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Abstract. The methods of symmetric positive definite (SPD) matrix
learning have attracted considerable attention in many pattern recogni-
tion tasks, as they are eligible to capture and learn appropriate statisti-
cal features while respecting the Riemannian geometry of SPD manifold
where the data reside on. Accompanied with the advanced deep learning
techniques, several Riemannian networks (RiemNets) for SPD matrix
nonlinear processing have recently been studied. However, it is perti-
nent to ask, whether greater accuracy gains can be realized by simply
increasing the depth of RiemNets. The answer appears to be negative, as
deeper RiemNets may be difficult to train. To explore a possible solution
to this issue, we propose a new architecture for SPD matrix learning.
Specifically, to enrich the deep representations, we build a stacked Rie-
mannian autoencoder (SRAE) on the tail of the backbone network, i.e.,
SPDNet [23]. With this design, the associated reconstruction error term
can prompt the embedding functions of both SRAE and of each RAE to
approach an identity mapping, which helps to prevent the degradation
of statistical information. Then, we implant several residual-like blocks
using shortcut connections to augment the representational capacity of
SRAE, and to simplify the training of a deeper network. The experi-
mental evidence demonstrates that our DreamNet can achieve improved
accuracy with increased depth.

Keywords: SPD Matrix Learning - Riemannian Neural Network - In-
formation Degradation - Stacked Riemannian Autoencoder (SRAE)

1 Introduction

Covariance matrices are well-known in any statistical-related field, but their di-
rect usage as data descriptors in the community of computer vision and pattern
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Fig. 1. Test error of SPDNets versus the number of epochs on the AFEW dataset

recognition (CV&PR) is less common. Even so, their effectiveness has been ver-
ified in a variety of applications. In medical imaging, covariance matrices are
taken to classify time-series for Brain-Computer Interfaces (BCI) [3] and ana-
lyze magnetic resonance imaging (MRI) [8,5]. In visual classification, since a
global covariance matrix has the capacity to characterize the spatiotemporal
fluctuations of data points of different lengths, covariance features have gained
remarkable progress in many practical scenarios, such as dynamic scene classi-
fication [38,46,47], facial emotional recognition [23,4,44], face recognition [26,
24,19], and action recognition [18,33,51], etc.

However, the main difficulty of processing and classifying these matrices,
which are actually SPD, is that they cannot be regarded as the Euclidean ele-
ments, as their underlying space is a curved Riemannian manifold, i.e., an SPD
manifold [2]. Consequently, the tools from Euclidean geometry cannot directly
be applied for computation. Thanks to the well-studied Riemannian metrics, in-
cluding Log-Euclidean Metric (LEM) [2] and Affine-Invariant Riemannian Metric
(AIRM) [34], the Euclidean methods can be generalized to the SPD manifolds
by either mapping it into an associated flat space via tangent approximation [41,
40, 36] or utilizing the Riemannian kernel functions to embed it into a Repro-
ducing Kernel Hilbert Space (RKHS) [48, 43,20, 17]. However, these two types
of approaches may lead to undesirable solutions as they distort the geometrical
structure of the input data manifold by the data transformation process. To re-
spect the original Riemannian geometry more faithfully, several geometry-aware
discriminant analysis algorithms [26, 54, 19, 13] have been developed for learning
an efficient, manifold-to-manifold projection mapping. Regrettably, despite their
notable success, the intrinsic shallow linear SPD matrix learning scheme, imple-
mented on nonlinear manifolds, impede these methods from mining fine-grained
geometric representations.

Motivated by the philosophy of convolutional neural networks (ConvNets)
[21, 37], an end-to-end Riemannian architecture for SPD matrix nonlinear learn-
ing has been proposed (SPDNet [23]). The structure of SPDNet is analogous
to a classical ConvNet (e.g., with transformation and activation layers), but
each layer processes the SPD manifold-valued data points. The final layer of
SPDNet maps the learned feature manifold into a flat space for classification.
More architectures have followed thereafter [4,46, 33,51], modifying the elemen-
tary building blocks for different application scenarios. As recent evidence [37,
21] reveals, the network depth is of vital importance for promoting good perfor-
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Fig. 2. Schematic diagram of the proposed Riemannian network.

mance. A question therefore arises: can the classification accuracy be improved
by simply stacking more layers on top of each other in the SPD neural networks?
The following three factors make it impossible to provide ready answers: 1) ex-
isting RiemNets have a small number of layers and there is no prior experience
in building very deep RiemNets; 2) there is limited research on this topic; 3)
deeper SPD network may be difficult to train. A typical example is illustrated
in Fig. 1. It should be noted that the classification error of SPDNet-18 is higher
than that of SPDNet-8.

