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Abstract. In this paper, we study the problem of domain generaliza-
tion for person re-identification (re-ID), which adopts training data from
multiple domains to learn a re-ID model that can be directly deployed to
unseen target domains without further fine-tuning. One promising idea is
removing the subsets of features that are not beneficial to the generaliza-
tion of models. This can be achieved by muting the subset features that
correspond to high back-propagated gradients as these subsets are easy
for the model to overfit. But this method ignores the interaction of multi-
ple domains. Therefore, we propose a novel method to solve this problem
by comparing the gradients from two different training schemes. One of
the training schemes discriminates input data from their corresponding
domain to obtain back-propagated temporary gradients in the interme-
diate features. At the same time, another scheme discriminates input
data from all domains to obtain the temporary gradients. By comparing
the temporary gradient between the two schemes, we can identify the
domain-generalizable subset features from those domain-specific subset
features. We thus mute them in the subsequent training process to en-
force the model to learn domain-generalizable information and improve
its generalization. Extensive experiments on four large-scale re-ID bench-
marks have verified the effectiveness of our method. Code is available at
https://github.com/Ssd111/LEDF.git.

1 Introduction

Person re-identification (re-ID) aims at retrieving the target person in a non-
overlapped camera system, which is a crucial technique for public security. Al-
though person re-ID algorithms have achieved remarkable success [28, 30, 46, 33,
35, 37] with the help of deep neural networks [7, 9], most of them still suffer
from the problem of generalization. Concretely, the re-ID model trained on a
labeled source domain may perform well but fails to achieve high accuracy when
transferred to another unseen target domain. Moreover, optimizing the re-ID
model requires a large number of labeled samples, which is not an economi-
cal way in real-world applications. Recent advances adopt unsupervised domain
adaptation [42, 26, 1, 4, 32] or fully unsupervised re-ID [34, 5, 3, 36] to address the
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Fig. 1. Illustration of motivation and our idea. We use different shapes to represent
different features, and the depth of color to indicate the degree of feature attention.
We compare the degree of feature attention to eliminate domain-relevant features.

problem efficiently with the unlabeled data. However, these methods may not
be applicable to the unseen target domains with strict privacy-preserving reg-
ulations since training data is not available. That’s the domain generalization
(DG) problem, which requires the model to perform well in the unseen target do-
mains. Therefore, we consider studying the domain generalized re-ID algorithm
in this paper. Prevailing generalization methods can be roughly categorized into
three types: (1) data augmentation [44, 45, 16, 10, 17], (2) domain-invariant fea-
ture learning [22, 15, 13, 23, 20, 12], and (3) gradient calibration [14, 38, 27, 21].
Specifically, (1) improves the generalization by generating more diverse sam-
ples for optimization, (2) tries to use distributional metrics to narrow down
the domain gaps of training domains for better representation learning, and (3)
calibrates the training gradients for better learning of models. Recently, some
methods like RSC [11] consider fine-grained constraints in representation learn-
ing. Specifically, RSC identifies the most predictive subsets of features through
their associated gradients. The subsets with higher gradients are more likely to
contain information that can mislead the model to overfit on the specific source
domain and thus should be muted during the optimization. Although RSC has
achieved great success, it ignores the interaction among source domains, hinder-
ing the further improvement in domain generalized re-ID.

Inspired by the idea of finding usable subsets of features during the optimiza-
tion, we try to solve the DG problem in re-ID by locating and eliminating the
domain-sensitive features (LEDF). This is achieved by comparing the gradients
from two different training schemes for the same inputs, which fully considers the
interaction among source domains. We compare two types of training schemes
to locate domain-sensitive subsets. They are 1○ discriminating the sample from
IDs of the same domain (domain-specific scheme), and 2○ identifying the sam-
ple from IDs of other source domains (hybrid scheme). Since the large domain
discrepancy is much easier for the model to recognize, the back-propagated gra-
dients from 2○ will focus more on the domain-sensitive parts of intermediate
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Generalized Person Re-identification by LEDF 3

features than 1○ does. We can locate the domain-sensitive subset by comparing
the gradients from both training schemes for better subsequent optimization. As
shown in Fig. 1, due to the extremely different contrast between domain1 and
domain2, the model can distinguish pedestrians in domain1 from domain2 only
based on the contrast. However, the model learns the contrast feature may not
be useful in other domains. This is harmful to the generalization ability of the
model.

