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Abstract. Tropical Cyclone (TC) intensity estimation is a continuous
label classification problem, which aims to build a mapping relationship
from TC images to intensities. Due to the similar visual appearance of
TCs in adjacent intensities, the discriminative image representation plays
an important role in TC intensity estimation. Existing works mainly re-
volve around the continuity of intensity which may result in a crowded
feature distribution and perform poorly at distinguishing the boundaries
of categories. In this paper, we focus on jointly learning category-level
and instance-level representations from tropical cyclone images. Spe-
cially, we propose a general framework containing a CI-extractor and
a classifier, inside which the CI-extractor is used to extract an instance-
separable and category-discriminative representation between images.
Meanwhile, an inter-class distance consistency (IDC) loss is applied on
top of the framework which can lead to a more uniform feature distribu-
tion. In addition, a non-parameter smoothing algorithm is proposed to
aggregate temporal information from the image sequence. Extensive ex-
periments demonstrate that our method, with the result of 7.35 knots at
RMSE, outperforms the state-of-the-art TC intensity estimation method
on the TCIR dataset.

Keywords: Tropical Cyclone · Intensity estimation · Representation
learning.

1 Introduction

Tropical Cyclone (TC) is one of the natural disasters that bring out severe
threats to human society. The intensity of TC, which is defined as the largest
continuous surface wind near the center of the TC, is an important indicator of
its destructiveness. Estimating the intensity of TC can help mankind effectively
reduce the damage caused by TC.

⋆ Supported by the National Natural Science Foundation of China (NSFC
No.62076031).
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Fig. 1. Illustration of DC loss (a), DC loss + CE loss (b) and IDC + CE loss (c)
based representation learning for TC intensity estimation. Stars represent the center of
classes and circles represent samples. DC loss (a) learns the crowded feature distribution
and has poor performance at boundaries. DC + CE loss (b) learns sparse embedding
distribution, but it is scattered within the class. And IDC + CE loss (c) can lead to a
uniform and discriminative feature distribution.

The essence of TC intensity estimation is establishing a mapping relationship
from TC images to intensities. Since the change of TC is continuous during its life
cycle, images of TC at adjacent moments may have similar visual appearances
but different intensities. The appearance of TC with the same intensity may also
vary greatly. These bring great challenges to TC intensity estimation.

The most classical method for TC intensity estimation is the Dvorak tech-
nique[7] which relies on TC cloud characteristics established on statistical ex-
perience. Over recent years, with the rapid development of deep learning, con-
volutional neural networks (CNNs) have achieved great success in TC intensity
estimation. Among them, most methods [1, 2, 28, 3] treat the intensity as contin-
uous values and construct regression networks to estimate the exact intensity.
[14] consider intensity estimation as a classification task. Different with most
classification tasks, TC intensity estimation focuses on not only the right or
wrong classifications but also the influence of different degrees of errors when
classifying. Therefore, a distance consistency (DC) loss is proposed to keep the
distance between representations in proportion to the distance between labels
to reduce the errors. DC loss focuses on the relationship between instances to
learn instance-level representations and achieved good performance. However,
it neglects that the feature distribution of different classes should be separate,
and the intra-class and inter-class samples should be treated differently when
optimizing the embedding space.

On the other hand, considering the change of TC is a continuous process, the
TC intensity at current time is related to those in the past. And generally, there is
no violent shaking. Therefore, it is necessary to combine historical information to
smooth the estimated intensity. [1] use fixed weight smooth methods to combine
historical information. [14] adopts the transformer model to learn the change
of intensity from a series of typhoon images. The application of transformer
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effectively utilizes the temporal information between typhoon samples but also
introduces a large number of extra parameters to the estimation model.

In this paper, We focus on jointly learning category-level and instance-level
representations from TC images. While instance-level learning aims to learn a
uniform distribution between instances, the category-level representations attend
to reduce the intra-class variance and distinguish boundaries between categories.
Specifically, we describe our ideas in Fig. 1.

As shown in Fig. 1a, the feature distribution learned from DC loss can be
crowded, since the the ratio of distance between feature vectors to label distance
is not supervised, which increases the difficulty of classification. In Fig. 1b, the
distance between the feature of different classes still maintains a proportional
relationship, but the inter-class feature distribution becomes separable with a
CE loss. In Fig. 1c, an IDC loss with CE loss learns more intra-class compact
and inter-class separable features, which further reduces the probability of the
feature being classified incorrectly.

