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Abstract. Decision-based black-box attacks can craft adversarial ex-
amples by only querying the target model for hard-label predictions.
However, most existing methods are not efficient when attacking large-
size images due to optimization difficulty in high-dimensional space, thus
consuming lots of queries or obtaining relatively large perturbations. In
this paper, we propose a novel decision-based black-box attack to gen-
erate adversarial examples, which is Specific to Large-size Image Attack
(SLIA). We only perturb on the low-frequency component of discrete
wavelet transform (DWT) of an image, reducing the dimension of the
gradient to be estimated. Besides, when initializing the adversarial exam-
ple of the untargeted attack, we remain the high-frequency components
of the original image unchanged, and only update the low-frequency com-
ponent with the randomly sampled uniform noise, thereby reducing the
distortion at the beginning of the attack. Extensive experimental results
demonstrate that the proposed SLIA outperforms state-of-the-art algo-
rithms when attacking a variety of different threat models. The source
code is publicly available at https://github.com/GZHU-DVL/SLIA.

1 Introduction

At present, deep neural networks (DNNs) have been widely applied in various
fields due to their ability to efficiently solve complex tasks. However, DNN is
highly uninterpretable, making it difficult to control [1]. The safety of its appli-
cations in specific fields deserves attention, such as military, autonomous driving,
and medical treatment. The concept of adversarial example was first proposed
by Szegedy et al. [1] in 2014. That is, adding a small perturbation to an orig-
inal image can generate an adversarial example that makes the DNN model
misclassified with high confidence. According to the accessible knowledge of the
structure and parameters of the target model, adversarial attack can be divided
into white-box attack and black-box attack. Since the black-box attack is more
practicable, thus attracting more attentions than the former [2]. The black-box
attack includes the transfer-based [3] and query-based attack [4].

In the transfer-based black-box attack, Dong et al. [5] make the generated
adversarial examples more transferable by increasing the momentum in the gra-
dient direction. However, this approach has low attack success rate. In [11], Pa-
pernot et al. propose a dataset expansion method based on the Jacobian matrix
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Fig. 1. Pipeline of SLIA. The attack is initialized with an example that has already
been adversarial, and then generating adversarial examples iteratively move along the
decision boundary. Taking targeted attack as an example, we aim to obtain an adver-
sarial image that visually looks like a cat but be misclassified as a black swan.

to iteratively expand and improve surrogate model. However, when the dimen-
sion of the sampled image is large, the calculation of the Jacobian matrix will
consume huge resources. Besides, it is difficult to completely imitate the decision
boundary of the attacked model, which causes a low attack success rate.

Since the surrogate model cannot fully imitate the target model, many re-
searchers tend to directly estimate the structure and parameter information of
the target model. The focus of black-box attacks is gradient estimation by query-
ing model. Chen et al. [4] utilize the finite difference based Zero-Order Optimiza-
tion (ZOO) algorithm to estimate the gradient of the loss function by accessing
predicted probabilities of the target model. This method needs to estimate each
pixel one by one, which requires numerous queries to generate accurate gradient
estimation in each iteration, causing the low attack efficiency. Bhagoji et al. [13]
use the finite difference method and the random grouping method to reduce the
amount of calculation. However, the reduced calculation causes the low attack
success rate on the large-size image dataset.

