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Abstract. Ellipse detection is a fundamental task in object shape analy-
sis. Under complex environments, the traditional image processing based
approaches may under-perform due to the hand-crated features. Instead,
CNN-based approaches are more robust and powerful. In this paper, we
introduce an efficient anchor-free data-augmentation based general el-
lipse detector, termed ElDet. Different from existing CNN-based meth-
ods, our ElDet relies more on edge information which could excavate
more shape information into learning. Specifically, we first develop an
edge fusion module to composite an overall edge map which has more
complete boundary and better continuity. The edge map is treated as
augmentation input for our ElDet for ellipse regression. Secondly, three
loss functions are tailored to our ElDet, which are angle loss, IoU loss,
and binary mask prediction loss to jointly improve the ellipse detec-
tion performance. Moreover, we contribute a diverse ellipse dataset by
collecting multiple classes of elliptical objects in real scenes. Extensive
experiments show that the proposed ellipse detector is very competitive
to state-of-the-art methods.

1 Introduction

Geometric shape is a crucial characteristic to objects and is of great importance
for object detection and recognition. In some scenarios, we pay more attention
to shape & contour information, such as medical imaging diagnosis [1], object
counting [2], and CAD workpieces recognition [3,4]. Existing shape detection
methods are mainly based on traditional image processing [5,6], which heavily
depend on low-level edge lines and omit physical meanings of objects. Thus, such
methods are susceptible to interference from extraneous noisy edges or lines.

Ellipse shape commonly appears in various scenes and can be modelled by
5-D parameters. Compared to other shapes, e.g., rectangle, ellipse presents su-
perior information. Traditional ellipse detection algorithms [5,7] usually build
the mathematical model based on segmented edges, contours, and curvatures.
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These methods have achieved relatively accurate and efficient ellipse detection.
However, they require appropriate pre-processing to ensure the quality of ellipse
fitting. The most significant pre-processing step used by these methods is edge
detection. Current edge detectors will inevitably introduce extraneous lines and
noise, which largely affects the subsequent detection. In addition, most of these
methods require artificially set some thresholds and other parameters, which is
difficult to guarantee the consistency of accuracy and efficiency.

With the rapid development of deep learning, it is apparent that CNN-based
methods are more robust and efficient, especially under complex scenes. Recently,
approach [8] develops an anchor-based ellipse detector based on Faster R-CNN
[9], but it is two-stage and subject to specific object classes. Some researchers
suggest that Convolutional Neural Network (CNN) is strongly biased towards
textures rather than shapes [10]. Therefore, for class-specific object detection,
texture information can indeed play a big role, but for general ellipse detection,
edge information is more desirable as it describes the essential geometric shapes.

In addition, multi-task learning (MTL) is important in machine learning
[11,12]. Compared to single-task learning (STL), MTL jointly optimize multiple
functions with close relevance. During training, the shared and more general
representations are learned, thus achieving better generalization during testing.
In most of cases, MTL has proved to outperform STL. In this paper, we use
the ellipse mask segmentation as a pretext task in addition to ellipse detection
task, forming the multi-task learning fashion. The reason behind this is that the
edge has close relationship to binary ellipse masks, which both provide shape
information crucial to ellipse detection.

We propose a novel data-augmentation based ellipse detector (ElDet) in this
paper, which is anchor-free, one-stage, and general. Unlike existing CNN-based
approaches, we enrich the input with data augmentation by combining edge maps
using our Edge Fusion Module, which is omitted by EllipseNet [13] and Ellipse
R-CNN [14]. The edge information allows our detector to effectively use contour
shape information for precise ellipse object detection. Moreover, our model has
a potential of detecting various ellipse-shaped objects, regardless of their actual
class labels. During regressing the ellipse parameters, elliptic angle is difficult to
learn and has a larger impact on rotated object detection. Recent works have
proposed new bounding box representations, such as ordered quadrilateral [15].
However, most popular angle regression methods suffer from the problem of
boundary discontinuity (i.e., −π

2 vs. π
2 ), which may lead a large and unstable

loss. To address this issue, we propose an aspect-ratio based angle loss and a
Gaussian distribution based IoU loss. Further, we also add an auxiliary task
of binary mask segmentation to fully exploit the edge information from ellipse
objects. The contributions are summarized as follows:

1. We propose an anchor-free and general ellipse object detector, which is sim-
ple, effective, and capable of being applied to downstream tasks such as
irregular-shape object detection.