Our LEDF consists of three steps: (1) Constructing domain-specific & hybrid
memory (2) Locating domain-sensitive features (3) Optimizing the generalized
model. In step (1), we adopt the commonly used memory bank [42] to compute
the classification losses. The “domain-specific memory” stores the class centroids
of each ID for each domain, enabling us to compute the classification loss. The
“hybrid memory” is the concatenation of all “domain-specific memories”, which
can be utilized to discriminate input samples under the training scheme 2○. In
step (2), we locate the domain-sensitive part of features by comparing gradients
from two training schemes. Since the gradient from scheme 2○ will focus more on
the domain-sensitive subsets of features (i.e., higher response), which is different
from 1○, we can compare the gradient of 1○ with the gradient of 2○ for better
localization of these subsets. The located subsets will be muted in step (3) to
train a generalized re-ID model.

Our main contributions are three-fold:

– We propose a novel domain generalization method for person re-ID by locat-
ing and eliminating the domain-sensitive subsets of features. After removing
these features, the model can focus more on the generalized information in
datasets and achieve better generalization.

– We design a novel strategy to locate domain-sensitive subsets of features
by comparing the gradients from two different training schemes. As large
domain discrepancy is easier for the model to recognize, the back-propagated
gradients from the “hybrid scheme” will focus more on the domain-sensitive
subsets of intermediate features than the “domain-specific scheme” does,
enabling us to locate them in each back-propagation.

– Extensive experiments on four large-scale benchmarks verify the effectiveness
of our method in multi-source domain generalization.

2 Related Work

2.1 Person Re-ID

With the rapid development of deep learning, person re-ID has made great
progress in recent years [33, 35, 37, 32, 2, 6, 31, 41]. However, the performance of
these methods in unseen domain testing is not satisfactory. Unsupervised Do-
main Adaptation (UDA) uses unlabelled target domain data to improve the
model’s performance in the unseen domains. ECN [42] pays more attention to
the intra-domain variations of the target domain. MCD [26] uses adversarial
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learning to maximize the difference between the two different classifiers to de-
tect the samples in the target domain far from the source domain. Then the
feature generator is used to generate features similar to the source domain.
AutoDIAL [1] proposes the domain alignment layer to automatically align the
feature representation of different domains. MMT [4] is trained by two network
mutual teaching methods to generate reliable pseudo labels, which solves the
problem of pseudo labels noise in the target domain. ACT [32] uses two asym-
metric models for collaborative training. The training samples of one model are
as diverse as possible, and the training of the other model is as pure as possible.
The two models give reliable samples to each other to avoid label noise.

2.2 Domain Generalization

Most DG methods are based on data augmentation, domain-invariant features
learning, and gradient calibration. Data augmentation means generating data
different from the source domain, learning more unprecedented features, and
preventing over-fitting of the source domain. Domain-invariant features learn-
ing means learning more identify-relevant features. Gradient Calibration means
using the gradient to design appropriate learning strategies to improve the gen-
eralization ability of the model.

Data Augmentation. L2A-OT [44] uses Optimal Transport (OT) to make
the distribution between the generated image and the source domain image very
different. MixStyle [45] combines the style features at the bottom layer of the
network to generate new style features and enrich the diversity of training data.
PDEN [16] simulates the unseen domain by constantly changing the brightness
and geometry of the data on the source domain. FSDR [10] augments the image
in frequency space. It keeps the domain-invariant frequency components as much
as possible and randomizes the domain-variant frequency components in the fre-
quency space. SFA [17] uses Gaussian noise to interfere with feature embedding
in the training process, which improves the performance of the classifier in the
unseen domain.

