 0.458 0.468 0.476 0.477 0.479

over competing transformer models that utilize a plain single-scaled MSA mech-
anism in both encoder and decoder. However, 3D-C2FT underperforms EVoIT
for 20 views. We speculate that the issue is associated with the attention layer
in the decoder being less effective for a large number of input views.

Next, we also perform single-view 3D reconstruction against several bench-
mark models, namely 3D-R2N2, OGN (CNN-based) [25], Pix2Mesh (CNN-based)
[29], OccNet (CNN-based) [15], Pix2Vox++F, Pixe2Vox++A, LegoFormer, and
3D-RETR. For reference, we follow the protocols specified by [3] and [15] in this
experiment. As shown in Table 2, 3D-C2FT attains the highest IoU value and F-
score for most of the categories. By comparison, the C2FT attention mechanism
clearly achieves better aggregation performance even with single-view images.

Performance Comparisons with Occlusion Images In this subsection, the
reconstruction performance of 3D-C2FT and the competing models is evalu-
ated with occluded images. Here, we use the testing set from the subset of the
ShapeNet dataset by following the same protocols in the previous section. We
add occlusion boxes with different sizes to the odd number ordered lists of 2D
view images: 20 x 20, 25x25, 30x30, 35x35 and 40x 40, which impeded the
essential parts of the images intentionally. Readers are referred to the supple-
mentary materials Section 6.2 for details.
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Input GT 3D-R2N2  Pix2Vox++/F Pix2Vox++/A LegoFormer 3D-RETR 3D-C2FT

Fig. 2. 3D object reconstruction using 8 views (only 1 are shown) for specific categories:
car, chair, lamp, Tifle, table, display, and watercraft.

Table 2. Performance comparisons of single-view 3D reconstruction results for each
category on the ShapeNet dataset. * refers to re-implemented models with the same
settings in this study. The best score for each category is written in bold.

<" >
g R x X X X <
Category qu’é Ooé q)&e ooé € 40”'X QO‘*’X QS)‘& ,Oqg
‘3,0 Qd. (¢] Q.d.q’ Q“ ,)0’ q,o’ ‘bo

Airplane 0.513 0.587 0.420 0.571 0.533 0.652 0.647 0.640
Bench 0.421 0.481 0.323 0.485 0.454 0.547 0.547 0.549
Cabinet 0.716 0.729 0.664 0.733 0.726 0.760 0.712 0.761
Car 0.798 0.816 0.552 0.737 0.801 0.831 0.818 0.832
Chair 0.466 0.483 0.396 0.501 0.482 0.522 0.511 0.525
Display 0.468 0.502 0.490 0.471 0.463 0.499 0.434 0.489
Lamp 0.381 0.398 0.323 0.371 0.427 0.445 0.436 0.468
Loudspeaker 0.662 0.637 0.599 0.647 0.690 0.695 0.632 0.697
Rifle 0.544 0.593 0.474 0.402 0.528 0.583 0.567 0.583
Sofa 0.628 0.646 0.613 0.680 0.637 0.695 0.672 0.668
Table 0.513 0.536 0.395 0.506 0.541 0.568 0.536 0.571
Telephone 0.661 0.702 0.661 0.720 0.702 0.720 0.624 0.720
Watercraft 0.513 0.632 0.397 0.530 0.514 0.570 0.547 0.558
Overall 0.560 0.596 0.480 0.571 0.585 0.623 0.607 0.629

As shown in Table 3, the proposed 3D-C2FT achieves the best IoU scores for
all sizes of occlusion boxes. Among the benchmark models, LegoFormer performs
second-best over various occlusion boxes. Unlike the LegoFormer that draws
attention to the fine-grained features only to explore the correlation between
multi-view images, 3D-C2FT focuses on both coarse and fine-grained features so
that they can assist the model in exploiting global and local interactions within
the occluded regions, which make the model more robust against predicting
unknown elements in the multi-view images.
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Table 3. Performance comparisons of 12-view 3D reconstruction on ShapeNet using
different sizes of occlusion box. The best score for each size is highlighted in bold.

