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Abstract. Most existing super-resolution (SR) methods are designed
to restore high resolution (HR) images from certain low resolution (LR)
images with a simple degradation, e.g. bicubic downsampling. Their gen-
eralization capability to real-world degradation is limited because it of-
ten couples several degradation factors such as noise and blur. To solve
this problem, existing blind SR methods rely on either explicit degra-
dation estimation or translation to bicubicly downsampled LR images,
where inaccurate estimation or translation would severely deteriorate
the SR performance. In this paper, we propose a plug-and-play module,
which could be applied to any existing image super-resolution model
for feature-level adaptation to improve the generalization ability to real-
world degraded images. Specifically, a degradation encoder is proposed
to compute an implicit degradation representation with a ranking loss
based on the degradation level as supervision. The degradation represen-
tation then works as a kind of condition and is applied to the existing im-
age super-resolution model pretrained on bicubicly downsampled LR im-
ages through the proposed region-aware modulation. With the proposed
method, the base super-resolution model could be fine-tuned to adapt
to the condition of degradation representation for further improvement.
Experimental results on both synthetic and real-world datasets show
that the proposed image SR method with compact model size performs
favorably against state-of-the-art methods. Our source code is publicly
available at https://github.com/wangyue7777/blindsr_daa.

Keywords: Blind super-resolution · multiple unknown degradations ·
feature-level adaptation · ranking loss · region-aware modulation.

1 Introduction

Single Image Super-Resolution (SISR) aims at predicting high-resolution (HR)
images with high-frequency details from their corresponding low-resolution (LR)
images. Inspired by the success of deep learning, numerous existing SR meth-
ods [2,14,21] apply CNN-based models to effectively restore the HR image based
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Fig. 1: An illustration of the degradation representation supervised by contrastive
loss in [28] (a, c), and the proposed ranking loss (b, d) with different blur ker-
nels (left) and noise levels (right) on Set14. Ranking loss can not only separate
different degradations, but also provide information of degradation level.

on a fixed and known degradation (e.g. bicubic downsampling). However, these
methods may have limited generalization to real-world situation where multiple
degradations with unknown blur, downsampler, and noise are coupled together.

To address the SR problem with multiple degradations, several non-blind and
blind SR approaches have been proposed. Most non-blind methods [3,23,31,34]
usually require both LR image and its explicit ground-truth degradation as in-
puts to predict the corresponding HR image. While most blind methods [13,
19, 22] conduct the explicit degradation estimation first and then combine with
non-blind SR methods to restore HR images. However, when dealing with un-
known degradation at inference stage, it may be difficult for these non-blind and
blind approaches to give reasonable performance. Inaccurate explicit degradation
would seriously deteriorate the performance of HR image restoration.

Instead of explicitly estimating degradation of an LR image, a new attempt
called DASR [28] has been made to implicitly learn degradation representation
in feature space with a degradation encoder following contrastive learning fash-
ion [6,12] for blind SR. Such degradation representation can distinguish various
degradations and lead to a degradation-aware SR model. However, the degrada-
tion encoder is only taught to distinguish one from the other without being aware
of whether its degradation is heavier than the other, which is more important in
adjusting an SR model to adapt to certain degradation.

On the other hand, designing and training powerful SR models for bicubic
downsampling degradation has already cost a lot of human and computation re-
sources. However, data distribution gap between bicubicly downsampled images
and images with more practical degradations, prevents those existing pretrained
SR models from being generalized well to LR images with multiple degradations.
There have been several works [15,24] that take advantages of these existing SR
models pretrained on bicubicly downsampled images to promote the development
of SR models for real-world degradations. Image translation techniques [9,16,38]
are employed to convert images of interesting degradations to bicubicly down-
sampled ones and then those converted images are fed to existing pretrained SR
models for HR restoration. However, the imperfect translation would cause per-
formance drop in the process of restoring HR image and produce many artifacts.

In this work, we propose a plug-and-play module for blind SR, which can
be applied to any existing SR models pretrained on bicubicly downsampled

895



Blind Image Super-Resolution with Degradation-Aware Adaptation 3

data. It provides degradation-aware feature-level adaptation to improve the gen-
eralization ability to real-world degraded images. It consists of three compo-
nents: the pretrained SR model, a degradation encoder followed by a ranker,
and a degradation-aware modulation module. Specifically, the degradation en-
coder computes a latent degradation representation such that the SR model can
be adapted to various degradation. Ranking loss is imposed on top to make cor-
rect decision on estimating the degree of degradation in an image as illustrated in
Fig. 1. To make an existing SR model adapt to various degradations, the degra-
dation representation works as a condition to apply the proposed degradation-
aware modulation to the intermediate features of SR model. Even if the degrada-
tion is spatially-invariant, different types of textures may have different sensitiv-
ity to the degradation. Hence, the modulation is designed to be region-aware and
sample-specific. It allows a region in an LR image to be super-resolved adaptively
not only to different degradations but also to content of the image. To further
improve its performance, the pretrained SR model is fine-tuned together with
the degradation encoder and modulation module. With an existing pretrained
light-weight SR model as our SR model, we can obtain a compact SR model
that performs favorably against existing blind SR models of larger model size.