2. We design an edge fusion module that learns adaptive weight coefficients
and fuse multiple edge maps. The obtained fused edge maps will be used for
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data augmentation. This module and subsequent detectors together consist
of an end-to-end model.

3. We design three dedicated losses for precise ellipse detection including aspect-
ratio based angle loss, Gaussian distribution based IoU loss, and binary mask
regression loss, which jointly optimizes the ElDet.

4. A new ellipse detection dataset collected from real-world scenarios is con-
tributed to enrich the diversity of datasets in the field of ellipse detection.

2 Related Works

2.1 Anchor-free Object Detector.

Anchor boxes are widely used in mainstream detectors, such as Faster R-CNN
[9] and YOLOv3 [16]. Anchor-based object detectors are mainly based on anchor
boxes which can be considered as pre-designed sliding-windows and proposals.
With prior knowledge, anchor boxes significantly improves the accuracy and
speed of the predicted object bounding boxes. However, the design of anchor
boxes is rather tricked and introduces a large number of hyper-parameters.

To avoid the overwhelming exploration of anchor boxes, anchor-free object
detectors are proposed. The anchor-free methods are roughly divided into two
branches: i) dense prediction approaches, e.g., DenseBox [17] and FCOS [18]; ii)
keypoint-based approaches, e.g., CornerNet [19] and CenterNet, which closely
relate to keypoint detection approaches [20,21]. Our method falls into anchor-
free keypoint-based category.

CenterNet is one-staged object detector. It treats each object as a point, i.e.,
center point of the object bounding box. The center point can be regarded as
a single shape-agnostic anchor. The detector locates the object center point by
keypoint estimation and regress other object attributes directly, such as size,
direction, 3-D position and even posture. Moreover, CenterNet does not need
Non-Maximum Suppression (NMS) [22], since it only has one positive “anchor”
per object. With its minimalist design and great performance, CenterNet is used
as basic framework for many anchor-free methods.

2.2 Rotated Object Detection.

Classical object detection typically uses a horizontal rectangular box to frame
the object position. However, for some scenarios, such as remote sensing object
detection and text detection, the object has a rotation angle. Using rotated ob-
ject detection to precisely locate the object is beneficial to provide more accurate
inputs for subsequent tasks such as recognition and analysis. Most rotated object
detectors are inherited from traditional anchor-based object detectors by using
rotated bounding boxes or quadrangles.

The main problem of rotated object detection is the angle prediction. Gliding
Vertex [23] and RSDet [15] represent the bounding box by four corner points and
determine the rotation angle by calculating the offset of corner points. CSL [24]
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Fig. 1. Overview of the proposed ellipse detector. We use DLA-34 [28] as the back-
bone for feature extraction. There are two types of losses, where one is for regressing
ellipse parameters, and another, namely, mask segmentation, is auxiliary to promote
the performance of ellipse detection.

and DCL [25] transform angle prediction from a regression problem to a classifi-
cation problem. GWD [26] and KLD [27] convert the rotation regression loss into
the distance of two 2-D Gaussian distributions. We also follow rotated object
detection and introduce the 2-D Gaussian distribution into ellipse detection.

2.3 Ellipse Detection.

Traditional ellipse detection can be roughly divided into three streams, namely,
clustering-based, optimization-based, and arc-based methods. Lu et al. [7] pro-
pose an efficient ellipse detection based on arc support line segment. Recently,
CNN-based methods go viral. For instance, Li et al. [8] replace the Region
Proposal Network (RPN) in Faster R-CNN by a Gaussian Proposal Network
(GPN). Ellipse R-CNN [14] presents a two-stage detector based on Mask R-
CNN and solves the problem in occluded and cluttered scenes. Apart from these
anchor-based detectors, EllipseNet [13] develops an anchor-free ellipse detector
in medical images. In this paper, we push further by using edge information and
improving the accuracy of angle regression.