When the model’s prediction probabilities are accessible, attackers will typi-
cally prefer score-based attack. While in more realistic scenarios where only top-1
class predictions are available, attackers will have to resort to decision-based at-
tack. The concept of boundary-based black-box attack was first proposed by
Brendel et al. [19]. It only needs to utilize the final classification output of the
model to craft adversarial example. The method works by randomly walking in
the direction of the original example along the decision boundary until it is clos-
est to the original example, while remaining adversarial. This attack requires less
model knowledge but can achieve comparable attack effects to white-box attack.
However, the perturbation sampling strategy in [19] has great randomness, and
the convergence of perturbation cannot be guaranteed. To address this problem,
[6][20] were proposed to carry out decision-based black-box attack. However,
these attacks often require numerous queries to converge or have large pertur-
bations under a given number of query budget, which makes the attack process
consume heavy computation, especially when attacking large-size images.
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To improve the query efficiency, we propose a decision-based boundary adver-
sarial attack, which is specific to large-size images, termed SLIA. SLIA optimizes
both l2-norm and l∞-norm distortion. The main contributions of this paper are
as follows: (1) We propose a decision-based black-box attack for large-size im-
ages (named SLIA), wherein adversarial images can be crafted by sending a few
queries to the model; (2) When performing untargeted attack, SLIA replaces
the low-frequency component of the original image with random uniform noise,
and reconstructs it back to the original image space with high-frequency com-
ponents. This can fool the model while retaining as much key information of the
original image as possible; (3) SLIA performs discrete wavelet decomposition on
adversarial example at the boundary, only estimates and updates the gradient
of low-frequency component, greatly reduces the number of dimensions to be es-
timated with fewer model queries. Experiments show that our algorithm can be
successfully used to attack different ImageNet models with less distortion than
state-of-the-art algorithms under the same number of queries.

2 Related Work

According to the available knowledge of the network model, adversarial attack
is classified into white-box attack and black-box attack. In a white-box setting,
the attacker has all knowledge about the network. Since Szegedy et al.[1] dis-
covered vulnerability of DNNs, various white-box attacks [9][10][12][8] have been
developed. In practice, the attacker may not be able to access the structure and
parameters of the model, which is more in line with the actual attack situation.
Hence black-box attacks have received more attention recently. It is often divided
into three families: transfer-based, score-based, and decision-based attacks.

2.1 Transfer-based black-box attacks

Transfer-based black-box attack algorithms are mainly based on the phenomenon
of transferability: adversarial example against a certain model is often misclassi-
fied by other models. Papernot et al. [10][11] trained a local substitute model by
querying the target model and used backpropagation gradient from the substi-
tute network to craft adversarial examples. These examples can also successfully
fool the target model with high probability. The follow-up work [3] showed that
adversarial example generated on substitute network tends not to have better
transferability for targeted attack, but can be developed on an ensemble of mod-
els. However, query-based algorithms that directly estimate the gradient of the
target network outperform these methods. In addition, it is difficult to find a
suitable surrogate model to learn the decision boundary of the target model.

2.2 Score-based black-box attacks

In the score-based black-box setting, the attacker utilizes the corresponding pre-
dicted probabilities to make adversarial examples by querying the target model.
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Chen et al. [21] applied zeroth order optimization and coordinate descent to es-
timate the gradient, but requred a large number of queries on the target model.
The method in [6] performs gradient estimation via Natural Evolutionary Strat-
egy (NES) and then uses Projected Gradient Descent (PGD) [7], further reduces
the query complexity.

2.3 Decision-based black-box attacks

As an important category of adversarial attacks, an initial attempt named Bound-
ary Attack [19] is highly relevant to real-world applications. It starts from an
adversarial point and tries to reduce the distortion by walking towards the origi-
nal image along the decision boundary while keeping adversarial. The main issue
is the trade-off between the number of queries and the quality of adversarial ex-
ample. HopSkipJumpAttack [21] significantly improves the former [19] in terms
of query efficiency. This method can balance both the accuracy of gradient esti-
mation and query complexity well. However, when attacking large-size images,
the number of queries required to produce adversarial examples still is in the
tens of thousands.

3 Problem Definition

We consider an image classifier f : x → c, where x ∈ Rn is a normalized RGB
image and c is its corresponding true label such as the top-1 classification label.
F (x) is a k-dimensional vector, referring to the probability distribution over
classes. c := argmaxc∈[k] Fc(x) represents the label of x. Given an original image
x∗, c∗ represents its label. Denote the adversarial perturbation as µ ∈ Rn, the
goal of untargeted attack is to make the model misclassified wherein c(x∗+µ) ∕=
c∗, and targeted attack aims to change the original classifier decision c∗ into a
pre-specified class c+.