Main contributions of this work are three-fold.
- We come up with a novel plug-and-play module for blind SR. It can pro-

vide degradation-aware feature-level adaptation for any existing SR network
pretrained with the degradation of only bicubic downsampling to improve the
generalization ability to various degraded images.

- We propose a ranking loss for extracting degradation representation with
information of the degradation degree, and a dynamic region-aware modulation
for adaptation on intermediate features within the pretrained SR network.

- Our method has relatively compact model size and performs favorably
against the state-of-the-art SR methods on both synthetic and real-world datasets.

2 Related Work

SR with a Simple Degradation. Early SR methods focus on LR images
with a simple degradation, e.g. bicubic downsampling. Since [7], numerous SR
methods apply CNN-based networks to improve performance. [21, 36] enhance
the results by utilizing deep residual networks with excessive convolutions layers.
[14,18] design lightweight networks for SR to save the computational costs, while
preserving good SR quality. However, these methods can not generalize well on
real-world LR images which couples multiple unknown degradations.

SR with Various Degradations. To address this problem, several non-
blind methods [3,23,31,34] have been proposed to use the explicit ground-truth
degradation as inputs for HR restoration. However, they have limited applica-
tions since the explicit ground-truth degradation may be unknown during in-
ference. Recently, blind SR methods have been investigated to avoid requiring
the explicit ground-truth degradation as input during inference. Several meth-
ods [13,19,20,22] apply the explicit degradation estimation for assisting the HR
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Fig. 2: The structure of our overall method. It contains a degradation encoder
with a ranker; an SR model pretrained on bicubicly downsampled LR images;
and a degradation-aware modulation module with several modulation blocks.

restoration. [19] first predicts the kernel from LR image, and then applies a non-
blind SR method using both the estimated kernel and LR image as inputs. [13]
adopts a deep alternating network where the kernel estimation and HR restora-
tion can be alternately and repeatedly optimized. Meanwhile, [15] estimates the
correction filter and [24] uses Generative Adversarial Network (GAN) for image
translation to transfer the LR image to look like a bicubicly downsampled one,
which can then be fed to any existing SR model pretrained on bicubicly down-
sampled LR images for HR restoration. However, these non-blind methods are
sensitive to the degradation estimation or image translation so that any errors
happened in these processes would severely deteriorate the SR performance. A
novel strategy for blind SR is to learn an implicit degradation representation [28]
with contrastive learning, and build a fixed SR structure with dozens of modu-
lation blocks for generating HR image with specific information of degradation.

Meanwhile, blind SR methods with other alternative ways have been pro-
posed. [29,32,37] try to improve the generalization capability of any SR models
by generating a large number of synthetic data for training. Specially, [29, 32]
design practical degradation models by considering the real-life degradation
processes, while [37] uses GAN [10] to generate realistic blur-kernels. The self-
supervised internal learning can also be used for blind SR [25, 26]. [25] applies
zero-shot learning by training a small image-specific CNN at test time, while [26]
further applies meta-transfer learning [8] to decrease the gradient steps.

In this paper, we propose a novel flexible plug-and-play module for blind SR.
It can be applied on any existing SR networks pretrained with the degradation
of only bicubic downsampling to improve its generalization ability to real-world
degraded images. Our method requires implicit degradation representation learn-
ing for degradation-aware modulation with two improvements. Firstly, we use a
ranking loss instead of contrastive learning, which can provide the degree level
of a degradation. Secondly, we propose a region-aware modulation instead of
uniformly modulating features on all spatial positions.
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Fig. 3: Details of the proposed method. (a) Data preparation for training degra-
dation encoder. Two kinds of patches are cropped from an HR image to apply
various degradations and form q and ki. (b) The structure of degradation-aware
modulation block. It consists of two types of dynamic region-aware modulation:
a depth-wise convolution and a channel-wise attention.

3 Method

3.1 Problem Formulation

In this work, we focus on blind super-resolution with various unknown degrada-
tions. The degradation model can be formulated as:

ILR = (IHR ⊗ kernel) ↓sf + noise, (1)

where IHR is the original HR image, ILR is the degraded LR image. kernel,
noise, ↓sf and ⊗ denote the blur kernel, noise, downsampling operation with
scaling factor of sf and convolution operation. Following [28], we apply bicubic
downsampling, the anisotropic Gaussian kernels and Additive White Gaussian
Noise to synthesize LR images for training. The anisotropic Gaussian kernel we
use is characterized by a Gaussian probability density function N(0, Σ), which
means it has zero mean and varying covariance matrix Σ. Therefore, the blur
kernel can be determined by two eigenvalues λ1, λ2, and rotation angle θ of its
Σ. The Additive White Gaussian Noise can be determined by its noise level n.