Domain-Invariant Features Learning. DICA [22] minimizes dissimilar-
ity across domains to learn domain-invariant features. MMD-AAE [15] learns
domain-invariant features through adversarial autoencoders. SNR [13] uses In-
stance Normalization to eliminate style features and restitutes the features to
ensure that effective information is not filtered. IBN [23] points out that the low-
level feature representation reflects more texture information, while the high-
level feature representation reflects more semantic information. IBN uses the
advantages of Instance Normalization and batch normalization to improve the
generalization of models. MatchDG [20] makes use of the causal influence to
provide an object-conditional objective to highlight the advantage of learning
domain-invariant features. FAR [12] aligns the features of different domains by
adjusting the moment modulation of feature distribution, then extracts useful
features from the remaining information and uses them to compensate for the
aligned features.
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Fig. 2. Illustration of our proposed LEDF. (a) The overall framework of LEDF. (b)
The detailed process of feature adjustment.

Gradient Calibration. Some methods solve DG problems through meta
learning [14, 38]. MLDG [14] divides the data from the source domains into a
meta-training set and meta-testing set to simulate the unseen domain. It lays a
foundation for the later meta-DG methods. M3L [38] uses the meta-test phase
of meta-learning to simulate the unseen domain and uses metaBN to increase
the diversity of meta-test features. Some methods use the gradient to further
propose novel strategies [27, 21, 11]. Fish [27] points out that the learning ability
of general features can be improved only if the gradient descent directions on the
two domains are consistent. They improve the generalization ability by maxi-
mizing the inner product of the gradient descent directions of different domains.
Gradient surgery [21] points out that intra-domain gradients often show higher
similarity than inter-domain gradients. Consistency constraints on inter-domain
gradients can encourage the learning of distinctive features common to all do-
mains and improve the generalization performance across domains. RSC [11]
points out that the model will over-rely on easy features, and improve the gen-
eralization ability of the model by filtering out features with large gradients.

3 Method

Problem Definition. Suppose we have NS labeled source domains DS =
{D1, ..., DNS

}, where Di = {Xi,Yi} is the i-th domain with training images
Xi and their corresponding ID labels Yi. The goal of multi-domain generalized
re-ID is optimizing re-ID model that can perform well on another unseen target
domain T without using T ’s training images.

3.1 Overview

Our overall training framework is shown in Fig. 2-(a), which contains three steps.
(1) designing domain-specific & hybrid training schemes (2) locating domain-
sensitive features (3) generalized optimization. In step (1), we design two differ-
ent training schemes for the same inputs and adopt memory banks to compute
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different losses. The first type of scheme (domain-specific scheme, also noted as
scheme 1○) aims at discriminating the inputs from their corresponding domain,
while the second (hybrid scheme, also noted as scheme 2○) tries to classify the
given samples from IDs of all source domains. Since domain shift is much easier
for the model to recognize due to the change of illumination and viewpoint [27],
the back-propagated gradient from the hybrid scheme will focus more on the
domain-specific subsets of features. Therefore, in step (2), we compare the back-
propagated gradients of the two schemes to locate the domain-sensitive subsets.
In step (3), we mute these subsets during the training process to improve the
generalization of re-ID models. Fig. 2-(b) shows the process of feature adjustment
in detail. Next, we will introduce our method in detail.

3.2 Domain-Specific & Hybrid Scheme

In this section, we introduce the two training schemes used in our method. The
two training schemes are “domain-specific scheme” and “hybrid scheme”. Given
a batch of samples {Xi,Yi} with Nb images Xi = {xi,1, ..., xi,Nb