Motivated by above, we propose CIRL: a Category-Instance joint Represen-
tation Learning framework for TC intensity estimation with a CI-extractor and a
classifier. As instance-level representation learning aims to obtain uniform distri-
bution, category-level representation learning aims to distinguish the boundaries
of categories and make the intra-class samples converge. Further, an IDC loss is
proposed to optimize the backbone together with the CE loss. In IDC loss, the
distance consistency is only maintained between categories. And the intra-class
distance is optimized by the CE loss. Finally, we proposed a new smoothing
algorithm, which can use historical information of any length to smooth the in-
tensity estimate at the current moment. Without bells and whistles, our method
achieved better performance than existing methods.

The contributions of our work can be summarized as follows:

– We propose a framework with a CI-extractor and a classifier aiming to
learn a discriminative feature distribution which can take into account both
instance-level and class-level representation learning. It is also general for
continuous label classification problems.

– We propose a new inter-class distance consistency loss, which can learn a
uniform feature distribution better.

– We explored a simple and fast smoothing post-processing algorithm without
any parameters and find it is more accurate in real-time intensity estimation.

– Extensive experiments on the TCIR dataset demonstrate the effectiveness
of our proposed approach, which outperforms the existing methods.

2 Related Works

Our work is closely related to both TC intensity estimation and metric learning.

2.1 Tropical Cyclone Intensity Estimation

Some results have been achieved by using CNN to estimate the intensity of
the TC. [18] first propose to estimate the TC intensity by using a CNN-based
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classification network. However, only an approximate intensity range is obtained
and the training data and test data are related in [18]. In [1, 2], a regression
network is further designed to to estimate the intensity accurately and more
information beyond the image is taken into account, such as latitude, longitude,
and date. [28] choose to divide the TC sample into three different categories
and for each category, different regression networks are constructed to estimate
the intensity. [27] proposed a context-aware cycleGAN to solve the problem of
an unbalanced distribution of sample categories. [3] designed a Tensor Network
to solve the asynchronous problem in remote sensing dataset to utilize more
channels of data. In [14], a combined model of CNN and transformer is used to
capture TC temporal information.

However, existing methods only notice the continuity of intensity and ig-
nore that the sample of different intensities (labels) should be separable. [14]
considers TC intensity estimation as a classification problem but still learns rep-
resentations from instances. In contrast, our proposed framework jointly learns
category-level and instance-level representations and aims to obtain a separable
and discriminative feature distribution.

2.2 Metric Learning

Metric learning uses the distance to measure the similarity of samples and con-
straints to make similar samples close, and different samples far away. To our
best knowledge, [4, 8] introduced deep neural networks into metric learning for
the first time. On this basis, the triple loss is proposed by [26, 19] in which the
relationship between inter-class samples and intra-class samples is further con-
sidered. [20] expands the number of positive and negative samples in a tuple
and proposed an N-tuple loss. [21] integrated the above loss to cope with the
situation of multiple positives. [13] combined the softmax and cross-entropy loss
to softmax loss and proposed to increase the margin. [24, 23, 25, 6] step further
to optimize the margin in different opinions. The common idea of these methods
is to minimize the intra-class distance and maximize the inter-class distance.

Recently, [12] noticed that the relationship between samples is not a simple
positive and negative, and the distance between the features and the distance
of their labels are connected to construct a triple log-ratio loss. [14] extend log-
ratio loss to the case of N-tuples and proposed a DC loss. However, their method
treats intra-class and inter-class samples equally, which will be harmful to the
optimization.

3 The Proposed Approach

In this section, we firstly present our main idea about the Category-Instance
fusion framework for TC intensity estimation. Then, we show the idea of IDC
loss. Finally, a smoothing algorithm for eliminating fluctuations in intensity es-
timation is demonstrated.
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Fig. 2. Overview of the proposed Category-Instance representation learning frame-
work. The framework consists of two loss functions: 1) CE loss for Category-level fea-
ture learning and 2) IDC loss for Instance-level feature learning. A CI-extractor is used
to extract image representations, after which a multi-layer classifier f(·) is applied on
top of the image representations to predict classification logits, and an l2 normalization
is adapted to translate the image representation for IDC loss. The total loss is obtained
by the weighted summation of the two loss.