Given an existing SR model pretrained on LR-HR pairs with only bicubic
downsampling as degradation, the goal of our method is to adapt this pretrained
SR model to work on images with various unknown degradations. To achieve this
purpose, we introduce a framework which consists of three parts: a pretrained
base SR model, a light degradation encoder with ranker, and a degradation-
aware modulation module with several light modulation blocks. The structure
of this end-to-end system is shown in Fig 2.

3.2 Weakly Supervised Degradation Encoder

Instead of explicitly estimating parameters for various degradations, the goal of
a degradation encoder is to distinguish various degradations and to make esti-
mation about degradation levels. A very recent work called DASR [28] makes
initial attempt in computing degradation representation by means of contrastive
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learning. However, the degradation representation can only distinguish various
degradations among images but can not tell which image is more severely de-
graded than the other. To address this issue, we propose to append a ranker to
the end of degradation encoder in the training process.

Both degradation encoder and ranker are light-weighted with only six and
four convolution layers. To make the degradation representation encoded by
degradation encoder of high discriminative capability, the ranker after degrada-
tion encoder is taught to give higher scores to images with heavier degradation
and lower scores to the ones with lighter degradation. Although the model does
not need exact degradation parameters as supervision, it requires order relation
between a pair of images on level of degradation. Therefore, we need to prepare
images with various degradation levels to train degradation encoder and ranker.

Data Preparation. According to Eq. 1, when generating ILR from IHR,
the degradation is determined by four parameters: λ1, λ2, θ for blur, and n for
noise. Here we use λ1, λ2 and n to determine the ranking order of different
degradations since degradation with larger values of them would have higher
degree level. While θ only affects the rotation, not the degree of degradation.

For each IHR, we randomly extract two types of patches to apply various
degradations. The first kind of patch is used to generate a query LR image q,
and the second kind of patch is used to generate five key LR images as ki for
calculating the loss for encoder, where i ∈ {0, 1 . . . 4}. Two sets of degradation
parameters are randomly selected for query patches and key patches, which are
indicated as Pq = {λ1q, λ2q, nq} and Pk = {λ1k, λ2k, nk}. Pq is used as the
degradation parameters for generating q and k0 separately for two patches so
that these two LR images contain different contents but the same degradation.
Then, we generate degraded key patches ki (i ∈ {1, 2, 3}) by Pki

, where Pki
[i] =

Pk[i] and the other two parameters remain the same as Pq, so that only one
parameter of ki is different from q. Finally, we generate k4 by using only bicubic
downsampling as degradation. It is used as a baseline for other LR images with
degradation indicated as Pk4

= {0, 0, 0} since it does not have any blur and
noise. The degradation parameters of q and all ki are shown in Fig.3(a).

Ranking-based Supervision. The degradation encoder and ranker pro-
duce both degradation representations and ranking scores for the generated LR
images. The degradation representations are indicated as Rq ∈ RC and Rki

∈ RC

which are used for modulation, while the ranking scores sq and ski
are just num-

bers for calculating the loss for encoder.

First of all, we calculate the ranking loss by q, k1, k2 and k3 in a pair-wise
manner. Given q and each ki, here i ∈ {1, 2, 3}, only the value of i-th parameter
for the degradation is different. So it is easy to decide the ground-truth ranking
order for these two images as:

{
sq < ski

if Pq[i] < Pki
[i]

sq > ski
if Pq[i] > Pki

[i]
(2)
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Therefore, we train our degradation encoder by a margin-ranking loss [35] to
guide the output ranking scores to have the right order:

Lrank1
=

3∑
i=1

max(0, (sq − ski
) ∗ γ + ε)

where

{
γ = 1 if Pq[i] < Pki

[i]
γ = −1 if Pq[i] > Pki

[i]

(3)

where γ indicates the ground-truth order between q and ki, ε is the margin which
controls the distance between two scores. By forcing the ranking scores to have
the right order, it encourages the degradation representations to encode infor-
mation about degradation and its level for later degradation-aware modulation.
With an appropriate margin ε, our ranking loss can also encourage distinguishing
degradation representations between LR images degraded in different ways.

Meanwhile, we also force LR images with the same degradation to have the
same ranking score. It is achieved by using L1 loss (L1) to supervise the ranking
score sq and sk0

of q and k0 to have the same value:

Leq = L1(sk0 , sq) (4)

We then use k4 as a baseline which has lower scores than q and all other ki,
and has no difference on degradation with bicubicly downsampling LR images:

Lrank2
=

3∑
i=0

max(0, (ski
− sk4

) ∗ −1 + ε)

+max(0, (sq − sk4
) ∗ −1 + ε)

(5)

Lk4
= L1(sk4

, 0). (6)

The overall loss for degradation encoder includes the above mentioned losses:

Lencoder = Lrank1 + β1Lrank2 + β2Lk4 + β3Leq (7)

where β1, β2, β3 are hyper-parameters to combine these losses.