} and labels
Yi = {yi,1, ..., yi,Nb

} of domain i, the former discriminates them from IDs of
their corresponding domain while the latter classifies them in IDs of all source
domains. Generally speaking, we can simply adopt the fully-connected layer to
compute the classification loss for these two schemes. However, as discussed
in [38], re-ID is an open-set problem [24] where each domain has completely
different IDs. We thus use the parametric classifier like memory bank [42] for
optimization.
Memory Initialization. In our method, we construct NS memory banks for
each domain’s domain-specific training. The memory bank for domain i is de-
noted as Mi ∈ RNi×d, which is a Ni × d matrix and stores the L2-normed class
centroids in each row of it. Ni is the number of IDs in the domain i while d
is the dimension of features. We use imagenet-pretrained ResNet-50 model f(·)
to extract features and class centroids for each domain. These class centroids
are then L2-normalized to initialize the memories. Moreover, we concatenate all
memories to form the hybrid memory M for our “hybrid scheme”.
Loss Functions. We conduct our domain-specific and hybrid training schemes
with all memories. Specifically, for a sample {xi,j , yi,j} in the given batch {Xi,Yi},
we compute domain-specific classification loss with its corresponding memory
Mi, formulated as:

LM spec = − log
exp(Mi[yi,j ]

Tf(xi,j)/τ)∑Ni

k=1 exp(Mi[k]Tf(xi,j)/τ)
, (1)

where xi,j is the j-th sample in the batch. f(xi,j) denotes the L2-normalized
intermediate feature of input image xi,j . Mi[yi,j ] is the yi,j-th class centroid in
memory Mi. τ is the temperature factor that controls the scale of distribution.
Ni denotes the total number of IDs in the i-th domain. By using LM spec for
domain-specific training, we enforce the model to classify the given sample into
its own class as traditional re-ID methods do.

3263



Generalized Person Re-identification by LEDF 7

The motivation for designing the hybrid scheme is to discriminate the given
sample from IDs of all source domains. Therefore, we concatenate all memory
banks to form the hybrid memory M ∈ RN×d. N =

∑NS

i=1Ni is the number of
IDs in all domains. The training loss for the hybrid scheme is defined based on
the hybrid memory:

LM hybrid = − log
exp(M[yi,j ]

Tf(xi,j)/τ)∑N
k=1 exp(M[k]Tf(xi,j)/τ)

. (2)

When discriminating the given sample from all centroids of source domains,
it is usually easier for the model to focus on the domain-sensitive subsets of
features. That is because the images in different domains may have conspicuous
differences (e.g., illumination and change of colors [34]), which is easier for the
model to recognize than the fine-grained ID-related information [27]. Therefore,
the back-propagated gradients from the two training schemes will be slightly
different. We thus design a novel algorithm to locate this domain-sensitive in-
formation in the intermediate features by comparing gradients of two training
schemes.

3.3 Locating Domain-Sensitive Features

We adopt the gradients from two training schemes to find the domain-sensitive
subsets of features for subsequent generalization training. In detail, after comput-
ing the LM spec and LM hybrid for all samples in the training batch, we compute
the derivative of these two losses respected to the intermediate features F

gspec = ∂LM spec/∂F, ghybrid = ∂LM hybrid/∂F , (3)

where gspec and ghybrid are temporary back-propagated gradients of LM spec and
LM hybrid for the training batch. As the hybrid training scheme focuses more on
the domain-sensitive subsets of features, the gradient in these subsets will be
higher than that gradient of the domain-specific scheme, while keeping the basic
focus on generalized subsets to maintain the basic discrimination [11]. We thus
compare gspec with ghybrid to obtain a response map and highlight these subsets:

∆rank(gF) = rank(ghybrid)− rank(gspec) , (4)

where rank means calculating the ranking value and ∆rank(gF) is the response
map. The subsets with higher values in ∆rank(gF) indicate the higher possibil-
ity of being domain-sensitive. Based on the response map ∆rank(gF), we find
domain-sensitive subsets of features by locating the regions with higher response
values. In detail, we sort all the values in ∆rank(gF) in descent order and set a
threshold q based on the top r% highest values of ∆rank(gF). r% is the drop-
ping rate. Subset features will be considered as the domain-sensitive parts if
their corresponding response value in ∆rank(gF) is greater than q. To formulate
the selection process, we define a selection mask m that has the same size as
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intermediate feature F. Each element in m can be computed with the following
rule:

mo =

{
0, if ∆rank(gF,o) ≥ q
1, otherwise

(5)

where mo and rank(gF,o) are the o-th element in m and rank(gF), respectively.
q is the threshold for selection. The obtained mask is then used to filter out
domain-sensitive subsets in F through element-wise product:

F′ = F�m , (6)

where F′ is the intermediate features that have muted the domain-sensitive sub-
sets.