3.1 Category-Instance Representation Learning Framework

Fig. 2 shows the overview of the proposed framework. There are two branches
in our framework: one category-level representation learning in the upper part
which aims to distinguish the boundaries of categories by CE loss and one
instance-level representation learning in the lower part which aims to learn a
uniform inter-class embedding distribution by IDC loss. The detail of IDC loss
will be introduced in section 3.2. The framework will learn a representation of
the two levels at the same time to obtain the best feature distribution.

Formally, we adopt the method in [20] to constuct a mini-batch include M
samples as anchors and N samples as neighbors. Each anchor is combined with
the N neighbors to construct a set of N+1 tuple {x, y} = {(xa, ya), (x1, y1), . . . ,
(xN , yN )} with an anchor a and N neighbors randomly sampled from the remain-
ing ones in which x ∈ R2×H×W is the images and y is the corresponding intensi-
ties. A CI-extractor is used to extract image repersentation r = {ra, r1, . . . , rk} ∈
RDE from x. On the one hand, an ℓ2 normalization is applied to r to get the
normalized representaion z = {za, z1, . . . , zk} ∈ RDE to keep the vectors on the
same sacle. After that, the IDC loss is applied on top of the normalized represen-
tations for instance-level representation learning. On the other hand, a classifier
head fc(·) is adopted to the image representation r to predict the class-wise logits
s = {sa, s1, . . . , sk} ∈ RDC , which are used to compute the CE loss. Motivated
by [13], the classifier, which is actually a full connection layers, is constructed
without bias. Then, the logits can be writen as:

s = ∥w∥ ∥r∥ cosθ. (1)

w is the weight of the fully connected layer which can be regarded as the center
of the class. Finally, a CE loss is applied to learn a separable feature which is
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Fig. 3. Comparison of DC loss and IDC loss

important in discriminating class boundaries. As the CE loss aims to maximize
the value of logits for the corresponding class, the cosine distance between r and
w can also be increased and the intra-class variance is reduced. The final loss
function for the framework is:

ℓtotal = ℓIDC + αℓCE , (2)

where ℓIDC is the IDC loss, ℓCE is the CE loss and α is a weighting parameter
to balance the contribution of different losses.

3.2 Inter-class Distance Consistency Loss

The distance consistency loss[14] takes an anchor a and N neighbors as input.
It is designed to penalize the sample for violating the rank constraint, namely,
that the feature distance between samples in the embedding space should be
consistency to the label distance. And the ratio, which is calculated by dividing
the feature distance by the label distance, should be consistent across samples.
However, when it comes to the case of intra-class samples, it is difficult to deter-
mine the label distance. Ideally, the feature distance between intra-class samples
should be minimized and the label distance should be 0. But this would result
in an infinite ratio of samples within the class. In [14], a constant is added to all
label distances to avoid this which would cause a shift in label distances and be
harmful to distance consistency.

Motivated by the above, we proposed an inter-class distance consistency loss
to optimize the samples within and between classes respectively. Specially, we
only maintain distance consistency across classes. The optimization of intra-class
samples is left to CE loss. By doing so, the optimization of inter-class samples
wil no-longer be affected by the intra-class samples. For an anchor a and N
neighbor, the IDC loss is formulated as:

ℓIDC = −
N∑
i=1

yi ̸=ya

log
rai∑N

j=1,yj ̸=ya
raj

, (3)

2114



CIRL 7

rij =
D(fi, fj)

D(yi, yj)
, (4)

where f is the representation for the sample and D(·) denotes the Euclidean
distance.

Compared with DC loss, IDC loss can obtain a more uniform distribution.
As shown in Fig. 3, with a shift in label distance, in the same tuple, selecting
different samples as anchors will generate different feature distributions in DC
loss. This can lead to instability in the learning process and even oscillations in
the feature distribution. In contrast, IDC loss can obtain a more uniform and
stable distribution without being affected by anchor selection.