3.3 Degradation-aware Modulation

Basic SR Model. We first introduce the basic SR model to be modulated.
In this work, we take a lightweight super-resolution network IMDN [14] as the
basic model. It is composed of six information multi-distillation blocks (IMDBs)
and gives reasonable performance on bicubicly downsampled images. To show
that the proposed method is able to work on any existing SR model, we do
not make any changes on top of IMDN. For the above-mentioned generated LR
images, we only use q as input for HR restoration for efficiency. Then we denote
Fl ∈ RC×Hl×Wl as the feature of q within IMDN, where l ∈ {0, 1, ...6}. Hl,
Wl are the resolution of Fl and C is the feature dimensionality. Here, Fl, l ∈
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8 Y. Wang et al.

{1, 2, ...6} indicates the feature output from the l-th IMDB, and F0 indicates
the feature before the first IMDB. Specifically, the pretrained IMDN is fine-
tuned together with training the degradation encoder and modulation module
for better performance.

Modulation Module. To adapt each feature Fl of q in SR model, we de-
sign a modulation module which consists of seven modulation blocks. These
modulation blocks are separately inserted into IMDN, so that each block is used
to modulate one feature of q before and after each IMDB. Meanwhile, each
modulation block uses information of degradation degree from q’s degradation
representation R for adapting Fl.

We notice that DASR applies two kinds of modulations in one modulation
block, a depth-wise convolution and a channel-wise attention. The first one takes
the degradation representation R as input and predicts one convolutional kernel
wl ∈ RC×1×3×3. wl is then used as the parameters of a 3× 3 depth-wise convo-
lution on Fl to process F 1

l . The second one also takes R as input to predict one
channel-wise modulation coefficient vl ∈ RC . vl is then used to rescale different
channel components for all spatial positions of Fl to produce F 2

l . F
1
l and F 2

l are
added together to form the adapted feature. Both two modulations in DASR
assume the degradation equally affects all spatial positions of one image so that
they only learn one set of wl and vl for all spatial positions.

However, even though by applying a spatially-invariant degradation for all
spatial positions in an HR image, the degradation may have different impacts on
different spatial positions. It is mainly because different types of textures have
different sensitivity to the degradation. For example, positions which present
the contour of an object would contain more high-frequency information. More
information loss may occur on these positions when applying the degradation to
HR image. Consider that, it would be better to design a region-wise and sample-
specific modulation. Therefore, we propose an efficient region-aware modulation
by modifying the modulation based on DRConv [5] (Fig.3(b)).

Region-Aware Modulation. For the first kind of modulation, instead of
only learning one convolution kernel for all positions in Fl, we follow DRConv
to learn G1 filter kernels from degradation representation R and denote them as
wg

l , g ∈ {1, 2, · · · , G1}. G1 is the number of kernels in this kind of modulation.
Each filter kernel wg

l ∈ RC×1×3×3 is only applied to a selected number of spatial
positions instead of all positions in Fl. We then learn a series of guided masks
mg

l ∈ RHl×Wl which divide all spatial positions in Fl to G1 groups. Each mask
represents one region of Fl with a selected number of positions. Here, we learn
these spatial-wise masks from Fl to focus on the characteristic of the feature to be
modulated. In this way, only the g-th kernel is applied on the selected positions
in g-th mask, so that different positions from Fl would adaptively select different
kernels to apply. To maintain the efficiency, we also apply the idea of depth-wise
convolution as DASR. The c-th dimensionality of output feature map F 1

l can be
expressed as follow where (h,w) is one point in selected positions in mg

l :

F 1
l (h,w,c) = Fl(h,w,c) ∗ wg

l (c)

(h,w) ∈ mg
l

(8)
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Blind Image Super-Resolution with Degradation-Aware Adaptation 9

The channel-wise attention modulation can also be modified in the same way
to achieve a dynamic region-aware modulation. It means that we can also predict
G2 channel-wise coefficients from R and denote them as vgl , g ∈ {1, 2, · · · , G2}.
G2 is the number of channel-wise coefficients for this modulation. Each vgl ∈ RC

is also only applied to a selected number of spatial positions in Fl according to
a new series of guided masks rgl ∈ RHl×Wl which divide all positions in Fl to G2

groups. The c-th dimensionality of output feature map F 2
l is expressed as:

F 2
l (h,w,c) = Fl(h,w,c) × vgl (c)
(h,w) ∈ rgl

(9)