3 Proposed Method

3.1 Overview of Framework

As shown in Fig. 1, our framework is developed based on CenterNet [29]. We
adapt DLA-34 [28] as the backbone. The goal of the detector is to regress the
five parameters of ellipse (x, y, a, b, θ), where (x, y) are the coordinates of the
center point, a, b (a ≥ b) are the major and minor axis, and θ ∈ [−90, 90) is
the rotation angle. We introduce edge images as augmented data. To improve
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(a) Rab=1.5, IoU=0.78 (b) Rab=2, IoU=0.63

Fig. 2. Influence of aspect ratio Rab on IoU. When the center points overlap, the greater
the ratio, the more significant the impact of the angle (The angle of red ellipse is 15◦,
while the green one is 45◦).

the accuracy of angle regression, we add an angle loss based on the aspect ratio,
and use Gaussian Wasserstein distance (GWD) loss. In addition, binary mask
segmentation is adopted to enhance the network training.

3.2 Ellipse Parameters Regression

We follow CenterNet in the regression of the center point coordinates, the major
and minor axis, and the offset. In particular, focal loss function [30] and smooth-
L1 loss function are respectively used to optimize (x, y) and a, b. Size Loss LS

is used to predict a, b. Given an input image I ∈ RW×H×3 with height H and
width W , the predicted heatmap Ŷ ∈ [0, 1]

W
R ×H

R ×2 represents the probability
map of the center point location and Y represents the ground truth heatmap.
We set output stride R = 4. To reduce the discretization error caused by the
output stride, the offset is also predicted and offset loss LO is calculated with
smooth-L1 loss. The heatmap loss LH is obtained as follows:

LH =
−1

N

∑
xyc

{
(1− Ŷxyc)

αlog(Ŷxyc), if Yxyc = 1

(1− Yxyc)
β(Ŷxyc)

α log(1− Ŷxyc), others
(1)

where x, y, c indexes a channel, α and β are hyper-parameters of the focal loss,
N is the number of keypoints in image I. Moreover, α = 2 and β = 4.

Among the five parameters of ellipse, rotation angle θ largely affects detection
results, especially on IoU, as shown in Fig. 2. Assuming (x, y) are equal, the
influence of the angle on IoU relies on the aspect ratio Rab = a/b. The greater
the ratio, the more significant the impact of the angle. This means it is difficult
to predict the rotation angle for a round-like object, and too much attention on
the angle of round-like object also raises challenges in the angle regression.

To solve this issue, we add a weight based on aspect ratio to angle loss. The
angle loss Lθ is reformulated as follows:

Wθ =

{
1 if Rab < 1.2

2 if Rab ≥ 1.2,
(2)

Lθ = Wθ ∗ smoothL1(θp, θg), (3)
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Fig. 3. Network structure of Edge Fusion Module.

where Wθ represents the angle loss weight, θp and θg are predicted rotation angle
value and ground-truth rotation angle value. We use smooth-L1 loss function to
calculate the difference between θp and θg.

3.3 Edge Fusion Module

CNNs are biased towards texture information [10], while ellipse detection relies
more on shape information such as contours and edges. Therefore, we introduce
edge maps as data augmentation for inputs, and our extensive experiments show
that edge maps yield significant improvements for ellipse detection.

Different edge detection methods have their own advantages and yet short-
comings such as sensitivity to noise, positioning, and continuity. In order to ob-
tain high-quality edge maps, we design an adaptive Edge Fusion Module (EFM)
for edge maps which are extracted by multiple methods. The EFM is based on
ResNet-18[31] with some modifications, as shown in Fig 3.

To obtain an overall better edge map, firstly, we extract four edge maps
using Canny [32], Sobel [33], Laplacian [34] operators and AdaptiveThreshold
[35] method. Then we concatenate the RGB image and the four different edge
maps by channel and feed them into the EFM to obtain the weight coefficients
corresponding to the four edge maps. The final edge map is obtained via the
weighted summation:

Map =

i=4∑
1

λi ·Mapi

i=4∑
1

λi = 1

(4)

where Map means final edge map, Mapi means edge maps extracted by four
edge detectors and λi are their corresponding weights. The fused edge map will
be normalized into [0, 255]. With this fusion method, we are able to improve the
value of the true edge, reduce the interference of noise, and make the contour
more complete (Fig. 4).
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Fig. 4. Weighted summation of edge maps based on the learned weight coefficients pro-
duced by Edge Fusion Module (EFM). The left four different edge maps are extracted
by Laplacian, Canny, Sobel, and AdaptiveThreshold, respectively, and the rightmost is
the fused edge map.