The process of generating adversarial examples can be formulated as an op-
timization problem by defining the function L:

Lx∗ (x) :=

!
"

#

max
c ∕=c∗

Fc (x)− Fc∗ (x) (Untargeted)

Fc+ (x)−max
c ∕=c+

Fc (x) (Targeted)
(1)

Gradient-based methods can be used to efficiently optimize this problem under
the white-box setting. However, in the decision-based black-box attack, models
only provide attackers with a hard label, even without any output probabilities.
In other words, only the value of sign(L) is available, while the value of L is
unknown. We denote the indicator function I as:

Ix∗ (x) = sign (Lx∗ (x)) =

$
1 if Lx∗ (x) > 0
−1 otherwise

(2)

In our decision-based attack, the goal of the adversary is to find an adversarial
perturbation µ which satisfies I(x∗ +µ) = 1 by sending queries to model. That
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Fig. 2. Initialization for untargeted attacks.

is, only when I(x∗+µ) = 1 can it be considered as a successful attack. Generat-
ing adversarial examples under decision-based black-box setting can be defined
as the following optimization problem:

min D(x∗,x∗ + µ) s.t. I(x∗ + µ) = 1 (3)

where D(·, ·) is l2-norm or l∞-norm distance metric. We strive to find an example
with as little distortion as possible from the original example under the condition
of guaranteed adversarial.

4 Decision-Based Black-Box Attack Specific to Large-Size
Images (SLIA)

In this section, we propose to utilize discrete wavelet transform (DWT) to de-
compose the low-frequency component of the attacked image, and only adds
perturbation to this part, while maintaining a 100% attack success rate. The
pipeline of SLIA is shown in Fig.1, which includes three steps: gradient estima-
tion by querying the model, moving along the estimated gradient direction, and
projecting new example to the decision boundary by binary search towards the
original example. Details of each step are given below.

4.1 Initialization

Our SLIA starts from an adversarial image outside the boundary, and gradually
reduces the distortion by moving towards the original image along the decision
boundary while remaining adversarial.
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Fig. 3. Overview of estimating gradient at decision boundary.

Given a correctly classified original image x∗, the first step is to generate an
initial adversarial example: (1) As shown in Fig. 2, for untargeted attacks, we per-
form 1-level discrete wavelet decomposition on the original image. Then the low-
frequency component LL∗ is reset to a random uniform noise u ∼ U(min(LL∗),
max(LL∗)). Next, we combine the low-frequency noise with the original high-
frequency components to reconstruct the image through inverse DWT. We make
queries to the target model, until the new image is misclassified. Different from
the previous attack methods that use a uniform random noise as the initial-
ization image, the advantage of SLIA is that the new image can retain more
original image information without causing large distortion. Finally, we project
it to the boundary through the binary search algorithm and identify it as the
initial adversarial example x0; (2) For targeted attacks, the image is randomly
selected from a pre-specified class which is different from the class of the origi-
nal image. Similarly, we leverage the binary search algorithm to search for the
decision boundary, and take the image as initial adversarial example x0.

4.2 Gradient direction estimate at the decision boundary

In this subsection, we will elaborate the gradient estimation part in the proposed
method in detail. Suppose that at the t-th iteration, the adversarial example on
the boundary is xt. As shown in Fig. 3, xt is decomposed into low-frequency
and high-frequency components by DWT. Therefore, the gradient direction of
loss function L at this point is estimated by sending queries to the target model,

∇L(xt) :=
1

N

N%

i=1

Ix∗ [IDWT(LLt + δηi,HLt,LHt,HHt)]ηi, (4)

4686



Decision-Based Black-Box Attack Specific to Large-Size Images 7

Fig. 4. Illustration of estimating gradient at xt by sampling N Gaussian noises. q is
an arbitrary in the tangent space.

where δ and t are probe step size which are a small positive parameter and t is
the current number of iteration. ηN

i=1 are normalized random noise vectors drawn
from the Gaussian distribution over the 1/4-dimensional sphere as shown in Fig.
4 (x∗ ∈ Rn). δηN

i=1 is added to the low-frequency component. By combining
with high-frequency components of xt, inverse DWT is utilized to reconstruct
N samples with unknown labels.