Here (h,w) is one of the points in selected positions in rgl .
We obtain the adapted feature by combining the modulated features from two

kinds of modulations. By modifying the original modulation to be in a region-
aware way, we can achieve an efficient pixel-wise modulation. Same as DASR, we
apply the two kinds of above-mentioned modulation twice in each modulation
block, while for simplicity, we only show the structure of applying them once in
Fig.3(b). The final adapted feature from i-th modulation block is denoted as F̃i

and is used as the input to the (i+ 1)-th IMDB in the SR model to predict the
SR image. The loss function on SR is:

LSR = L1(SR,HR) (10)

And the overall loss function is as follow:

Loverall = LSR + α ∗ Lencoder (11)

With the help of modulation module, the output SR image is specifically
predicted based on the degradation of the input LR image. It helps to improve
the generalization of the overall structure to work for not only the multiple
degradations in training set, but also any unknown degradations in testing set.

4 Experiments

4.1 Datasets

Following [28], we use 800 training HR images in DIV2K [1] and 2650 training
images in Flickr2K [27] and apply Eq. 1 to synthesize LR images, which form
LR-HR pairs as our training set. Specifically, we apply the anisotropic Gaussian
kernels, bicubic downsampler and additive white Gaussian noise in Eq. 1. For
bicubic downsampler, the scaling factor sf is set to 4 for ×4 SR. For anisotropic
Gaussian kernels, the kernel size is fixed to 21× 21, the ranges of eigenvalues λ1
and λ2 are set to [0.2, 4.0), and the range of rotation angle θ is set to [0, π). For
additive white Gaussian noise, the range of noise level n is set to [0, 25).

During inference, we use HR images from benchmark dataset Set14 [30] and
also apply Eq. 1 to synthesize LR images as [28]. These LR-HR pairs are used as
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Table 1: Quantitive results (×4 SR) on in-domain synthetic test sets. The best
two results are in Red and Blue. We also present the number of parameters
(Params) and Flops.

Method Params Flops λ1/λ2/θ 2.0/0.5/0 2.0/1.0/10 3.5/1.5/30 3.5/2.0/45 3.5/2.0/90
(M) (G) n PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN+IKC 6.0 24.3 10 26.00 0.6874 26.06 0.6837 24.56 0.6281 24.44 0.6190 24.49 0.6201
15 25.53 0.6659 25.50 0.6619 24.23 0.6134 24.11 0.6049 24.12 0.6040

DnCNN+DAN 5.0 81.1 10 25.78 0.6783 25.70 0.6722 24.23 0.6174 24.05 0.6069 24.12 0.6086
15 25.36 0.6596 25.25 0.6533 23.98 0.6055 23.81 0.5962 23.86 0.5973

DnCNN
+CF+RCAN 26.3 68.1 10 25.15 0.6781 25.12 0.6747 23.85 0.6210 23.60 0.6100 23.58 0.6099

15 24.56 0.6545 24.48 0.6492 23.40 0.6012 23.22 0.5914 23.05 0.5894

DnCNN+SRMDNF
+Predictor 2.2 9.1 10 25.97 0.6843 25.78 0.6747 24.14 0.6149 23.92 0.6032 23.98 0.6046

15 25.55 0.6656 25.38 0.6577 23.94 0.6052 23.74 0.5952 23.79 0.5965

DnCNN+MANet 10.6 40.8 10 20.20 0.5023 20.33 0.5091 21.12 0.5329 21.18 0.5332 20.92 0.5207
15 20.23 0.5034 20.36 0.5089 21.09 0.5291 21.13 0.5284 20.86 0.5175

BSRNet 16.7 73.5 10 25.59 0.6803 25.57 0.6772 24.69 0.6430 24.61 0.6369 24.63 0.6362
15 24.39 0.6493 24.37 0.6460 23.67 0.6156 23.55 0.6097 23.61 0.6111

DASR 6.0 13.1 10 26.58 0.7030 26.49 0.6960 25.62 0.6624 25.44 0.6538 25.43 0.6527
15 26.04 0.6827 25.93 0.6764 25.10 0.6434 24.94 0.6350 24.91 0.6346

Ours 2.9 6.2 10 26.58 0.7008 26.47 0.6939 25.62 0.6616 25.48 0.6538 25.42 0.6523
15 26.04 0.6815 25.94 0.6752 25.12 0.6436 24.97 0.6358 24.93 0.6347

our synthetic testing set to conduct experiments with various unknown degrada-
tions. Meanwhile, we enlarge the range of three parameters of degradation, λ1,
λ2 and n during testing. We also use RealSR [4] testing set to further evaluate
the performance of our method on real-world LR images. It contains 100 HR
images and their corresponding LR images taken from real world.