The above observation suggests that simply stacking more layers on top of
each other does not mean that a better RiemNet can be learnt. This article
proposes a new architecture for SPD matrix processing and classification that
avoids the pitfalls of layer stacking in RiemNet. The overall framework of our
approach is shown in Fig. 2. As a greater depth of representation is essential for
many classification tasks[49, 55, 21,53], the purpose of the proposed network is
to pursue a deeper manifold-to-manifold embedding mapping that would trans-
form the input SPD matrices into more informative ones of lower dimensionality
and the same topology. To meet this requirement, we select the original architec-
ture proposed in [23] as the backbone of our model, in view of its demonstrable
strength in SPD matrix nonlinear learning. Then, a stacked Riemannian au-
toencoder network (SRAE) is established at the end of the backbone to increase
the depth of the structured representations. Under the supervision of a recon-
struction error term associated with the input-output SPD matrices of SRAE,
the embedding mechanisms of both SRAE and each RAE will asymptotically
approach an identity mapping, thus being capable of preventing a degradation
of statistical information during multi-stage data compressed sensing. The pro-
posed solution ensures that the classification error produced by our deeper model
would not be higher than that of the shallower backbone. To enhance the rep-
resentational capacity of SRAE, we build multiple residual-like blocks within it,
implemented by the shortcut connections [21] between the hidden layers of any
two adjecent RAEs. This design makes the current RAE learning stage access
the informative features of the previous stages easily, facilitating the reconstruc-
tion of the remaining structural details. Since the above design ensures that the
SRAE network remains sensitive to the data variations in the new feature mani-
folds, we also append a classification module, composed of the LogEig layer (will
be introduced later), FC layer, and cross-entropy loss, to each RAE to facilitate
the training of a discriminative manifold-to-manifold deep transformation map-
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ping. In this manner, a series of effective classifiers can be obtained. Finally, a
simple maximum voting strategy is applied for decision making.

We demonstrate the benefits of the proposed approach on the tasks of facial
emotion recognition, skeleton-based hand action recognition, and skeleton-based
action recognition with UAVs, respectively. The experimental results achieved on
three benchmarking datasets show that our DreamNet achieves accuracy gains
from an increasing network depth, producing better results than the previous
methods.

2 Related Works

To endow SPD matrix representation learning with deep and nonlinear function,
Ionescu et al. [28] integrate global SPD computation layers with the proposed
matrix backpropagation methodology into deep networks to capture structured
features for visual scene understanding. Inspired by the paradigm of ConvNets,
Huang et al. [23] design a novel Riemannian neural network for SPD matrix
nonlinear learning, comprising of a stack of SPD matrix transformation and
activation layers, referred to as SPDNet. To provide a better guidance for the
network training, Brooks et al. [4] design a Riemannian batch normalization
module for SPDNet. Considering the potential importance of the local struc-
tural information contained in the SPD matrix, Zhang et al. [51] propose an
SPD matrix 2D convolutional layer for data transformation, requiring each con-
volutional kernel also to be SPD. Different from [51], Chakraborty et al. [5] use
the weighted Fréchet Mean (wFM) operation to simulate convolution on the
manifolds, considering the intrinsic Riemannian geometry of the data points like
diffusion tensors. More recently, Wang et al. [46] design a lightweight cascaded
neural network for SPD matrix learning and classification, which shows higher
computational efficiency and competitive classification performance, especially
with limited training data.

3 Proposed Method

Although the Riemannian neural network approaches for SPD matrix process-
ing can alleviate the negative impact of data variations on the classification
performance, achieving accuracy gains is not simply a matter of increasing the
network depth. The main obstacle to this simplistic solution is the degradation
of statistical information (degradation problem), which makes the learned deep
representations unable to effectively characterize the structural information of
the original imaged scene, thus resulting in lower accuracy. In this paper, we
design a novel Riemannian architecture named DreamNet to solve this issue.
Fig. 2 provides an overview of our approach.