3.4 Generalized Optimization

The obtained F′ is then sent to global average pooling and L2-norm layers
through forward propagation to obtain adjusted features f

′ ∈ RNb×d. We use
f
′

to optimize the re-ID model with the following two losses:

Lce(f
′
,Yi) = − 1

Nb

Nb∑
j=1

log
exp(Mi[yi,j ]

Tf ′j/τ)∑Ni

k=1 exp(Mi[k]Tf ′j/τ)
, (7)

Ltri(f
′
) =

1

Nb

Nb∑
j=1

[
||f

′

+,j − f
′

j ||2 − ||f
′

−,j − f
′

j ||2 +m
]
+
, (8)

where f
′

j is the j-th feature in f ′. f
′

+,j and f
′

−,j are hard positive and negative
samples within the batch. m is the margin for triplet loss. The final loss for
optimizing re-ID model is defined as:

Lall = Lce(f
′,Yi) + Ltri(f

′) . (9)

At the end of optimization, we update the memory of domain i to prepare for
the training with next batch of samples. Specifically, the corresponding class
centroids in the i-th memory bank will be updated with the exponential moving
average strategy, which is commonly used in memory-based domain generaliza-
tion methods [38]:

Mi[z]← µ · Mi[z] + (1− µ) · 1

|Bz|
∑

xi,j∈Bz

f(xi,j) , (10)

where Bz denotes the samples belonging to the z-th ID and |Bz| denotes the
number of samples for the z-th ID in the current mini-batch. µ ∈ [0, 1] controls
the updating rate. The previous three steps (step (1)-(3)) are iterated for several
epochs to improve the model’s generalization. The overall training process has
been demonstrated in Alg. 1.
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Algorithm 1: Procedure of Our Algorithm.

Inputs: NS Labeled source domains DS = {D1, ..., DNS}, learning rate β,
batch size Nb, training epochs epoch.

Outputs: Generalized re-ID model.
1: Initialize all memories.
2: for s in epoch do
3: for i in NS do
4: Sample a mini-batch {Xi,Yi} with Nb images and labels from domain i;
5: Compute temporary gradient gspec and ghybrid with Eq. 3;
6: Locate domain-sensitive subsets with Eq. 4;
7: Generate F′ with Eq. 6;
8: Optimize re-ID model with Eq. 9;
9: Update memory with Eq. 10;

10: end for
11: end for
12: Return generalized re-ID model.

Further Discussion. Our method is inspired by the gradient-based generaliza-
tion algorithm RSC [11]. However, our approach is fundamentally different from
it. Specifically, our method considers the interaction among source domains by
simultaneously using domain-specific and hybrid memory, while RSC does not
have such interaction. The interaction of source domains enables us to define
a more specific meaning of domain-shift, and make the assumption that when
compared with the domain-specific scheme, the subsets of features with higher
predictability in the hybrid scheme have a higher possibility of being domain-
sensitive. The domain-sensitive subsets can be readily located when comparing
the back-propagated gradients of the two schemes. However, RSC considers the
most predictive subsets of features as the easiest part and mutes them during
the optimization for generalized training. They do not explicitly consider the do-
main shift problem. Therefore, our method is different from RSC and we design
a non-trivial solution for generalized re-ID learning.