Model Occlusion Box

20x 20 25X 25 30 %30 35X 35 40x%40
Metric: IoU
Pix2Vox++/F 0.672 0.661 0.651 0.636 0.621
Pix2Vox++/A 0.698 0.695 0.690 0.685 0.678
LegoFormer 0.701 0.699 0.695 0.691 0.686
3D-RETR 0.667 0.651 0.623 0.603 0.584
3D-C2FT 0.717 0.715 0.712 0.706 0.698
Metric: F-score
Pix2Vox++/F 0.416 0.410 0.405 0.396 0.388
Pix2Vox++/A 0.451 0.449 0.446 0.442 0.437
LegoFormer 0.453 0.451 0.448 0.443 0.439
3D-RETR 0.414 0.392 0.361 0.340 0.319
3D-C2FT 0.471 0.468 0.465 0.459 0.451

Experiment on Multi-view Real-life Dataset This subsection presents the
performance comparisons on Multi-view Real-life Dataset. All models were only
trained with the ShapeNet dataset. To create our dataset, we randomly searched
the images by following the 3D object categories of the ShapeNet database from
the Google image search engine. After that, all the images were manually verified
to ensure they were correctly labeled. However, collecting many different input
views for real images is difficult. Therefore, we manually combined the same
samples with similar images from different views. The dataset is designed as a
testing set that only contains 60 samples across 13 categories with three cases:

— Case I: samples with at least 1 to 5 views;
— Clase II: samples with at least 6 to 11 views;
— Case III: samples with at least 12 or above views;

The experiment is designed to verify the 3D objects based on human per-
ception without the GT of 3D volume. In Fig. 3 and supplementary materials
Section 6.3, we show the qualitative results for single and multi-view 3D recon-
struction. It is observed that 3D-C2FT performs substantially better than the
benchmark models in terms of the refined 3D volume and surface quality even in
Case I. Interestingly, most benchmark models fail to reconstruct the 3D objects,
or the surface is not accurately generated. This is likely because the benchmark
models lack in utilizing multi-scale feature extraction mechanisms, which causes
these models to fail to capture relevant components more richly.

Note that [35] advocates a part-by-part composition notion by means of fine-
to-fine attention, which is opposed to our global-to-local attention notion. As
depicted in Fig. 3, LegoFormer underperforms the proposed model. This could
be due to LegoFormer does not utilize 3D structure information essential in
interpreting global interaction between semantic components. As a result, the
model ignores the importance of the structure and orientation information of the
3D objects in guiding the model to perform reconstruction in challenging envi-
ronments. In summary, the advantage of the C2F attention mechanism is that
it fully utilizes the coarse and fine-grained features to be paired and represents
the specific information flow that benefits the 3D object reconstruction task.
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Fig. 3. 3D object reconstruction for Case I, Case II and Case III with Multi-view
Real-life dataset

Table 4. Comparisons on parameter sizes of competing models

Model Param. (M) Backbone Speed per View (sec)

3D-R2N2 36.0 - -

AttSets 53.1 - 0.011
Pix2Vox++/F 114.2 ResNet50 0.010
Pix2Vox++/A 96.3 ResNet50 0.011
LegoFormer 168.4 VGG16 0.013
3D-RETR 168.0 RETR 0.012
3D-C2FT 90.1 DenseNet121 0.013

Computational Cost Table 4 tabulates the number of parameters in various
benchmark models. Note that the backbone refers to the pre-trained image em-
bedding module. 3D-C2FT has a smaller number of parameters than most of the
competing models. Although 3D-R2N2 has significantly smaller parameter sizes,
the reconstruction performances are below par, as revealed in Table 1. Besides,
we also compare reconstruction time (speed per view) in Table 4. As can be seen
in this table, 3D-C2FT has a well-balanced of the best balance of speed (see
Table 4) and performance (IoU score, see Table 1).

4.3 Ablation Study

In this section, all the experiments are conducted with the ShapeNet dataset
described in Section 4.1.

Visualization on C2F Attention To better understand the benefit of C2F
attention, we present visualization results of three C2F patch attention blocks
separately, labeled as C2F;, C2Fy and C2F3 with attention rollout [1]. Fig. 4
depicts the attention maps of each stage of the C2F patch attention block, which
interpret and focus semantically relevant regions that result in a coarse to fine-
grained manner.
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Fig. 4. Visualization of attention maps for each C2F patch attention block.

As shown in Fig. 4, the C2F; attention is drawn to the central parts of
the given images, which represent coarse or global features of the 3D objects.
Similarly, the C2F5 shows attention is drawn toward the edges of the objects,
which can assist the model to distinguish the view orientations for reconstruction.
The final block (C2F3) suggests that the attention is drawn to the specific parts
of the objects, which can be considered as fine-grained features. The results
indicate that the proposed coarse-to-fine mechanism pays specific attention to
the relevant components in the 3D objects, which is essential for the decoder to
predict and reconstruct accurate 3D volume.

Reconstruction with and without Refiner In Fig. 5a and 5b, we evalu-
ate the influence of the refiner on 3D reconstruction results using 3D-C2FT and
3D-C2FT without refiner (3D-C2FT-WR). We observe that 3D-C2FT can signif-
icantly achieve the best IoU score and F-score in all views. We also show several
qualitative 3D reconstruction results in Fig. 5c. Without refiner, the decoder
generates defective 3D surfaces due to a lack of drawing attention to rectifying
wrongly reconstructed parts within the 3D objects. Therefore, our analysis in-
dicates that the refiner plays a crucial role in improving the 3D surface quality
and can remove the noise of the reconstructed 3D volume from the decoder.