4.2 Implementation Details

Our model is implemented based on the Pytorch toolbox and trained on one
GTX 3090 GPU. The batch size and the patch size of LR images are set to
32 and 48 × 48 during training. We also use random rotation and flipping as
the data augmentation technique during training to avoid overfitting. In our
experiments, we set α = 0.2, β1 = 0.2, β2 = 2, β3 = 5, ε = 0.5, G1 = G2 = 4.
For the optimizer, we adopt Adam [17]. The overall network is trained in two
stages. For stage one, we only train the degradation encoder with ranker by
optimizing Eq. 7 for 100 epochs. The initial learning rate is set to 10−4 and
decreased with the power of 0.1 after 60 epochs. For stage two, we freeze the
ranker while training all the rest parts by optimizing Eq. 11 for 700 epochs. The
initial learning rate is set to 10−4 and decreased to half after every 125 epochs.

4.3 Comparison with state-of-the-art methods

To verify the effectiveness of our proposed blind SR method with degradation-
aware adaptation, we compare our method with 7 state-of-art SR methods, in-
cluding one non-blind SR method: SRMDNF [34]; three blind SR methods with
explicit degradation estimation: IKC [11], DAN [13], MANet [19]; one blind SR
with image translation: CF [15]; one blind SR method with implicit degradation
representation learning: DASR [28]; and one blind SR method with enlarged
synthetic training data: BSRNet [32]. Specifically, IKC, DAN, MANet and SR-
MDNF are designed to handle images with only blur kernel and downsampling
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Table 2: Quantitive results (×4 SR) on out-domain synthetic test sets and real
world test set (RealSR). The best two results are in Red and Blue.

Method
Params Flops Out-domain RealSR

λ1/λ2/θ 2.0/1.0/10 3.5/1.5/30 3.5/2.0/45 3.5/4.5/60 4.5/5.0/120 5.0/5.0/180
(M) (G) n PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN
+IKC 6.0 24.3

30 24.22 0.6152 23.30 0.5801 23.20 0.5732 22.29 0.5412 21.94 0.5286 21.86 0.5248
40 23.49 0.5941 22.79 0.5640 22.68 0.5588 21.89 0.5305 21.57 0.5189 21.51 0.5163 27.19 0.7833
50 22.85 0.5751 22.23 0.5491 22.13 0.5446 21.43 0.5192 21.21 0.5104 21.12 0.5080

DnCNN
+DAN 5.0 81.1

30 24.16 0.6128 23.20 0.5775 23.10 0.5712 22.21 0.5400 21.84 0.5280 21.78 0.5248
40 23.47 0.5928 22.72 0.5630 22.61 0.5580 21.83 0.5306 21.52 0.5198 21.45 0.5173 27.80 0.7877
50 22.85 0.5751 22.19 0.5490 22.09 0.5447 21.39 0.5199 21.17 0.5121 21.09 0.5095

DnCNN
+CF+RCAN 26.3 68.1

30 23.25 0.5973 22.49 0.5604 22.28 0.5491 21.41 0.5088 21.05 0.4902 21.03 0.4883
40 22.47 0.5724 21.94 0.5371 21.78 0.5313 21.10 0.4951 20.71 0.4745 20.60 0.4696 27.72 0.7825
50 21.89 0.5500 21.34 0.5177 21.29 0.5119 20.75 0.4797 20.37 0.4643 20.27 0.4562

DnCNN
+SRMDNF
+Predictor

2.2 9.1
30 24.28 0.6174 23.20 0.5799 23.11 0.5741 22.17 0.5414 21.81 0.5292 21.75 0.5259
40 23.54 0.5956 22.73 0.5664 22.62 0.5611 21.81 0.5331 21.49 0.5219 21.43 0.5196 27.62 0.7789
50 22.87 0.5772 22.18 0.5516 22.08 0.5472 21.37 0.5230 21.14 0.5148 21.06 0.5122

DnCNN
+MANet 10.6 40.8

30 20.37 0.5052 20.89 0.5169 20.93 0.5170 20.80 0.5045 20.81 0.5042 20.77 0.5023
40 20.37 0.5035 20.73 0.5111 20.79 0.5116 20.64 0.5005 20.62 0.4991 20.58 0.4976 oom oom
50 20.28 0.5007 20.60 0.5059 20.58 0.5055 20.39 0.4944 20.42 0.4942 20.34 0.4920

BSRNet 16.7 73.5
30 21.44 0.5871 21.01 0.5644 20.92 0.5609 20.51 0.5405 20.34 0.5317 20.28 0.5284
40 19.95 0.5519 19.77 0.5380 19.70 0.5342 19.38 0.5176 19.29 0.5114 19.22 0.5085 27.35 0.8071
50 18.99 0.5250 18.78 0.5121 18.76 0.5107 18.58 0.4979 18.43 0.4933 18.46 0.4920