3.1 Preliminaries

SPD Manifold: A real-valued symmetric matrix X is called SPD if and only
if vT X > 0 for all non-zero vector v € R%. As studied in [2, 34], when endowed
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with manifold structures, the set of d-by-d SPD matrices, denoted as Si L
St ={XeR™: X =X" v"Xv>0,YvecR\{04}}. (1)

forms a specific Riemannian manifold, i.e., SPD manifold. This enables the use
of concepts related to differential geometry to address Sff_ 1, such as geodesic.

Data Modeling with Second-Order Statistics: Let S; = [sq, Sa, ..., S, ]
be the i*" given data sequence with n; entries, where s, € R%*! denotes the
t* vectorized instance. For S;, its second-order representation is computed by:
X = 27 2000 (80— wi) (8¢ — w;)T, where w; = - 37" | s signifies the mean
of S;. Considering that X; does not necessarily satisfy the condition of positive
definiteness, it is regularised, i.e., X; < X;+AI4, where I is an identity matrix
of size d x d, and X is set to trace(X;) x 1072 in all the experiments. In this
way, X; is a true SPD manifold-valued element [34].

Basic Layers of SPDNet: Let X, _; € Si’ﬂ;l be the input SPD matrix of
the k*® layer. The Riemannian operation layers defined in [23] are as follows:

BiMap Layer: This layer is analogous to the usual dense layer, used to trans-
form the input SPD data points into a lower dimensional space by a bilinear
mapping fp, expressed as X = Ifk)(Wk,Xk_l) = W{Xk_lwk, where W,
is the column full-rank transformation matrix with semi-orthogonality.

ReFig Layer: This layer is similar to the classical ReLU layers, designed to in-
ject nonlinearity into SPDNet by modifying the small positive eigenvalues of each
input SPD matrix with a nonlinear rectification function f,., formulated as X =
F(X,_1) = Up_imax(el, By, )UT_,. Here, Xj_1 = Up_1Z_1UY_| rep-
resents the eigenvalue decomposition, and € is a small activation threshold.

LogFig Layer: This layer is designed to perform the following logarithmic
mapping: X = fl(k) (X)_1) = Up_1log(Xy_1)UL_,, where log(X) represents
the logarithm operation on each diagonal element of ¥, and X 1 = Ug_1X_1 Uf_l
denotes the eigenvalue decomposition. In the resulting flat space, the classifica-
tion tasks can be realized with the conventional dense layers.

3.2 Deep Riemannian Network

As shown in Fig. 2, the designed SRAE module contains a cascade of Riemannian
autoencoders (RAEs) to achieve continuous incremental reconstruction learning,
in which the output feature maps of each RAE are used as the input data points
of the adjacent one. To enrich the information flow in the SRAE network, we
augment the sequential connections between adjacent RAEs using the shortcut
connections, so that the current RAE module can effectively mine the revelant
structural information with the aid of the former prediction for a better recon-
struction. The network structure of each RAE is composed of three components.
The first part is an encoder module, made up of the input (BiMap), nonlinear ac-
tivation (ReEig), and hidden (BiMap) layers for geometry-aware dimensionality
reduction of SPD matrices. The second part is the decoder module, mainly used
for data reconstruction. Since it has a symmetric structure with the encoder, the
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RAE is defined strictly in the context of Riemannian manifolds, and so is SRAE
and the whole network. Moreover, each RAE also connects to a classification
network with the layers of LogEig and FC, guided by the cross-entropy loss.
Let & = [S1,8,...,S8y] and L = [I3,ls,...,Ix] € R™™¥ be the original
training set and its corresponding label vector, respectively. In this article, we
denote the SPD manifold-valued training set as: X = [X1, X3, ..., X x]. For the
i*® input SPD matrix X; of our DreamNet, the low-dimensional and compact
feature matrix output by the backbone can be expressed as: Z; = ¢g, (X ;). Here,
¢p, represents the Riemannian network embedding from the input data manifold
to the target one, realized by a stack of BiMap and ReEig layers. Besides, 61
indicates the to-be-learnt parameters of this backbone network. As the SRAE
module consists of E RAEs, we use M, (M, = Z; whene = 1), H,, and H, to
denote the input, output of the hidden layer, and reconstruction of the input of
the e (e = 1 — E) RAE, respectively. Thus, H, and H, can be computed by:

He = fo.(We,,M.) = WL M.W,,, (2)
I:Ie = fbe (W627He) = WegHeWT (3)

€2’
where f;,, and W,, € Rde—1*de (d, < d._;), W, € Ré-1%d represent the
bilinear mapping function and the transformation matrices of the e RAE,
respectively. Since M, is actually equivalent to I:Ie_l, we replace M, with H.
in the following for clarity.