Loss Functions We also show the performance of 3D-C2FT trained with dif-
ferent loss functions, namely Liota;, Lmse and L3p.ssiv, as shown in Table 5. It
is noticed that 3D-C2FT trained with Lia achieves the best IoU and F-score
compared to either Lysg or L3p_ssiv alone. Lysg minimizes the voxel grid error
between the predicted and GT of 3D objects. In contrast, L3p_ssiv reduces the
structural difference, which benefits in improving the surface of predicted 3D
objects. As a result, both loss functions drive the model training towards more
reliable and better surface quality reconstruction.
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Fig. 5. Performance comparisons of multi-view 3D reconstruction results on 3D-C2FT
and 3D-C2FT-WR. a) IoU score; b) F-score; ¢) 3D reconstruction results using 8 views
(only 3 are shown) between 3D-C2FT and 3D-C2FT-WR.

Table 5. Performance comparisons of multi-view 3D reconstruction results on 3D-
C2FT using different loss functions. The best score for each view is written in bold.

Loss function Number of views

1 2 3 4 5 8 12 18 20
Metric: ToU
LMSE 0.623 0.673 0.683 0.696 0.701 0.708 0.713 0.716 0.716
L3Dp-sSIM 0.617 0.668 0.683 0.691 0.696 0.705 0.709 0.712 0.712
Liotal 0.629 0.678 0.695 0.702 0.708 0.716 0.720 0.723 0.724
Metric: F-score
LMSE 0.369 0.421 0.437 0.451 0.457 0.466 0.471 0.474 0.476
L3D-ssTM 0.365 0.418 0.437 0.446 0.452 0.462 0.467 0.470 0.472
Liotal 0.371 0.424 0.443 0.452 0.458 0.468 0.475 0.477 0.479

5 Conclusion

This paper proposed a multi-view 3D reconstruction model that employs a C2F
patch attention mechanism in the 2D encoder, a 3D decoder, and a C2F cube at-
tention mechanism in the refiner. Our experiments showed that 3D-C2FT could
achieve significant results compared to the several competing models on the
ShapeNet dataset. Further study with the Multi-view Real-life dataset showed
that 3D-C2FT is far more robust than other models. For future works, we will
consider improving the attention mechanism and the scaling of 3D-C2FT. Fi-
nally, we will explore other mechanisms to enhance the 3D reconstruction task,
which we hope will facilitate the practical usage of robotics, historical artifacts,
and other related domains.

1451



3D-C2FT: Coarse-to-fine Transformer 15

References

10.

11.

12.

13.

14.

15.

16.

Abnar, S., Zuidema, W.: Quantifying attention flow in transformers. arXiv e-prints
(2020), https://arxiv.org/abs/2005.00928

Burchfiel, B., Konidaris, G.: Bayesian eigenobjects: A unified framework for 3D
robot perception. In: Robotics: Science and Systems. vol. 13 (2017)

Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In: European Conference on
Computer Vision (ECCV). pp. 628—644 (2016)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
International Conference on Learning Representations (ICLR) (2021)

Gao, Y., Luo, J., Qiu, H., Wu, B.: Survey of structure from motion. In: Proceedings
of 2014 International Conference on Cloud Computing and Internet of Things. pp.
72-76 (2014)

Groen, L.ILA., Baker, C.I.: Previews scenes in the human brain: Comparing 2D
versus 3D representations. Neuron 101(1), 8-10 (2019)

Han, X.F., Laga, H., Bennamoun, M.: Image-based 3D object reconstruction:
State-of-the-art and trends in the deep learning era. IEEE Transactions on Pattern
Analysis and Machine Intelligence 43(5), 1578-1604 (2021)

Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 47004708 (2017)

. Jablonski, S., Martyn, T.: Real-time voxel rendering algorithm based on screen

space billboard voxel buffer with sparse lookup textures. In: 24th Conference on
Computer Graphics, Visualization and Computer Vision. pp. 27-36 (2016)
Kanzler, M., Rautenhaus, M., Westermann, R.: A voxel-based rendering pipeline
for large 3d line sets. IEEE Transactions on Visualization and Computer Graphics
25(7), 2378-2391 (2019)

Kar, A., Héne, C., Malik, J.: Learning a multi-view stereo machine. In: Proceedings
of the 31st International Conference on Neural Information Processing Systems
(NIPS). p. 364-375. Curran Associates, Inc. (2017)