Note that we use the edge map as a way of data augmentation, which means
that during the training process we input the edge fusion map with probability
of 0.5, otherwise we input the RGB image to the subsequent detector.

3.4 Gaussian IoU

As the IoU calculation method for rectangle bounding box is sub-optimal for el-
lipse detection, we discover that 2-D Gaussian distribution matches ellipse better
in shape. In addition, 2-D Gaussian IoU can well integrate into loss functions to
address the boundary discontinuity and round-like problem. We simply param-
eterize a 2-D Gaussian distribution by the mean µ and the covariance matrix Σ
in ellipse bounding box B(x, y, a, b, θ):

Σ
1
2 = RSRT

=

(
cosθ −sinθ
sinθ cosθ

)(
a 0
0 b

)(
cosθ sinθ
−sinθ cosθ

)
=

(
a · cos2θ + b · sin2θ (a− b)cosθsinθ
(a− b)cosθsinθ a · sin2θ + b · cos2θ

)
µ = [x, y] (5)

Further, the Wasserstein distance [36] W between two Gaussian probabilities
X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2) is expressed as:

W(µ; ν) := inf E(||X − Y ||22)1/2. (6)

Consequently, we could compute the IoU loss LG via Wasserstein distance as:

LG = ||µ1 − µ2||22 +Tr(Σ1 +Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2), (7)

where
Tr((Σ

1/2
1 Σ2Σ

1/2
1 )1/2) = Tr((Σ

1/2
2 Σ1Σ

1/2
2 )1/2). (8)

Overall, we use IoU loss LG to measure the error between predicted ellipse
and groundtruth ellipse. By optimizing LG, our model is able to regress ellipse
parameters B(x, y, a, b, θ).
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Fig. 5. Results of binary mask prediction. From left to Right are input images, ground
truth and prediction of binary masks.

3.5 Ellipse Mask Segmentation

Mask segmentation [37] is able to effectively segment the boundary between
the foreground objects and background. Binary masks are more sensitive to
the demarcation area of the foreground and background, which can be more
conducive to the utilization of elliptical edge information. Based on the idea of
parameter sharing in multi-task learning, we introduce ellipse mask segmentation
as an auxiliary task. Though it does not directly affect the regression of object
parameters, it optimizes deep model parameters in a multi-task learning fashion
and forces the model to pay higher attention to the object area. The mask
loss LM is calculated by binary cross-entropy loss. Some results of ellipse mask
segmentation are shown in Fig 5. Overall, the total loss of our pipeline can be
formulated as:

L =λHLH + λSLS + λOLO+

λθLθ + λGLG + λMLM .
(9)

4 Experiments

4.1 General Ellipse Detection Dataset (GED)

To our best knowledge, most of publicly available ellipse datasets target for con-
ventional methods. In particular, some samples are not regular ellipses or highly
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similar. Moreover, their sizes are usually small and may not accommodate deep
learning models. Thus, we contribute a new general ellipse detection dataset,
termed GED, whose images are collected from real-world scenarios. GED con-
sists of 1443 images and each image is manually annotated. The ellipses in GED
are relatively regular and have large difference in texture. The classes of elliptic
objects are diverse, e.g., ball, wheel, dishes, button.

4.2 Implementation Details

For training, we use weights pre-trained on ImageNet to initialize the backbone
DLA-34 [28], and Adam to optimize the networks on a single GeForce RTX 3080
GPU. For edge fusion, four edge detectors are used which are Laplacian, Canny,
Sobel operators and adaptiveThreshold. All the loss weights are set as 0.1, except
λH = 1, λG = 15, λM = 1. The aspect ratio threshold in angle loss is set to 1.2.
First, the threshold of 1.2 is roughly the dividing line of the ellipse from a visual
point of view. Second, approximately half of the data has the ratio of the long
and short axes smaller than 1.2, while rest larger than that. Since the dataset
used by EllipseNet is not open-source, we train the networks on GED and FDDB
[38] dataset, respectively. 80% of the images is randomly splitted as training set
and the rest as test set. All the images are resized into 512× 512. The learning
rate is set to be 1.25 × 10−4 and we train 150 epochs in GED dataset while
300 epochs in FDDB dataset. Traditional methods that do not use the GPU are
executed on the computer with Inter Core i7-11700k 3.60 GHz.