Based on the constructed SRAE architecture, the shortcut connections (SCs)
and element-wise addition (EWA) enable the Riemannian residual learning to
be adopted for every set of a few stacked layers. In this article, we define the
building block shown in Fig. 2 as:

I‘:Ie - He + IF:Iefl - -7:(]?:16717 {Wz}) + I‘:Ieflv (4)

where H,_; and H, respectively represent the input and output of the Rieman-
nian residual block, e = 3 — E (when e = 2, ﬁe—l is replaced by H._; in
Eqn.(4)), and F(H._1,{W,}) denotes the Riemannian residual mapping. For
example, F = ngr(W22ﬁ2W%;)W31 when e is set to 3, in which r signifies
the ReEig operation. In what follows, another ReEig nonlinearity is applied to
the generated H, (i.e., H, < r(H.)). In Eqn.(4), our fundamental considera-
tions for utilizing EWA to implement SC between SPD matrices are threefold: 1)
it introduces neither parameters to be learnt nor computational complexity; 2) it
can make the resulting data points still lie on the SPD manifold; 3) although the
Abelian group operation (AGO) (Definition 3.1 of [2]) is faithful to the Rieman-
nian geometry of SPD manifolds and demonstrates strong theoretical and prac-
tical benefits in Riemannian data analysis, it requires at least O(d®) to achieve
SC compared with EWA. Furthermore, the experimental results (reported in
Section 2.1 of our supplementary material) show that although the accuracy
of DreamNet-27-EWA is somewhat lower than that of DreamNet-27-AGO, its
superiority in computation time is significant compared to DreamNet-27-AGO.
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3.3 Objective Function

Briefly speaking, our goal is to probe a discriminative deep Riemannian network
embedding to transform the input SPD matrices into more efficient and compact
ones for improved classification. Taking the challenge of statistical information
degradation caused by increasing the network depth into account, we establish a
cascaded RAE module at the end of the backbone to reconstruct the remaining
structural details from the input stage-by-stage. The built residual-like blocks
facilitate the reconstruction of the remaining residual by SRAE. In addition,
minimizing the reconstruction error term enables SRAE to remain highly sensi-
tive to the variations of representations in the generated new feature manifolds,
rendering the classification terms to be more effective in encoding and learning
the multi-view feature distribution information. Accordingly, the loss function
of the proposed method is formulated as:

N N
L(02,6;X) = > Le(Xil) + A La(Z:,Hp), (5)
e=11=1 =1
where 03 = {01, W, ,W.,,P.} (P. represents the to-be-learnt projection ma-
trix of the FC layer of the e RAE) and ) is the trade-off parameter. In this
paper, we assign a small value to A to fine-tune the classification performance.
The first term of Eqn.(5) is the cross-entropy loss used to minimize the clas-
sification error of the input-target pairs (X;,l;) (i = 1 — N), implemented with
the aid of the LogEig and FC layers. Specifically, L, is given as:

c ePiVe
Lo(X;, 1) =— E r(l;,t) X logiz Vs (6)
ePeVe
t=1 g

where V. denotes the vectorized form of H, (H,, when e = 1), P!

. signifies
the " row of the projection matrix P, € IRCX(de)Q, and r(l;,t) is an indicator
function, where r(l;,t) = 1 if I; = ¢, and 0 otherwise.