We determine the directions of the noise vectors by accessing the model to
observe whether these samples have the same labels as the original example: (1)
If Ix∗ = −1, the noise vector will be updated to its opposite direction; (2) If
Ix∗ = 1, the noise vector will remain unchanged. Finally, we average the above
noises and use the mean as the normal vector of tangent hyperplane, i.e., the
gradient direction ∇L(xt) at the decision boundary.

Due to the flatness of the boundary, it is theoretically likely that the noise
vectors are symmetrically distributed on both sides of the decision boundary.
Therefore, the updated and unchanged noise vectors can be clustered around
the true gradient as much as possible, the mean vector is also closer to the true
gradient.

The gradient estimation in SLIA is essentially a Monte Carlo estimation
method. When the dimension of the gradient to be estimated is large, using
the Monte Carlo method requires more sampling points to make the estimated
gradient closer to the true gradient. In an RGB color image, each pixel is repre-
sented by three channels. Moreover, as the size of the image becomes larger, the
dimensionality of the image increases dramatically (e.g., the data dimension on
ImageNet is over 150k), resulting in a low accuracy of estimating gradient. To
reduce the dimension of the gradient to be estimated and further minimize the
visual effect of adversarial perturbation, SLIA applies DWT to decompose the
sample into low-frequency components and high-frequency components. Note
that most of the key content-defining information in natural images exists at the
low-frequency end of the spectrum, while high-frequency signals are often associ-
ated with noise. That is, adversarial examples are more likely to be generated by
adding noise to low-frequency component. Therefore, we keep the high-frequency
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components unchanged, and only perturb the low-frequency component, which
reduces the dimension to be perturbed to 1/4 of the original image. Adding
perturbation to the low-frequency information has several advantages: (1) Only
the low-frequency component is perturbed, the dimension of the gradient to be
estimated is reduced to 1/4 of the original image, which means that the same
number of sampling points can obtain higher estimation accuracy; (2) Only
adding perturbation to the low-frequency component, the perturbation is dis-
tributed in multiple pixels, which is not easy to form salt and pepper noise and
has less visual impact.

4.3 Move along estimated gradient direction

In this part, we will move one step along the gradient direction estimated in Eq.
(4) to obtain an example located in the adversarial area,

x′
t = xt + εt ·

∇L(xt)

‖∇L(xt)‖2
, (5)

where εt is perturbation magnitude at t-th iteration. It is computed from the
distortion result of the last iteration and the geometric progression related to
current iteration number t. We multiply the normalized estimated gradient by
εt, and add it to xt to obtain an adversarial example x′

t, which is slightly away
from the boundary, shown in Fig. 1. Note that x′

t is at the opposite side of the
boundary to x∗.

4.4 Project to decision boundary

Since the proposed gradient direction estimation works only at the boundary, we
adopt binary search algorithm to quickly find the decision boundary and project
x′
t to it. We use the following formula to adjust the value of the parameter

γ to control the relative position of the adversarial example from the original
example, until the stopping condition is satisfied. Hence, we move the adversarial
image x′

t towards the direction of the original image x∗ via

xt+1 = γt · x∗ + (1− γt) · x′
t, (6)

where γt is a changing positive parameter between 0 and 1 so that x′
t projected

back to the decision boundary. We denote the example projected back on the
boundary as xt+1, and let it enter to the next iteration as a new boundary
adversarial example. The pseudo code of the complete process in generating
adversarial images is outlined in Algorithm 1.