3.3 Inference Stage

After training the extractor, the inference stage is started. Considering the tem-
porality of TCs, we sample the images in time order during the inference stage.
The classifier is thrown away and only the CI-extractor is used. Following [1],
each input image is rotated by four angles and fed into the extractor to obtain
the feature embedding. An average operation is used to get the final embedding.
We first utilize the backbone for extract features from the whole training dataset
and averaged the features by class to construct a global class representation set
C = [c1, c2, . . .]. The class vectors were used for NN classification. Then, for a
sequence of image X = [xt−T , xt−T+1, . . . , xt], the process can be represented as

R = f(X, θ) = [rt−T , rt−T+1, . . . , rt]. (5)

Then, an ℓ2 normalization was applied to R and get Z = [zt−T , zt−T+1, . . . , zt].
A nearest neighbor (NN) classifier is adopted to decide on the final intensity of
Z, which is given by:

ŷt = argmin
i

D(ci, zt), (6)

where D(·) represents Euclidean distance, i represents the label and ŷt is the
estimated intensity at time t.

3.4 A smooth algorithm for intensity estimating

To reduce the shake of TC intensity estimation, we further adopted a weighted
average method, named stage smooth, which uses the weighted average of the
estimated TC intensity at the current time and the previous N moments as
the final intensity estimation at the current time. Considering the TC intensity
changes monotonously, we have adopted a basic algorithm, that is, the weight
decays as the time increases.

Specifically, given a series of estimated intensites Ŷ = [ŷt−T , ŷt−T+1, . . . , ŷt],
we use a sliding window to smooth the estimated intensity. The intensity esti-
mation at time t was smoothed by the following algorithm 1.

In the early stages of inference, the length of the sequence is less than the
length of the window, we just repeat the first value of the sequence at the be-
ginning.
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Algorithm 1 Stage-smooth algorithm

Input: ŷt−T , ŷt−T+1, . . . , ŷt
Output: ỹt

1: Let i = T and ỹt−T = ŷt−T .
2: while i > 0 do
3: ỹt−i+1 = 0.5 ∗ (ŷt−i+1 + ỹt−i)
4: i = i− 1
5: end while
6: return ỹt

4 Experiments

In this section, we firstly introduce the setting for our experiments which includes
the dataset and implementation details. After that, we compare our proposed
method with the state-of-the-art TC intensity estimating methods. Finally, some
ablation studies are given to highlight some important properties of our frame-
work.

4.1 Experimental Settings

Dataset We conducted our experiment on the benchmark TCIR dataset[1]
which contains 70501 TC images of 201 × 201 from 2003 to 2017. And There is
82 different intensity values. We used TC images from 2003 to 2016 for training
and TC images from 2017 for testing to make sure the images in the training set
and test set are from different typhoons. Followed [2], IR1 and PMW channels
of the image in the dataset were used to train our model.

Implementation details Our method is implemented using Pytorch on
an Nvidia RTX2080. A ResNet18[10] is adopted as backbone to extract im-
age representations, which has been pre-trained on the ImageNet ILSVRC 2012
dataset[5]. The classifier is consisted by one layer. And all images are resized
to 224 × 224 before feeding into the network. Further, random rotation and
random crops were adopted for data augmentation during training, and single-
center crops were used for testing. We use SGD with a momentum of 0.9 and
an initial learning rate of 5 × 10−4 as the optimizer to train the network. The
network is trained for 50 epochs with the learning rate being decayed by a factor
of 0.96 after each epoch. Following [2], We adopted a random sampling strat-
egy to construct a mini-batch of a size of 12 from backbone training and the
number of anchors is set to 4. The hyperparameter α is set to 1.3 and the T in
Stage-smooth algorithm is set to 5.

Evaluation metrics We obtained the final results by searching for the
nearest neighbors in the class vectors set. We adopted the root mean squared
error (RMSE) and mean absolute error (MAE) as the evaluation metrics.

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ỹi)2, (7)
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Table 1. Tropical cyclone estimation results compared with other methods. Temporal
means the way of handling temporal data. Bold numbers denote the best results.