The second term of Eqn.(5) is the reconstruction error term (RT) measuring
the discrepancy between the input sample and its corresponding reconstruction,
computed by:

L2(Zi,Hp) = || 2i — Hgl[. (7)

It is evident that the Euclidean distance (EuD) is utilized to supersede LEM
for similarity measurement in Eqn.(7). Our motivations for this replacement are
twofold: 1) matrix inversion can be shunned during backpropagation; 2) EuD
can measure the ’statistical-level’ similarity between SPD samples intuitively.
In theory, for a given pair of SPD matrices (£;, Z;), EuD is infinitesimal iff
LEM is infinitesimal, thanks to the smoothness of matrix logarithm (Theorem 2.8
of [2]): Ve, 38 > 0,VZ; : | Z,— Z;||3 < = |log(Z;)—log(Z,)||} < e. Similarly,
by the smoothness of exp(-) (Theorem 2.6 of [2]), the inverse map of log(-),
the sufficient condition of the claim mentioned above can also be proved. This
theoretically indicates that the aforementioned replacement is feasible. Besides,
Table 1 shows that although the use of LEM can lead to a certain improvement
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Table 1. Comparison of DreamNet-27 on the AFEW dataset.

Metrics Acc. (%)|Training time (s/epoch)
RT-EuD, i.e., Eq. (7)] 36.59 31.32
RT-LEM 36.71 88.16

in accuracy, the computation time required is close to three times than that of
EuD, which experimentally confirms the rationality of using EuD in Eqn.(7).
The experimental discussions of the role of RT are given in Section 2.2 of our
supplementary material, please kindly refer to.

3.4 Motivation for Designing the SRAE Architecture

Considering that the weight matrices W, are semi-orthogonal, i.e., WfWk =1
(23,1, 11], inspired by the paradigm of Euclidean autoencoder, if one can design
an autoencoder network with successive SPD matrix upsampling and downsam-
pling layers in the context of SPD manifolds, its function composition would
be able to asymptotically approach an identity mapping (IM) theoretically. For
simplicity, we denote Hy = Wgr(WlHl WlT)Wg as the resulting SPD matrix
after one upsampling and downsampling operation. As the ReEig operation only
brings about minor perturbations to the eigenvalue space of the input data, un-
der the supervision of the reconstruction term, the proposed SRAE could drive
W and W close to each other, so that ||Ha||p — ||Hi||r. This design makes
it possible to create an IM on the SPD manifolds, thus providing a feasible path
to mitigate the degradation problem caused by increasing the network depth.
In this scenario, the added shortcut connections can enable the current RAE
learning phase to easily access the features of the previous stages, facilitating
the reconstruction of the remaining structural details.

4 Experiments

We validate the efficacy of DreamNet! on three typical visual classification tasks,
namely facial emotion recognition using the AFEW dataset [9], skeleton-based
hand action recognition using the FPHA dataset [15], and skeleton-based human
action recognition using the UAV-Human dataset [30], respectively.

4.1 Implementation

In this article, we use four layers to construct the backbone: X; — f;l) —

fﬁ? — flfg) — fr(g), where f, and f,.. denote the layers of BiMap and ReEig,
respectively. The stacked Riemannian autoencoder network (SRAE) is consti-
tuted by E RAEs, each of which making up five layers: Ho_1 — f (input)
— fre = fp (hidden) — f,.. — fi (reconstruction). Besides, the hidden layer of
each RAE also connects to a classification module, consisting of three layers: H,

! The source code will be released on: https://github.com/GitWR /DreamNet
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(He when e = 1)— fiog = fre = fee. Wherein, fios, fre, and fe. represent the
LogEig layer, FC layer, and cross-entropy loss, respectively. In the experiments,
the learning rate 7 is set to 0.01, the batch size B is configured as 30, and the
weights of the BiMap and FC layers are initialized as random semi-orthogonal
matrices and random matrices, respectively. In addition, the threshold e of the
ReEig layer is set to le-4 for the AFEW and FPHA datasets and le-5 for the
UAV-Human dataset. To train our DreamNet, we use an i7-9700 (3.4GHz) PC
with 16GB RAM. We found that using GPU (GTX 2080Ti) does not speed
up network training. The main bottleneck seems to be the series of eigenvalue
operations.

4.2 Dataset Description and Settings

AFEW Dataset: This dataset consists of 2118 video clips (split in 17414371
fixed training and validation sets) of natural facial expressions collected from
movies. For the evaluation, we follow the protocols of [23, 46] to scale down each
video clip to a set of 20 x 20 gray-scale images, such that a 400 x 400 SPD matrix
can be computed for video representation. On this dataset, the filter sizes of the
backbone are set to 400 x 200 and 200 x 100, and those of the e® RAE are
configured as 100 x 50 and 50 x 100.