4.3 Evaluation Metrics

We exploit two evaluation metrics: 1) AP over ellipse IoU thresholds, and 2)
APΘ over ellipse IoU thresholds and angle error thresholds:

AP =

n−1∑
i=1

(ri+1 − ri)Pinterp(ri+1)

Pinterp(r) = max
r′≥r

P (r′)

(10)

where r1, r2, · · · , rn are the recall value. in ascending order; P (∗) means precision
and r(∗) is recall, which can be computed by:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(11)

We focus more on the accuracy of predicted angles by introducing APΘ. Con-
sidering the influence of round-like problem, we ignore the angle error when the
aspect ration is less than 1.2. For example, AP 10

0.75 means that we consider a
prediction as a true positive if ellipse IoU is greater than 0.75 and angle error
is less than 10◦, or ellipse IoU is greater than 0.75 and aspect ratio is less than
1.2.
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Fig. 6. Qualitative results on GED dataset. The first row shows Groud-truth images;
the second to forth rows show the detections by traditional approaches; the results
of fifth row is achieved by EllipseNet, which is a CNN-based approach. The last row
shows visualization of our method ElDet. As we can see, our approach could successfully
detect general elliptic objects.

4.4 Compared Methods

To verify the effectiveness of our ElDet, we compare our approach with the
CNN based ellipse detection method EllipseNet [13], and also the state-of-the-art
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(SOTA) traditional approaches such as YAED [39], CNED [40], and Arc-support
Line Segment based method (ArcLS) [7] on GED dataset. Furthermore, we eval-
uate our method on FDDB dataset to explore the adaptability on downstream
tasks.

4.5 Results on GED dataset.

Table 1. Quantitative results on GED dataset. AP0.75: True positive when IoU is
greater than 0.75. AP 10

0.75: True positive when IoU is greater than 0.75 and angle error
is less than 10◦.

Methods AP0.5 AP 10
0.5 AP0.75 AP 10

0.75 Time/ms

YAED 0.2875 0.2476 0.1942 0.1653 11.14
CNED 0.3691 0.3217 0.3134 0.2748 9.57
ArcLS 0.3346 0.3088 0.2312 0.2735 78.23

EllipseNet 0.3138 0.2840 0.1924 0.2735 31.96

ElDet (Ours) 0.7403 0.7215 0.5739 0.5606 44.88

Table 1 shows the detailed quantitative results. Our method achieves the
best performance with a large margin compared to the state-of-the-art methods.
Specifically, on AP 10

0.5 and AP 10
0.75, ElDet achieves 0.7215 and 0.5606 respectively,

which indicates our model provides better accuracy of angle regression. Besides,
our detection time per image is 34.94ms milliseconds on average, which is sim-
ilar to EllipseNet 31.96ms. We observe that traditional approaches are highly
efficient, though at lower detection accuracy compared to our ElDet. EllipseNet
may be more concerned with texture information as traditional CNNs, therefore
performs poorly on such a dataset with inconsistent texture information.

Moreover, we visualize some detection examples in Fig. 6 by overlaying the
detected ellipses on the original image. From Fig. 6, we observe that our ElDet
can handle different situations better and is robust to the interference of complex
backgrounds.

Results on FDDB dataset. ArcLS regresses ellipse based on arc support
line segments and requires the objects have elliptic shape. However, the faces in
FDDB are not regular ellipses, thus traditional approaches are not suitable for
general face detection and we only compare our ElDet with EllipseNet on FDDB
dataset.

Table 2 shows the results on FDDB dataset. Our method achieves best scores
with 0.8665 on FDDB dataset and outperform EllipseNet by ∼ 3%. The visu-
alizations are shown in Fig. 7. As we can see, our ElDet could address some
occlusions and perfectly fit face contours into ellipses. This demonstrates that
our framework is rather general in addressing various geometric shapes, and has
potential be adapted to various downstream tasks in real-world applications.
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(a) Ground Truth (b) EllipseNet (c) ElDet

Fig. 7. Detection examples on FDDB dataset by our approach.