5 Experiments

5.1 Experimental settings.

Dataset and target models. We experiment on ImageNet [18], a public
large-scale labeled image dataset, to demonstrate the efficiency of our proposed
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Algorithm 1 Boundary attack specific to large-size images (SLIA)

Input: Indicator function I, the original example x∗, the number of normalized
random noises N , iteration number T , constraint lp (p=0 or p=∞), attack objective
(untargeted or targeted), stopping threshold of binary search.
Output: Adversarial example.

if objective is untargeted then
LL∗, LH∗, HL∗, HH∗ ← DWT(x∗).
Sample noise u ∼ U(min(LL∗), max(LL∗)).
while I(IDWT(u, LH∗, HL∗, HH∗)) = −1 do

Sample noise u ∼ U(min(LL∗), max(LL∗)).
end
xinitail = IDWT(u, LH∗, HL∗, HH∗).

else
A randomly sampled image xinitail belonging to the target class.

end
Search starting point x0 = BinarySearch(xinitail, x

∗, I) which lies on the boundary.
for t = 0 to T − 1 do

LLt, LHt, HLt, HHt ← DWT(xt).
Sample N noise vectors: ηN

i=1 ∼ N (0,1).
Estimate gradient direction of LLt: ∇L(xt) with the rule defined in Eq.(??).
if constraint is l∞ then

∇L(xt) = sign(∇L(xt)).
end

Initialize !t = ‖xt − x∗‖p/
√
t× 4 for obtaining attack step size.

while I(xt + !t · ∇L
‖∇L‖p ) = −1 do

!t = !t / 2.
end

Compute x′
t = xt + !t · ∇L

‖∇L‖p .

Update adversarial image xt+1= BinarySearch(x′
t, x

∗, I) on the boundary.
end
Return an adversarial example xT−1;

method. For ImageNet, we randomly sample 100 correctly classified test images,
evenly distributed among 10 randomly selected classes. The whole images are
clipped into [0,1] by default for all experiments. We perform both untargeted
attacks and targeted attacks to a random class against three prevailing models:
ResNet-50 [22], VGG16 [23] and DenseNet-201 [24]. All models are pretrained
on ImageNet and provided by Keras online1.

Compared baseline methods. To demonstrate the effectiveness of our method,
we compare SLIA with several state-of-the-art decision-based attacks including
Boundary Attack method [19], HopSkipJumpAttack (HSJA [21] and Latin Hy-
percube Sampling based Boundary Attack (LHS-BA) [25]. We mainly focus on

1 https://keras.io/applications/#resnet50;
https://keras.io/applications/#vgg16;
https://keras.io/applications/#densenet201.
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Table 1. Mean l2-norm distortions for performing untargeted and targeted attacks
with different query budgets.

Objective Victim Model Method 1K 5K 10K 20K

Boundary Attack [19] 54.67 27.03 14.89 10.34
ResNet-50 HopSkipJumpAttack [21] 28.69 9.12 5.46 3.31

LHS-BA [25] 23.84 6.39 4.92 3.20
Ours 14.73 4.85 3.59 2.98

Boundary Attack [19] 60.06 24.76 18.63 14.83
Untargeted VGG16 HopSkipJumpAttack [21] 26.35 12.22 9.78 7.97

LHS-BA [25] 22.84 10.20 7.51 7.32
Ours 13.41 5.11 3.68 2.86

Boundary Attack [19] 78.83 33.29 15.90 10.64
DenseNet-201 HopSkipJumpAttack [21] 35.20 7.74 4.52 2.92

LHS-BA [25] 27.09 7.36 3.74 2.28
Ours 17.64 6.83 2.84 0.80

Boundary Attack [19] 83.10 49.24 31.85 22.59
ResNet-50 HopSkipJumpAttack [21] 54.85 27.54 17.04 9.34

LHS-BA [25] 50.29 26.81 16.70 9.25
Ours 49.10 26.21 16.16 9.06

Boundary Attack [19] 97.23 58.94 39.27 28.25
Targeted VGG16 HopSkipJumpAttack [21] 67.36 40.49 27.47 18.17