FPHA Dataset: This dataset includes 1,175 hand action videos belonging
to 45 different categories, collected in the first-person view. For the evaluation,
we follow the criterion of [15,46] to transfer each frame into a 63-dimensional
vector using the 3D coordinates of 21 hand joints provided. Hence, a total of 1,175
SPD matrices of size 63 x 63 can be computed, of which 600 are designated for
training and the remaining 575 are used for testing. On this dataset, the filter
sizes of the backbone are configured as 63 x 53 and 53 x 43, and those of the e
RAE are set to 43 x 33 and 33 x 43.

UAV-Human: This dataset contains 22,476 video sequences representing
155 human action categories, collected by unmanned aerial vehicles (UAVs).
Here, we first follow the practice of [6] to shape each frame (labeled by 17 ma-
jor body joints with 3D coordinates) into a 51-dimensional vector. Since some
actions are performed by two persons, the PCA technique is then applied to
transform the 102-dimensional vectors into 51-dimensional ones, by preserving
99% energy of the data. In this case, each video can be described by an SPD
matrix of size 51 x 51. Finally, the seventy-thirty-ratio (STR) protocol is utilized
to construct the gallery and probes from the randomly picked 16,724 SPD ma-
trices. On this dataset, the sizes of the connection weights are set to (51 x 43,
43 x 37) and (37 x 31, 31 x 37) for the backbone and the e!" RAE, respectively.

4.3 Ablation Studies

In this subsection, we conduct experiments to study the effectiveness of the
proposed method for SPD matrix nonlinear learning.

Ablation for DreamNet: To evaluate the designed model, we carry out
experiments on the AFEW, FPHA, and UAV-Human datasets to measure the
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Table 2. Results on the AFEW dataset.
Networks Acc. (%)[s/epoch[#params
DreamNet-27| 36.59 31.32 | 0.36M
DreamNet-47| 36.98 46.98 | 0.53M
DreamNet-92| 37.47 80.62 | 0.95M

Table 3. Results on the FPHA dataset. Table 4. Results on the UAV-Human dataset.
Networks Acc. (%)|s/epoch|#params Networks Acc. (%)|s/epoch|#params
DreamNet-27| 87.78 2.60 0.11M DreamNet-27| 44.88 49.04 | 0.10M
DreamNet-47| 88.64 3.66 0.18M DreamNet-47| 45.57 71.33 | 0.16M
DreamNet-92| 88.12 6.70 0.36M DreamNet-92| 46.28 | 129.29 | 0.31M

impact of the network depth on the learning capacity of the proposed model.
Based on the experimental results reported in Fig. 3(a), we can make three main
observations. Firstly, the inverse correlation between the depth and network
accuracy is reversed with the embedding function proposed in this paper, i.e.,
the 47-layer DreamNet (E = 5) performs better than the 27-layer DreamNet
(E = 3). More importantly, the test error of DreamNet-47 is lower than that
of DreamNet-27. This signifies that the degradation problem is alleviated under
this design, and we succeed in improving accuracy with the increased depth. The
consistency of these findings can be gleaned from Fig. 3(b) and Fig. 3(c).

Secondly, we also explore a 92-layer DreamNet by simply stacking more RAEs
(E = 10 at this time). We find that compared with the 27/47-layer DreamNets,
the 92-layer DreamNet achieves even lower test errors on the AFEW and UAV-
Human datasets, demonstrating that the learning capacity of our network ben-
efits from an extensive increase in the number of network layers. However, from
Fig. 3(b) and Table 3, we note that the test error of DreamNet-92 is slightly
higher than that of DreamNet-47 on the FPHA dataset. This could be caused
by the relatively small size of this dataset. Although the benefits of depth are
reflected in the classification accuracy reported in Tables 2, 3, 4, the increase
in network complexity (number of parameters, #params, and training speed,
s/epoch) are detrimentally affected.

Thirdly, from Fig. 3, we can see that the 27/47/92-layer DreamNets are easy
to train on all the used datasets. The convergence speed of these three networks
is greater than that of the original SPDNet. Note that on the AFEW dataset,
the test error of our 92-layer DreamNet first shows a degradation, but eventually
it recovers and exhibits performance gains. We find that this behaviour is also
mirrored by the loss function on the test set. The following two factors are the
main reasons for overfitting: 1) this dataset contains only 7 categories and has
large intra-class diversity and inter-class ambiguity; 2) this 92-layer network may
be a bit large.