Table 2. Quantitative results on FDDB dataset.

Methods AP0.5 AP 10
0.5 AP0.75 AP 10

0.75 Time/ms

EllipseNet 0.8383 0.6406 0.7788 0.6037 30.91

ElDet 0.8665 0.8181 0.8218 0.7844 33.77

Table 3. Quantitative results of different edge maps as data augmentation for our
ElDet on GED dataset.

Methods AP0.5 AP 10
0.5 AP0.75 AP 10

0.75

Adaptive Threshold 0.6599 0.6237 0.5105 0.4850
Sobel 0.7015 0.6650 0.5204 0.4954
Canny 0.7086 0.6705 0.5293 0.5148

Laplacian 0.7018 0.6802 0.5352 0.5270

Fusion 0.7403 0.7215 0.5739 0.5606

Comparison of different edge maps. Tabel 3 shows the performance of our
ElDet with different edge maps as augmentation input. Among the four indi-
vidual edge detection methods, AdaptiveThreshold method is significantly worse
than other methods, and Laplacian operator obtained the best performance.
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Fig. 8. Qualitative results of different edge extraction methods. From top to bottom are
Input, Laplacian, Canny, Sobel, AdaptiveThreshold and our Fusion maps, respectively.

Our Edge Fusion Module (EFM) significantly outperforms individual edge map,
with an improvement of about 4% in each metric. As shown in Fig 8, the noise
is clearly faded and the edges are relatively clear and complete in our fused edge
maps (see last row in Fig 8), which demonstrates the effectiveness of our EFM.

Ablation study. Table 4 shows the effects of proposed losses and edge informa-
tion based data augmentation for ElDet. Firstly, with Gaussian IoU, the perfor-
mance boosts significantly, e.g., AP0.75 increases by 0.09 and AP 10

0.75 increases by
0.14. It shows Gaussian IoU is suitable for object detection with rotation angle.
Then, a large margin of improvement can be observed when edge information
is added. Finally, when all components including angle loss weight and binary
mask prediction are added, the accuracy is further improved.
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Table 4. Ablation results on GED dataset. G: Gaussian IoU Loss. W: Angle Loss
Weight. M: Ellipse Mask Segmentation. E: Edge Map Fusion as Data Augmentation.

Methods G W M E AP0.75 AP 10
0.75

ElDet - - - - 0.3624 0.3094
ElDet ✓ - - ✓ 0.4598 0.4439
ElDet ✓ ✓ - - 0.4378 0.4163
ElDet ✓ ✓ - ✓ 0.4873 0.4571
ElDet ✓ ✓ ✓ - 0.4513 0.4413
ElDet ✓ ✓ ✓ ✓ 0.5739 0.5606

Fig. 9. Some failure cases of our ElDet method.

5 Conclusion and Discussion

In this paper, we present a simple yet anchor-free ellipse detector and contribute
a general ellipse detection dataset for evaluation. Specifically, we first obtain an
overall better edge map by edge fusion module which can learn the weight coef-
ficients adaptively and take advantage of the extracted edge information as aug-
mented input. Then, we propose angle loss weight, binary mask prediction loss,
and Gaussian IoU loss to jointly improve the CNN model performance. Extensive
experiments validate that our detector could provide competitive performance
on both self-collected dataset and downstream task such as face detection.

Currently, we believe that our approach still has much space to improve in
future research. In some scenarios, our method may fail to detect the ellipses, as
shown in Fig 9. Sometimes the elliptic objects are too large or too small compared
to the full image. As a consequence, the detected ellipses have larger deviation
to the groundtruth, which possibly is due to the downsampling and model fit-
ting. Moreover, for circular or elliptic objects with overlapping or occlusions,
the ellipse regression accuracy may be affected under such situation. It should
note that detecting overlapping objects is a common challenge for all anchor-free
object detectors. For some complex scenes with low contrast, low illumination,
or many ellipses, we observe that ellipse detection is still very challenging.