LHS-BA [25] 60.64 36.72 25.70 16.38
Ours 56.25 26.27 15.08 10.18

Boundary Attack [19] 92.78 54.86 26.41 17.03
DenseNet-201 HopSkipJumpAttack [21] 67.92 30.63 15.79 8.62

LHS-BA [25] 61.85 27.49 15.66 8.40
Ours 54.32 19.56 13.13 7.70

attack method LHS-BA, which outperforms all of other Boundary Attack [19],
Limited Attack [6], and HSJA [21]. We use the implementation of the three al-
gorithms with the suggested hyperparameters from the publicly available source
code online. We fixed the number of queries at 1K, 5K, 10K and 20K and mag-
nitude of the average distortion is what we mainly observe when performing
untargeted and targeted attacks respectively.

Evaluation metrics. Effective querying is the most important indicator to
evaluate the decision-based adversarial attack, which requires the method to
craft adversarial example with smaller model queries at the same distortion.
SLIA’s attack success rate is 100%, so we quantify the performance in terms of
two dimensions: average lp-norm distortion and specified query numbers. It can
be formulated as:

‖x‖p =

&
n%

i=1

|xi|p
' 1

p

, (7)

where l2-norm and l∞-norm are are two most commonly used metrics in the
adversarial attack field. l2-norm means Euclidean distance between the original
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Table 2. Mean l∞-norm distortions for performing untargeted and targeted attacks
with different query budgets.

Objective Victim Model Method 1K 5K 10K 20K

Boundary Attack [19] 0.553 0.411 0.247 0.193
ResNet-50 HopSkipJumpAttack [21] 0.231 0.129 0.103 0.098

LHS-BA [25] 0.164 0.082 0.070 0.047
Ours 0.089 0.039 0.032 0.023

Boundary Attack [19] 0.475 0.349 0.257 0.124
Untargeted VGG16 HopSkipJumpAttack [21] 0.291 0.185 0.121 0.087

LHS-BA [25] 0.166 0.095 0.073 0.038
Ours 0.067 0.032 0.024 0.018

Boundary Attack [19] 0.431 0.318 0.234 0.109
DenseNet-201 HopSkipJumpAttack [21] 0.267 0.132 0.107 0.076

LHS-BA [25] 0.204 0.116 0.085 0.061
Ours 0.152 0.074 0.058 0.035

Boundary Attack [19] 0.780 0.618 0.372 0.244
ResNet-50 HopSkipJumpAttack [21] 0.370 0.267 0.199 0.137

LHS-BA [25] 0.310 0.229 0.163 0.125
Ours 0.253 0.146 0.120 0.091

Boundary Attack [19] 0.739 0.584 0.301 0.236
Targeted VGG16 HopSkipJumpAttack [21] 0.441 0.238 0.186 0.133

LHS-BA [25] 0.405 0.210 0.169 0.117
Ours 0.361 0.182 0.128 0.090

Boundary Attack [19] 0.683 0.553 0.291 0.255
DenseNet-201 HopSkipJumpAttack [21] 0.410 0.216 0.175 0.117

LHS-BA [25] 0.381 0.188 0.146 0.099
Ours 0.315 0.133 0.098 0.078

example and the adversarial one, and l∞-norm represents perturbation’s maxi-
mum changeable degree.

Hyperparameters. In our proposed attack, the number of iteration and the
maximum queries are set to 76 and 20,000, respectively. At the t-th iteration, we
compute probe step size in each gradient direction estimation by δt = ‖xt−1 −
x∗‖2/n×4 and εt = ‖xt−1−x∗‖2/

√
t×4 as perturbation step size in moving along

estimated gradient direction, where n = 224×224×3 is the input dimension.
Random vectors N is set to 100 first, and we gradually increase it by N =
N × (t+1)

1
4 . Stopping threshold θ when performing binary search is set to n− 3

2 .