4 Experiments

4.1 Experiment Settings

Datasets. We selected four large-scale person re-identification benchmarks for
experiments, i.e., Market-1501 [39], CUHK03 [19], CUHK02 [18], and MSMT-
17 [29]. Market-1501 was collected by 6 cameras, of which 32, 668 labeled data
composed of 1501 IDs. CUHK03 and CUHK02 have 1, 467 and 1, 816 IDs, 28, 193
and 7, 264 pedestrian images respectively. And they have five pairs of differ-
ent outdoor cameras. MSMT-17 is an extra-large pedestrian dataset, including
126, 441 pedestrian images collected by 15 cameras, with a total of 4, 101 IDs.
Note that, we do not take DukeMTMC-reID [40, 25] into our evaluation since it
has been taken down by its creators.
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Evaluation Metrics. We evaluated the performance based on the cumulative
matching characteristics (CMC) at Rank-1 and mean average precision (mAP).
Implementation Details. We conduct our experiments on two commonly used
backbones, i.e., ResNet-50 [7] and IBN-Net50 [23]. We apply our method in the
intermediate feature maps. We set the total training epochs to 60. We choose
Adam as the optimizer and the initial learning rate is set to 3.5×10−5. We mul-
tiply the learning rate by 0.1 at the 30-th and 50-th training epoch. For the
loss function, we set the margin of triple loss m=0.3. The temperature factor of
memory-based identification loss τ=0.05 and updating rate µ in memory update
is set to 0.2. We set the training batch-size Nb to 64. All images are resized to
256×128, followed by random flipping and random clipping for data augmen-
tation. We adopt the re-ID model trained with all source domains and vanilla
memory-based identification loss and triplet loss [8] as the baseline.

4.2 Comparison with State-of-the-arts Methods

We compare our method with state-of-the-art methods and report the results
in Tab. 1. The included methods are SNR [13], RSC [11], and M3L [38]. We
evaluate the generalization of the trained re-ID model with the “leave-one pro-
tocol”, i.e., testing the model on one of the four benchmarks and using other
datasets as source domains. As shown in the table, our method outperforms
other methods by a large margin in both mAP and rank-1 scores. Specifically,
the experiments with ResNet-50 achieve 53.8%, 50.6%, 89.6%, and 15.7% mAP
scores when using Market1501, CUHK03, CUHK02, and MSMT17 as the testing
set. These results outperform M3L [38] by 3.9%, 5.5%, 2.7%, and 4.6% on the
previous four generalization tasks, respectively. Moreover, when applying our
method to IBN-Net50, our method also achieves the best re-ID accuracies. The
mAP scores of the re-ID model are 58.6%, 53.8%, 90.0%, and 18.9%, which is
higher than that of M3L by 6.9%, 3.6%, 1.8%, and 4.9% when being evaluated
on Market1501, CUHK03, CUHK02, and MSMT17. Similar results can also be
found in another state-of-the-art method RSC [11], which is originally designed
for the classification task. Based on these results, we claim that our method is
effective in handling the generalized re-ID model training problem.

4.3 Ablation Studies

To further explore the effectiveness of each component in our method, we de-
sign three ablation experiments. In these experiments, we aim to: (1) show the
necessity of eliminating domain-sensitive subsets of features during the optimiza-
tion; (2) prove the necessity of locating domain-sensitive subsets by subtracting
rank(gspec) from rank(ghybrid); (3) prove the effectiveness of eliminating domain-
sensitive subsets with our method.
The Necessity of Eliminating Domain-Sensitive Subsets. We evaluate
the re-ID model that does not use any strategy to eliminate domain-sensitive
subsets during the optimization and report the results in Tab. 2. In ResNet-50,
the model trained with vanilla multi-domain training (baseline) achieves 46.1%
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Table 1. Comparison with State-of-the-arts. M: Market-1501, CUHK02: C2, CUHK03:
C3, MS: MSMT-17.