DASR 6.0 13.1
30 24.67 0.6320 23.87 0.6011 23.81 0.5963 22.95 0.5650 22.45 0.5471 22.36 0.5430
40 23.65 0.5969 23.06 0.5701 23.02 0.5672 22.27 0.5396 21.88 0.5239 21.79 0.5194 27.80 0.7934
50 22.82 0.5693 22.42 0.5480 22.36 0.5439 21.69 0.5174 21.49 0.5094 21.33 0.5045

Ours 2.9 6.2
30 24.73 0.6335 23.95 0.6041 23.89 0.5995 22.96 0.5663 22.46 0.5483 22.36 0.5441
40 23.93 0.6061 23.33 0.5814 23.22 0.5760 22.42 0.5475 22.00 0.5319 21.91 0.5278 27.84 0.8024
50 23.16 0.5719 22.62 0.5491 22.54 0.5452 21.79 0.5196 21.56 0.5117 21.42 0.5058

as degradation without noise. We notice that DASR tests this kind of SR model
by first denoising the testing LR images using DnCNN [33]. For a fair compar-
ison, we follow the same strategy to test these four methods and Predictor of
IKC is used to estimate blur kernels for SRMDNF. Meanwhile, [32] focuses on
improving perceptual quality by training SR model with adversarial loss. Here,
we compare with its non-GAN version (BSRNet) for fairness.

Comparison on Synthetic Data. During training, we set ranges to the
four degradation parameters, λ1, λ2, n and θ, the same as DASR for generating
LR images. While at inference time, we enlarge the ranges of λ1, λ2, n to generate
more testing data. The testing LR images with degradation parameters within
the training ranges are considered as in-domain data, and the testing LR images
with degradation parameters out of the training ranges are considered as out-
domain data compared to the training data. Here, we present the comparison
of in-domain and out-domain data in Tab.1 and Tab.2. We also analyze the
efficiency of each method by presenting the number of parameters and FLOPs.

According to Tab.1, our method can achieve comparable results on in-domain
test data with DASR even though it has only half the model size and FLOPs
of DASR, which indicates the effectiveness of our method. Meanwhile, both
DASR and our method can perform much better than all other methods, which
indicates the advantage of degradation-aware adaptation and latent degradation
representation learning for blind SR.

The performance of out-domain test data in Tab.2 also shows that our
method as well as DASR can be superior to other methods. Meanwhile, with
the help of the proposed ranking loss and region-aware modulation, our method
achieves better results than DASR on these out-domain test data. It means that
our method has a better generalization ability on LR images with unseen degra-
dations, which have different kernels and noises compared to training data. We
also present some qualitative examples in Fig.4 (a)(b) for both in-domain and
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（a） IKC DAN SRMDNF CF+RCAN

BSRNet MANet DASR OursHR

IKC DAN SRMDNF CF+RCAN

BSRNet MANet DASR Ours

IKC DAN SRMDNF CF+RCAN

BSRNet HRDASR Ours

HR

（b）

（c）

Fig. 4: Visual results (×4 SR) on (a) in-domain, (b) out-domain synthetic test
data, and (c) RealSR test data. Zoom in for better visual comparison.

out-domain data. Compared to other methods, our method tends to generate
clearer textures with less artifacts.

Especially, our method has a relatively compact model size and FLOPs by
using IMDN as SR model, which indicates the efficiency of our method. Our
FLOPs is the smallest among all methods, while our number of parameters is
only slightly larger than SRMDNF, a light-weighted non-blind SR method which
does not require any degradation learning. Note that CF+RCAN is larger since
RCAN is a heavier SR model, CF itself has much smaller model size. However, it
requires image-specific training at testing period which is different from others.

Comparison on Real-World Data. To further show the generalization
ability of all methods on real-world situation, we directly test all models trained
with synthetic data on RealSR without re-training or fine-tuning on any real-
world data. The comparisons are presented in Tab.2. It indicates that our method
can perform favorably against other methods in most cases, which proves our
method can also generalize well on real-world data which is entirely different
from the training data. Qualitative examples are presented in Fig.4(c).

4.4 Ablation Study

Study on Each Component. Here, we present the ablation study to show
the improvement of our proposed components. It can be separated into three
parts: the loss for degradation encoder; the type of modulation; and the training
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Table 3: Ablation study on different components on synthetic data
(2.0/5.0/90/0) and real data. The best results are in Red.