5.2 Experimental results.

To evaluate SLIA’s performance, we report mean l2-norm and l∞-norm distor-
tion results in Tables I and II when performing untargeted and targeted attacks.
The distortion descending curves of various algorithms under different query
budgets are given in Fig. 5. Two qualitative example processes of attacking the
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Fig. 5. l2-norm distortions across various model queries on ImageNet with ResNet-50.
1st column: untargeted attacks. 2nd column: targeted attacks.

ResNet-50 by different attack methods are shown in Fig. 6 and Fig. 7, respec-
tively.

Untargeted attacks. As shown in the untargeted attack section of Tables I
and II, it is obvious that our method outperforms existing decision-based attacks
by a large margin under all fixed number of model queries. SLIA also converges
in a fewer number of queries, as shown in Fig.5.

Especially in the early stages of the attack, the advantages of SLIA are more
obvious. When the number of fixed model queries does not exceed 10K: (1)
Under the l2-norm distance metric, SLIA can reduce the distortion to 56% of
HSJA and about 67% of LHS-BA; (2) Under the l∞-norm distance metric, the
distortion of adversarial examples constructed via SLIA is about 64% lower than
that of HSJA and about 45% lower than that of LHS-BA. Experimental data
demonstrates that the adversarial examples can be crafted by our method rather
quickly without using too many queries.

This is due to two reasons: (1) In the initialization part, we replace the
low-frequency component of the original example with a uniform noise, and do
not update other high-frequency components. In this way, more details of the
original example can be preserved in the case of making the model misclassify;
(2) When estimating the gradient, we consider DWT to decompose the low-
frequency component of the example, and estimate the gradient of it. This greatly
reduces the dimension of the gradient to be estimated to 1/4 of the original
space. When sampling the same amount of Gaussian noises, the gradient can be
estimated with higher accuracy than that of the original full space.

Targeted attacks. We randomly select a target label and pick one image be-
longing to the target label. Then we use it as initialization image for all targeted
attacks. The results for targeted attacks are presented in the lower parts of Ta-
bles I and II. We can see that SLIA not only outperforms HSJA [21], but also
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Fig. 6. Visualized trajectories of HSJA [21], LHS-BA [25] and SLIA for performing
untargeted attacks on ResNet-50. 1st column: initialization. 2nd-9th columns: images
after blended with original images and at 1K, 5K, 10K, 20K model queries. 10th column:
original image. D is l2-norm metric to compute the distortion between adversarial image
and original image.

surpasses the latest gradient estimation-based boundary attack LHS-BA [25].
From a qualitative example comparison using different methods shown in Fig.7,
when model queries is fixed at 5,000 (4-th column), the adversarial example
crafted by SLIA is visually closer to the original example than the other two
attacks. It can be seen that under a limited number of queries, SLIA is able to
make adversarial examples with significantly smaller distortions from the corre-
sponding original example. In other words, under the same distortion condition,
SLIA requires fewer number of queries than the state-of-the-art methods. We
can also find that SLIA requires a larger number of model queries to achieve
a comparable distortion when performing targeted attacks than untargeted at-
tacks. This phenomenon is evident on the ImageNet dataset which has many
categories. There is often an order-of-magnitude difference in the average lp-
norm distortion between untargeted and targeted attacks for the same number
of queries.

6 Conclusion

In this work, we present a query-efficient adversarial example generation algo-
rithm (SLIA), which is specific to ImageNet with a large image size. SLIA can
be performed to ensure 100% attack success rate for settings where the attacker
only has access to the final decisions of a model. We generate adversarial exam-
ples by estimating the gradient of the low-frequency component, which greatly
reduces the dimension of the gradient to be estimated. When attacking a vari-
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Fig. 7. Visualized trajectories of HSJA [21], LHS-BA [25] and SLIA for performing
targeted attacks on ResNet-50. 1st column: initialization. 2nd-9th columns: images after
blended with original images and at 1K, 5K, 10K, 20K model queries. 10th column:
original image. D is l2-norm metric to compute the distortion between adversarial image
and original image.

ety of different ImageNet models, the distortion can be reduced faster with our
method compared to state-of-the-art attacks with different query budgets.
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