Approach Temporal RMSE (kt)

1 Cross-entropy - 10.36
2 Npair[20] - 10.75
3 log-ratio[12] - 10.21
4 CNN-TC[1] - 10.18
5 DR-extractor[14] - 8.81
6 Ours(CI-extractor) - 8.49

7 ADT[17] linear 11.79
8 AMSU[11] linear 14.10
9 SATCON[22] linear 9.21
10 CNN-TC(S)[2] five-point smooth 8.39
11 DR-transformer[14] transformer 7.76

12 Ours(CI-extractor) stage smooth 7.35

MAE =
1

m

m∑
i=1

|yi − ỹi| . (8)

4.2 Comparison to state-of-the-art methods

In this section, we compare the proposed CI-extractor to existing TC intensity
estimation methods, such as traditional intensity estimation method[17, 11, 22],
regreession-based method[1, 2] and our main baseline[14] on TCIR dataset. The
results are shown in table 1. Note that kt is a unit commonly used in meteorology.
1kt ≈ 0.51m/s.

The first three rows are some traditional methods that are reproduced on the
TCIR dataset. The fourth and five rows are the typical regression-based method
CNN-TC and our main baseline DR-extractor. Note that the DR-extractor here
only includes the backbone and does not use any temporal strategy. The last
six rows 7-12 compare experimental results using temporal information. Rows
7-9 are manual intensity estimation methods and linear interpolation is used to
math the times of the dataset. CNN-TC(S) is the upgraded version of CNN-TC
and a five-point smooth algorithm is applied. DR-transformer is the method that
uses the DR-extractor as the backbone and a transformer model is further used
to aggregate temporal information.

For rows 1-6, our CI-extractor outperforms other methods by a margin (8.49
vs 8.81) as none of the temporal information was used. Since our CI-extractor
pays more attention to the reduction of intra-class variance in the feature space,
fewer samples will be misclassified, which leads to a decrease in the RMSE metric.
The last six rows (7-12) are results that make use of temporal information. From
the table we can see, that our method is superior to the other approach by a
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Table 2. Tropical cyclone estimation results with our main baseline. Intensites are
devided into eight categories by SSHWS and the number of each is counted. The two
methods on the left do not use temporal information which is used in the two on the
right. Bold numbers denote the best results and the MAE and RMSE are reported as
the final result.

Category
Intensity
Range

Numbers
Approach

DR-extractor CI-extractor DR-transformer CI-extractor(S)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

H5 ≥ 137kt 41 6.04 7.53 7.03 8.48 10.39 11.93 6.12 7.65
H4 113− 136kt 93 6.65 8.95 7.24 9.16 6.45 8.17 5.56 6.71
H3 96− 112kt 130 9.97 12.44 9.61 11.95 7.68 9.31 6.89 8.88
H2 83− 95kt 243 10.10 12.68 9.84 12.25 8.13 10.33 7.54 9.59
H1 64− 82kt 468 10.26 12.47 9.18 11.47 8.77 10.96 8.12 10.18
TS 34− 63kt 1735 6.29 8.09 6.44 8.20 5.47 7.08 5.72 7.25
TD 20− 33kt 1501 5.33 6.92 4.70 6.28 5.04 6.38 4.28 5.71
NC < 20kt 89 6.74 8.32 7.14 8.58 8.01 9.55 5.93 7.19
Total - 4300 6.73 8.81 6.46 8.49 6.02 7.80 5.62 7.35

Table 3. Evaluation of the effects of different components in our framework. For row
(a), the loss is used on top of the backbone. For row (b) and row (c), the category-level
representation learning branch is further applied. And for row (d) and row (e), a stage
smooth algorithm is adopted at inference stage.

methods MAE RMSE

(a) DC 6.73 8.81
(b) DC+CE 6.59 8.66
(c) IDC+CE 6.46 8.49
(d) DC+CE+stage smooth 5.80 7.54
(e) IDC+CE+stage smooth 5.62 7.35

large margin, with the second-best model (DR-transformer) having circa 0.41
knots higher in the RMSE metric.