Visualization: To give the reader an intuitive feeling about the proposed
method in addressing the problem of structural information degradation, we
choose the UAV-Human dataset as an exmaple to visualize the SPD feature
maps learned by the different layers of the 27/47/92-layer DreamNets. From
Fig. 4(a)-(c), we make two interesting observations: 1) for each DreamNet, com-
pared to the low-level feature matrices, the magnitudes of the elements on the
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Fig. 3. The classification error of the 27/47/92-layer DreamNets versus the number of
training epochs on the AFEW, FPHA, and UAV-Human datasets.
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Fig. 4. The feature maps from different layers of the 27/47/92-layer DreamNets on
the UAV-Human dataset are visualized in (a), (b), and (c), respectively. (d) shows the
nuclear norms of these feature maps. Here, the 6*® layer is actually the hidden layer of
the first RAE, and the other layers are actually used to realize element-wise addition.

main diagonal of the high-level feature matrices are becoming larger, while the
off diagonal ones are getting smaller; 2) with increasing the network depth,
this concentration of energy becomes even more significant. Besides, the nuclear
norms shown in Fig. 4(d) reflect that the deeper the learned features, the lower
their redundancy. These results suggest that the continuous incremental learning
on the remaining residuals can enable the proposed network to capture pivotal
structural information embodied in the original data points, thus being helpful
for classification.
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Fig. 5. Performance on the UAV-Human dataset

Ablation study for the Shortcut Connections: To verify the benefits
of the shortcut connections (SCs), we make experiments to study the perfor-
mance of a simplified DreamNet (named wSCMNet) obtained by removing the
SCs from SRAE module. We choose the UAV-Human dataset as an example. It
can be seen from Fig. 5(a) that the wSCMNet with different depths can con-
verge to a better solution in less than 1,300 epochs, indicating that it has a
good convergence behavior. However, the classification scores of 27/47/92-layer
wSCMNets tabulated in Fig. 5(b) are lower than those of 27/47/92-layer Dream-
Nets. In spite of this, they are still better than those of the competitors listed in
Table 5. From Fig. 5(a), we also find that the convergence speed of DreamNets
is slightly faster than that of wSCMNets. These experimental results not only
demonstrate the effectiveness of the proposed SRAE network, but also confirm
that the SCs can: 1) enhance the representational capacity of SRAE module;
2) simplify the training of deeper networks. The underlying reason is that this
operation facilitates the information interaction between different RAEs.

Ablation of the Classification Module: In this part, we make exper-
iments on the FPHA dataset as an example to investigate the impact of the
number of classification modules on the accuracy of DreamNet (here we take
DreamNet-27 as an example) in the test phase. From Fig. 6(a), we can see
that: 1) the greater the number of classifiers, the higher the accuracy; 2) the
3'd classifier are more effective than the others. This not only indicates that
these classifiers are complementary to each other, but also demonstrates that
the higher-level features are more informative.

Inspired by this experiment, we then investigated how the performance of
DreamNet is affected by removing the first E-1 classification modules from SRAE
(we name the simplified DreamNet FCMNet here). In this case, we find that the
initial learning rate of 0.01 is a bit too small for the 47/92-layer FCMNets. So
we respectively assign the initial learning rates of 0.02 and 0.05 to FCMNet-47
and FCMNet-92, and make them attenuate by a factor of 0.9 every 100 epochs.
It is evident that the studied FCMNets converge well (Fig. 6(b)). Although
the accuracy of 27/47/92-layer FCMNets (87.18%, 87.60%, and 87.30%) are
somewhat inferior to that of 27/47/92-layer DreamNets, they are still better than
those of the competitors listed in Table 6. These observations again certify the
effectiveness of our design in overcoming the degradation problem and learning a
powerful manifold-to-manifold deep transformation mapping. Besides, Fig. 6(c)
not only further indicates that the residual mapping F is not close to a zero
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Fig. 6. Performance on the FPHA dataset, where 'Nucn’ represents the nuclear norm.

Table 6. Accuracy (%) on the FPHA dataset.