Kargas, A., Loumos, G., Varoutas, D.: Using different ways of 3D reconstruction
of historical cities for gaming purposes: The case study of Nafplio. Heritage 2(3),
1799-1811 (2019)

Kniaz, V.V., Knyaz, V.A., Remondino, F., Bordodymov, A., Moshkantsev, P.:
Image-to-voxel model translation for 3D scene reconstruction and segmentation.
In: European Conference on Computer Vision (ECCV). pp. 105-124 (2020)
Malik, J., Abdelaziz, 1., Elhayek, A., Shimada, S., Ali, S.A., Golyanik, V., Theobalt,
C., Stricker, D.: Handvoxnet: Deep voxel-based network for 3d hand shape and pose
estimation from a single depth map. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 7111-7120 (2020)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Nabil, M., Saleh, F.: 3D reconstruction from images for museum artefacts: A com-
parative study. In: International Conference on Virtual Systems and Multimedia
(VSMM). pp. 257-260. IEEE (2014)

1452



16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

L. Tiong et al.

Nguyen, T.Q., Salazar, J.: Transformers without tears: Improving the normal-
ization of self-attention. In: Proceedings of the 16th International Conference on
Spoken Language Translation. Hong Kong (2019)

Park, N., Kim, S.: How do vision transformers work? In: International Conference
on Learning Representations (ICLR) (2022)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T,
Lin, Z., Gimelshein, N.; Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.: Pytorch: An imperative style, high-performance deep learning library. In: Pro-
ceedings of the 34th International Conference on Neural Information Processing
Systems (NIPS). pp. 8024-8035 (2019)

Pavaloiu, I.B., Vasilateanu, A., Goga, N., Marin, I., Ilie, C., Ungar, A., Patrascu,
I.: 3D dental reconstruction from CBCT data. In: International Symposium on
Fundamentals of Electrical Engineering (ISFEE). pp. 4-9 (2014)

Roointan, S., Tavakolian, P.; Sivagurunathan, K.S., Floryan, M., Mandelis, A.,
Abrams, S.H.: 3D dental subsurface imaging using enhanced truncated correlation-
photothermal coherence tomography. Scientific Reports 9(1), 1-12 (2019)

Shi, Q., Li, C., Wang, C., Luo, H., Huang, Q., Fukuda, T.: Design and implemen-
tation of an omnidirectional vision system for robot perception. Mechatronics 41,
58-66 (2017)

Shi, Z., Meng, Z., Xing, Y., Ma, Y., Wattenhofer, R.: 3D-RETR: End-to-end single
and multi-view 3D reconstruction with transformers. In: British Machine Vision
Conference (BMVC). pp. 1-14 (2021)

Silveira, G., Malis, E., Rives, P.: An efficient direct approach to visual SLAM.
IEEE Transactions on Robotics 24(5), 969-979 (2008)

Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: Efficient
convolutional architectures for high-resolution 3D outputs. In: IEEE International
Conference on Computer Vision (ICCV). pp. 2088-2096 (2017)

Tron, R., Vidal, R.: Distributed 3-D localization of camera sensor networks from
2-D image Measurements. IEEE Transactions on Automatic Control 59(12), 3325—
3340 (2014)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems (NIPS). vol. 30, p.
6000-6010 (2017)

Wang, D., Cui, X., Chen, X., Zou, Z., Shi, T., Salcudean, S., Wang, Z.J., Ward,
R.: Multi-view 3D reconstruction with transformer. In: International Conference
on Computer Vision (ICCV). pp. 5722-5731 (2021)

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: Generating
3D mesh models from single RGB images. In: European Conference on Computer
Vision (ECCV) (2018)

Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing
13(4), 600-612 (2004)

Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: European
Conference on Computer Vision (ECCV). pp. 61-75 (2014)

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 1912-1920 (2015)

1453



33.

34.

35.

36.

3D-C2FT: Coarse-to-fine Transformer 17

Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: Context-aware 3D recon-
struction from single and multi-view images. In: IEEE International Conference on
Computer Vision (ICCV). pp. 2690-2698 (2019)

Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: Multi-scale context-
aware 3D object reconstruction from single and multiple images. International
Journal of Computer Vision 128(12), 2919-2935 (2020)

Yagubbayli, F., Tonioni, A., Tombari, F.: LegoFormer: Transformers
for Dblock-by-block multi-view 3D reconstruction. arXiv e-prints (2021),
http://arxiv.org/abs/2106.12102

Yang, B., Wang, S., Markham, A., Trigoni, N.: Robust attentional aggregation
of deep feature sets for multi-view 3D reconstruction. International Journal of
Computer Vision 128(1), 53-73 (2020)

1454