Performance in SSHWS We further compare our method with our main
baseline DR-transformer to show the performance in different intensity cate-
gories. As shown in table 2, the left four columns are the results without temporal
strategies which are used in the right four. The TC intensity is split by Saffir-
Simpson Hurricane Wind Scale (SSHWS) along with intensity categorization for
tropical storms and tropical depressions. The RMSE and MAE were reported.
As we can see, in most categories, such as H5, H4, H3, H2, H1, TD, and NC, our
method is superior to our baseline. In particular, the RMSE of our method for
estimating the intensity of high-intensity (H5) typhoons and low-intensity(NC)
typhoons is much lower which is greatly valuable in practical applications.
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Table 4. Comparison of smooth methods. CI-extractor is used as backbone in all
experiments. The RMSE and MAE is reported.

methods MAE RMSE

(a) transformer 5.89 7.69
(b) five-point 6.85 9.13
(c) stage-smooth 5.62 7.35

Table 5. Comparison of classifiers. For all experiments, CI-extractor is used as back-
bone.

classifier MAE RMSE

(a) kNN(k=1) 6.58 8.62
(b) kNN(k=3) 6.51 8.51
(c) kNN(k=5) 6.51 8.50
(d) softmax 7.11 9.50

4.3 Ablation studies and discussions

In this section, we conduct some ablation studies to characterize our framework.
Concretely, we study the effects of the IDC loss, CE loss, and the stage smooth
algorithm to the result. We also discuss whether the KNN classifier is better
than softmax and the advantage of our smooth algorithm to the transformer.

Effects of components For all experiments, the resnet-18[10] is used
as backbone to get the extractor. The estimation results are shown in table 3.
Results show that both category-level representation learning and inter-class cal-
culation are necessary for CIRL. Especially, IDC loss reduces the RMSE (8.49 vs
8.66) by removing the intra-class instance distance which can cause the distance
shifts and prevent the convergence of intra-class samples. The category-level
representation learning also has a significant impact on the final result (8.66 vs
8.81) since it performs well in distinguishing class boundaries. And the smooth
algorithm greatly improves the performance finally.

We further show the distribution of features which can be seen in Fig. 4.
The features which are extracted by backbone are visualized by TSNE[15]. We
sample ten categories in order to show them more clearly. In Fig. 4a, the feature
distribution is crowded and it is difficult to distinguish different categories. In
Fig. 4b, features of the same categories tend to cluster together with category-
level representation learning. And in Fig. 4c, the intra-class features get closer
which achieved the best performance.

KNN or softmax We further compare the kNN-based classifier and
softmax-based classifier on the top of CI-extractor. For the second one, the clas-
sifier in our framework is reserved and the output of the classifier is regarded
as the final result. The result is shown in table 5. The kNN-based classifier per-
forms better than softmax-based classifier (8.50 vs 9.50). Since our framework
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Table 6. Effort of the sequence length in stage-smooth algorithm

Stage-Smooth T=3 T=5 T=7 T=9

MAE 5.76 5.66 5.65 5.65
RMSE 7.49 7.39 7.38 7.39

( )a DC ( )b DC CE+ ( )c IDC CE+

Fig. 4. The distribution of learned features under the different compose of loss, which
lead to different distributions. The point with different colors denotes features of sam-
ples from different categories. The number in the legend represent labels and are also
intensity values. Best viewed in color.

aims to learn a uniform feature distribution, the softmax classifier is hard to find
a dividing line for the embeddings. And a larger number of k has little effect on
the results, which also owing to the uniform inter-class distribution.

Stage-smooth or transformer In this work, we replace the stage-smooth
algorithm with the transformer module. Specially, we use CI-extractor to obtain
the feature embeddings from a sequence of images. Then, the feature embed-
dings are fed into the encoder of transformer and the one-hot vectors are fed to
the decoder. The IDC loss is used to train the transformer. Following [14], the
number of layers of encoder and decoder is set to 2 and the sequence length is
set to 7. The result is shown in table 4. Since transformer has been proven to
effectively utilize temporal information to reduce errors, our method can also
achieve the target with less computations. As can be seen, the transformer re-
sults in obviously inferior performance to our stage-smooth algorithm, since it
only benefits from the continuity of the representations. Further, the effort of
the sequence length in stage-smooth is explored in table 6. A longer sequence
has little effect on the results since the benefits of smoothing are limited.

5 Conclusion

In this paper, we proposed the CIRL framework which is general for continuous
label classification problems. The framework focus on jointly learning a category-
instance representation from images which can take full advantage of the sep-
arability and continuity of labels. Experiments on the TCIR dataset have con-
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vincingly demonstrated the effectiveness of our method. Additionally, we prove
that in the continuous label classification problem, it is necessary to consider the
separability between labels. We hope that this work will play a role in meteoro-
logical observations and in the future, our feature extraction framework can be
extended to more continuous label classification problems.
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