Methods Sources
Market

Sources
CUHK03

mAP rank-1 mAP rank-1

OSNet [43]

MS+C2+C3

41.7 65.5

MS+M+C2

39.4 41.1
SNR [13] 44.2 70.1 41.2 45.5
RSC [11] 50.8 76.7 46.5 51.5
M3L [38] 49.9 75.7 45.1 50.5

Ours 53.8 79.0 50.6 56.0
M3L (IBN-Net50) 51.7 78.0 50.2 57.5
Ours (IBN-Net50) 58.6 81.8 53.8 59.8

Methods Sources
CUHK02

Sources
MSMT

mAP rank-1 mAP rank-1

OSNet [43]

MS+C2+C3

75.5 76.1

MS+M+C2

10.2 26.7
SNR [13] 78.5 79.5 14.4 37.3
RSC [11] 88.2 87.7 13.1 33.1
M3L [38] 86.9 87.4 11.1 28.8

Ours 89.6 90.6 15.7 39.5
M3L (IBN-Net50) 88.2 87.6 14.0 34.2
Ours (IBN-Net50) 90.0 89.1 18.9 44.2

Table 2. Ablation studies on Locating strategy. H-S: computing response map by sub-
tracting rank(gspec) from rank(ghybrid). S-H: computing response map by subtracting
rank(ghybrid) from rank(gspec). Abs: Using the absolute values of the difference be-
tween rank(ghybrid) and rank(gspec) to compute response map. ResNet: ResNet-50.
IBN-Net: IBN-Net50.

Backbone
Strategy

MS+C2+
C3→M

M+C2+
C3→MS Backbone

MS+C2+
C3→M

M+C2+
C3→MS

Abs S-H H-S mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

ResNet

× × × 46.1 72.3 9.5 25.0

IBN-Net

50.5 75.7 12.6 32.3
X × × 53.0 78.4 14.7 38.1 57.8 80.9 17.9 42.7
× X × 52.9 78.1 14.4 37.6 57.2 79.5 17.2 41.3
× × X 53.8 79.0 15.7 39.5 58.6 81.8 18.9 44.2

and 9.5% mAP scores on “MS+C2+C3→M” and “M+C2+C3→MS” tasks, re-
spectively. The results are lower than our method in these two tasks. Similarly,
in IBN-Net50, our experiment also achieved the same conclusion. This experi-
ment indicates that eliminating the domain-sensitive subsets of features during
the optimization is necessary.
The Necessity of Subtracting rank(gspec) from rank(ghybrid). In Eq. 4, we
generate the response map by subtracting rank(gspec) from rank(ghybrid). Intu-
itively, there are also other strategies to highlight the domain-sensitive subsets of
features, like using the absolute value of the difference between rank(gspec) and
rank(ghybrid) (i.e., ∆rank(gF) = |rank(ghybrid)− rank(gspec)|). To explore the
best form of highlighting these domain-sensitive subsets of features, we conduct
experiments by using different strategies to compute response map ∆rank(gF)
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Table 3. Ablation studies of dropping strategies.

Backbone Method
MS+C2+C3 → M M+C2+C3 → MS
mAP rank-1 mAP rank-1

ResNet-50
Random 48.5 73.9 9.3 25.2

RSC 50.8 76.7 13.1 33.1
Ours 53.8 79.0 15.7 39.5

in Tab. 2. As shown in the table, the strategy define in Eq. 4 achieves the best
performance when compared with other strategies. This suggests that subtract-
ing rank(gspec) from rank(ghybrid) is a more plausible way of highlighting the
domain-sensitive subsets during the optimization.

The Necessity of Using Our Dropping Strategy. We evaluate the re-ID
model by randomly dropping features. The random dropout strategy adopts the
same settings as our method, such as the same feature dropping rate, etc. As
shown in Tab. 3, The random dropout strategy achieves 48.5% and 9.3% mAP
scores on “MS+C2+C3→M” and “M+C2+C3→MS” tasks, respectively. The
results are lower than RSC and our method, and our method achieves the best.
This shows that our method is most effective in eliminating domain-sensitive
features.