References

1. Lu, W., Tan, J.: Detection of incomplete ellipse in images with strong noise by
iterative randomized hough transform (irht). Pattern Recognition 41(4), 1268–
1279 (2008)

2593



ElDet 15

2. Roy, P., Kislay, A., Plonski, P.A., Luby, J., Isler, V.: Vision-based preharvest yield
mapping for apple orchards. Computers and Electronics in Agriculture 164, 104897
(2019)

3. Lu, C., Wang, H., Gu, C., Wu, K., Guan, X.: Viewpoint estimation for workpieces
with deep transfer learning from cold to hot. In: International Conference on Neural
Information Processing. pp. 21–32. Springer (2018)

4. Lu, C., Gu, C., Wu, K., Xia, S., Wang, H., Guan, X.: Deep transfer neural network
using hybrid representations of domain discrepancy. Neurocomputing 409, 60–73
(2020)

5. Prasad, D.K., Leung, M.K., Cho, S.Y.: Edge curvature and convexity based ellipse
detection method. Pattern Recognition 45(9), 3204–3221 (2012)

6. Lu, C., Xia, S., Huang, W., Shao, M., Fu, Y.: Circle detection by arc-support line
segments. In: 2017 IEEE International Conference on Image Processing (ICIP).
pp. 76–80. IEEE (2017)

7. Lu, C., Xia, S., Shao, M., Fu, Y.: Arc-support line segments revisited: An efficient
high-quality ellipse detection. IEEE Transactions on Image Processing 29, 768–781
(2019)

8. Li, Y.: Detecting lesion bounding ellipses with gaussian proposal networks. In:
International Workshop on Machine Learning in Medical Imaging. pp. 337–344.
Springer (2019)

9. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28 (2015)

10. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

11. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 7482–7491 (2018)

12. Caruana, R.: Multitask learning. Machine learning 28(1), 41–75 (1997)
13. Chen, J., Zhang, Y., Wang, J., Zhou, X., He, Y., Zhang, T.: Ellipsenet: Anchor-

free ellipse detection for automatic cardiac biometrics in fetal echocardiography.
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 218–227. Springer (2021)

14. Dong, W., Roy, P., Peng, C., Isler, V.: Ellipse r-cnn: Learning to infer elliptical
object from clustering and occlusion. IEEE Transactions on Image Processing 30,
2193–2206 (2021)

15. Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated
object detection. In: Proceedings of the AAAI conference on artificial intelligence.
vol. 35, pp. 2458–2466 (2021)

16. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

17. Huang, L., Yang, Y., Deng, Y., Yu, Y.: Densebox: Unifying landmark localization
with end to end object detection. arXiv preprint arXiv:1509.04874 (2015)

18. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: A simple and strong anchor-free object
detector. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

19. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: Proceed-
ings of the European conference on computer vision (ECCV). pp. 734–750 (2018)

20. Lu, C., Koniusz, P.: Few-shot keypoint detection with uncertainty learning for
unseen species. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 19416–19426 (June 2022)

2594



16 T. Wang et al.

21. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation
using part affinity fields. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 7291–7299 (2017)

22. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th Interna-
tional Conference on Pattern Recognition (ICPR’06). vol. 3, pp. 850–855. IEEE
(2006)

23. Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G.S., Bai, X.: Gliding vertex on
the horizontal bounding box for multi-oriented object detection. IEEE transactions
on pattern analysis and machine intelligence 43(4), 1452–1459 (2020)

24. Yang, X., Yan, J.: Arbitrary-oriented object detection with circular smooth label.
In: European Conference on Computer Vision. pp. 677–694. Springer (2020)

25. Yang, X., Hou, L., Zhou, Y., Wang, W., Yan, J.: Dense label encoding for boundary
discontinuity free rotation detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 15819–15829 (2021)

26. Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q.: Rethinking rotated
object detection with gaussian wasserstein distance loss. In: International Confer-
ence on Machine Learning. pp. 11830–11841. PMLR (2021)

27. Yang, X., Yang, X., Yang, J., Ming, Q., Wang, W., Tian, Q., Yan, J.: Learning high-
precision bounding box for rotated object detection via kullback-leibler divergence.
Advances in Neural Information Processing Systems 34 (2021)

28. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
2403–2412 (2018)
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