Method
Encoder Modulation SRNet Set14 RealSR

+CL +RL +UM +RM Fix PSNR SSIM PSNR SSIM

Model-1
√

23.47 0.6004 27.65 0.7796
Model-2

√ √
24.86 0.6525 27.76 0.7931

Model-3
√ √

24.98 0.6590 27.79 0.7991
Model-4

√ √ √
24.37 0.6355 27.79 0.8001

Model-5
√ √

25.08 0.6602 27.84 0.8024

strategy for base SR model. Model-1 represents the original IMDN which is pre-
trained on bicubicly downsampling images without using degradation encoder
and modulation. For Model-2, 3, 5, we fine-tune IMDN while applying differ-
ent kinds of degradation-aware modulation. We try two kinds of the losses for
degradation encoder, ‘CL’ is the contrastive learning loss in [28] while ‘RL’ is
the proposed ranking loss. For the type of modulation, we try ‘UM’, the uniform
modulation in [28] where the same modulation parameter is used for features
among all spatial positions, and ‘RM’, the proposed region-aware modulation.
For Model-4, we fix the original IMDN and only train the degradation encoder
as well as modulation module for degradation-aware modulation. Tab.3 shows
the training strategy for each model and quantitative results on both synthetic
data (λ1 = 2.0, λ2 = 5.0, θ = 90, n = 0) and RealSR. Model-5 is our final model.

We notice that by applying different kinds of modulation, all models can
achieve improvements compared to Model-1 (original IMDN). It indicates that
degradation-aware modulation does improve the generalization ability of SR
model. However, different kinds of degradation-aware modulation would also
affect the performance. Improvements from Model-2 to Model-3 show that ‘RL’,
ranking loss which learns the degradation degree can perform better than ‘CL’,
which can only distinguish one degradation from the other. Meanwhile, from
Model-3 to Model-5, the improvements show that ‘RM’, region-aware modula-
tion which allows different regions in feature to choose different parameters for
modulation is better than ‘UM’. Moreover, even though Model-4 which fixes
base SR model during training can achieve improvements compared to Model-1
by applying the same degradation-aware modulation as Model-5, Model-5 by
fine-tuning SR model during training gains further enhancements from Model-4.

Table 4: Ablation study with different SR Net on in-domain (3.5/2.0/45/25),
out-domain (4.5/5.0/120/5), and real data. The best results are in Red.

Method
IMDN RCAN EDSR

In-domain Out-domain RealSR In-domain Out-domain RealSR In-domain Out-domain RealSR
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

-bic 20.07 0.2845 22.37 0.5156 27.65 0.7796 19.81 0.2728 22.36 0.5116 27.65 0.7797 19.64 0.2574 22.35 0.5098 27.64 0.7793
-ft 24.05 0.6047 23.61 0.5873 27.66 0.7963 24.13 0.6087 23.55 0.5832 27.70 0.7921 24.21 0.6118 23.65 0.5870 27.73 0.7925

-Ours 24.19 0.6094 23.78 0.5934 27.84 0.8024 24.28 0.6133 23.77 0.5921 27.86 0.7939 24.23 0.6117 23.84 0.5952 27.87 0.7934
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Fig. 5: Curves for ranking scores.

Study on Different SR Net. To show that the proposed structure is more
flexible than DASR [28] since it can be applied to other SR models, we also try to
implement the same structure to RCAN [36] and EDSR [21]. Here, the number
of modulation blocks is set to 11 and 33 for 10 residual group blocks in RCAN
and 32 residual blocks in EDSR. The results of in-domain, out-domain and Re-
alSR data are shown in Tab.4. It indicates that using the proposed degradation-
aware modulation on these three base SR (-Ours) gain improvements compared
to their original SR models pretrained on bicubicly downsampled LR images
(-bic). We also show the results of simply fine-tuning base SR models on the
same training data as ‘-Ours’ without using any degradation-aware modulation
(-ft), which achieves worse results especially on out-domain data and RealSR
compared to ‘-Ours’. It indicates that even though ‘-ft’ uses training data with
various degradations, it may still limit the generalization ability on unseen degra-
dations without learning an informative degradation representation for applying
a modulation specific to the degradation.

Study on Ranking Scores. To prove that the proposed degradation en-
coder with ranker can produce ranking scores with the right order. We generate
a series of synthetic LR images by HR images from RealSR with degradation
of using two fixed parameters while altering the third one in λ1, λ2 and n. We
then produce their ranking scores s by our degradation encoder and ranker and
draw curves as in Fig.5. It shows that by setting larger value for the unfixed
parameter, the generated LR image would have larger s.

5 Conclusions

In this paper, we propose a blind SR method with degradation-aware adapta-
tion. It applies a plug-and-play module to improve the generalization capability
of an existing SR model pretrained on bicubicly downsampled LR images to
real-world degradation. The proposed method consists of three components: the
pretrained base SR model, a degradation encoder followed by a ranker, and
a degradation-aware modulation module. The degradation encoder extracts a
latent degradation representation supervised by ranking loss to estimate the
degree of degradation for modulation. The degradation-aware modulation mod-
ule then uses degradation representation as condition to apply a region-aware
and sample-specific adaptation for the intermediate features of SR model. Our
method has relatively compact model size and performs favorably against the
state-of-the-art SR methods on both synthetic and real-world datasets.
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