Table 5. Accuracy (%) on the Methods Color Depth Pose| Acc.
AFEW and UAV-Human datasets. Two str§ams (12]| v X X |75.30
Methods AFEW[UAV Human  Novel View [35] | X v/ X 169.21
GDA [16] 2911 %813 Lie Group [42] X X v |82.69
CDL [48] 3181 3111 HBRNN [10] X X v/ |1740
: ' LSTM [15] X X v |80.14
PML [25] 28.98 10.66
JOULE[22] v o v/ v |7878
HERML [24] | 32.14 34.18 .
HRGEML [6] | 35.89 36.10 Gram Matrix [52]| X X v |85.39
' ' TF [14] X X v 180.69
SPDML([19)] 26.72 22.69
TCN [29] X X v |7857
GEMKML [45] | 35.71 34.67 STLGON 150 Y x v lsia0
DeepO2P [28] | 28.54 N/A ) [50] ’
H+O [39] v X X |8243
DARTS [31] 25.87 36.13
. TTN [32] X X v/ |8310
FairDARTS [7] | 25.34 40.01
DARTS [31] X X v/ |1426
GrNet [27] 34.23 35.23 )
SPDNet [23] | 34.23 31 FairDARTS [7] X X v |76.87
SPDNetBN [4] | 36.12 |  43.28 SPDML([25] X X /7652
: HRGEML [6] X X v/ |8504
ManifoldNet [5]| 23.98 N/A SPDNet [23 X X 7 |s6.96
SymNet [46] | 32.70 |  35.89 et [23] '
DreamNet-27 | 36.59 | 44.88 SPDNetBN [4] | X X =/ |86.83
DreamNet-47 | 36.98 |  45.57 SymNet [46] X X 7 |829
DreamNet-92 |37.47 |  46.28 DreamNet-27 X X /8T8
: . DreamNet-47 X X v/ |88.64
DreamNet-92 X X v | 88.12

mapping, but also shows that the multi-classifier learning (MCL) scheme of
DreamNet can produce more efficient deep features with lower redundancy. Since
the use of multiple classifiers can provide sufficient supervision information, and
the increase in training time is slight (e.g., one training epoch lasted on average
4.51s for FCMNet-92, and 6.70s for DreamNet-92 on this dataset), we adopt the
MCL mechanism in this article.

4.4 Comparison with State-of-the-art Methods

For a fair comparison, based on the publicy available source codes, we follow the
original recommendations to tune the parameters of each comparative method,
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and report their best results on all three datasets. For DARTS and FairDARTS,
we run their official implementations with default settings in the SPD matrix log-
arithmic domain. For DeepO2P, its classification accuracy on the AFEW dataset
is provided by [23]. Since ManifoldNet requires SPD data points with multiple
channels, it is inapplicable to the FPHA and UAV-Human skeleton datasets.
From Table 5, it is evident that our 27-layer DreamNet outperforms all the in-
volved competitors on the AFEW and UAV-Human datasets. Besides, with the
network depth (the number E of the cascaded RAEs) increases, the accuracy of
the 47/92-layer DreamNets is monotonically improving. Here, we also select some
popular action recognition methods for better comparison on the FPHA dataset.
Table 6 shows that our 27/47/92-layer DreamNets are the best performers for
the hand action recognition task. For further evaluation, an aggressively deep
model of over 180 layers has also been explored on the UAV-Human dataset.
We set E = 20 that leads to a 182-layer DreamNet. The experimental results
(reported in Section 2.3 of our supplementary material) show that it has no
difficulty in optimization, and the classification accuracy (46.03%) achieved is
still fairly good. These observations confirm that the suggested deep learning
mechanism over the original SPD network is effective for improving the visual
classification performance.

5 Conclusion

In this paper, we proposed an effective methodology for increasing the depth
of SPD neural networks without destroying the geometric information conveyed
by the input data. This is achieved by proposing a novel cascading network ar-
chitecture with multiple Riemannian autoencoder learning stages appended to
the backbone SPD network to enrich the deep layers of structured represen-
tations. Thanks to the insertion of innovative residual-like blocks via shortcut
connections, a better incremental learning of residual structural details can be
facilitated. The experimental results suggest that our Riemannian network is an
effective solution against the geometric information degradation problem, with
favourable performance compared to the state-of-the-art methods. For future
work, we plan to develop an adaptive criterion that would enable an automatic
assessment of the relative significance of the generated feature maps. This would
facilitate the use of a neural architecture search (NAS) technique to adapt the
proposed network to different pattern recognition tasks.
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