4.4 Sensitivity Analysis

Feature Dropping Rate. We explore the influence of using different drop-
ping rates during the optimization. The higher dropping rate r may inevitably
drop some decisive features while lower r may not be effective enough to im-
prove the generalization of models. In Tab. 4, we vary r from 10% to 66.7% on
“MS+C2+C3→M” and “MS+C2+M→C3” to find how the dropping rate will
influence the final results. From Tab. 4, we find that: (1) When the dropping rate
r increases from 10% to 50%, the re-ID accuracies in generalization tasks also
improved. This is caused by the elimination of domain-sensitive subsets of fea-
tures. (2) When continuously increasing the dropping rate r from 50% to 66.7%,
the re-ID accuracies decreases. The results indicate that we should not set the
dropping rate to a very high value. Generally speaking, setting r to a value less
than 50% would be sufficient for improving the model’s generalization.

Number of Source Domains. We also conduct experiments using fewer source
domains to check the effectiveness of our method. In detail, we alternately use
two of the three source domains for training and evaluate the trained model on
the testing set. The results are shown in Tab. 5. We report the re-ID accuracies
of re-ID models on “MS+C3→M”, “MS+M→C3”, and “M+C3→MS” tasks. For
simplicity, in addition to baseline, we also compare it with RSC, which has the
best average performance in previous experiments among many state-of-the-art
methods. As shown in the table, we achieve 46.5%, 36.8%, and 13% mAP scores
on “MS+C3→M”, “MS+M→C3”, and “M+C3→MS” tasks, respectively. These
results outperform RSC [11] and the vanilla generalized re-ID training method,
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Table 4. Sensitivity analysis of dropping rate.

Rate
MS+C2+C3 → M MS+M+C2 → C3 Average
mAP rank-1 mAP rank-1 mAP rank-1

10.0% 52.3 77.9 48.7 53.0 50.5 65.45
20.0% 53.0 78.4 48.6 52.5 50.8 65.45
25.0% 53.6 78.9 48.8 55.5 51.2 67.20
33.3% 53.4 78.8 50.8 54.0 52.1 66.40
50.0% 53.8 79.0 50.6 56.0 52.2 67.50
66.7% 53.3 78.1 46.5 54.0 49.9 66.05

Table 5. Sensitivity analysis of the number of source domains.

Backbone Method
MS+C3 → M MS+M → C3 M+C3 → MS

mAP rank-1 mAP rank-1 mAP rank-1

ResNet-50
Baseline 38.5 64.6 29.9 34.5 6.8 18.8

RSC 44.0 68.6 35.7 42.3 9.9 26.0
Ours 46.5 73.0 36.8 43.5 13.0 33.4

Table 6. Sensitivity analysis of Channel-wise LEDF verse Spatial+Channel LEDF.

Backbone Method
MS+C2+C3 → M MS+M+C2 → C3
mAP rank-1 mAP rank-1

ResNet-50
Channel 50.7 77.6 46.5 54.0

Channel+Spatial 53.8 79.0 50.6 56.0

which proves the effectiveness of our method on generalization tasks with fewer
source training domains.
Channel-Wise and Spatial-Wise Dropping. We also design some experi-
ments to find the optimal strategy for dropping intermediate features. Intuitively,
there are two types of dropping strategies. The first is channel-wise dropping,
which means using the global average pooling to gradient tensor along the spa-
tial dimension and carrying out feature dropping at the channel level. And the
second is spatial-wise dropping. Because ResNet uses global average pooling at
the end, the values of applying global average pooling to gradient tensor along
the channel dimension are all the same. Therefore, we use the same spatial-
wise dropping as RSC [11], which is transformed on the basis of channel-wise
dropping. As shown in Tab. 6, the combination of channel-wise dropping and
spatial-wise dropping performs best (we use 50% of channel-wise dropping and
spatial-wise dropping respectively in the training stage).
What Stage to Add Our Method? It naturally raises the question that how
about adding our method to other intermediate features. To answer this question,
we take the ResNet-50 model as an example and insert our method in different
stages of the model to check its effectiveness. Generally speaking, ResNet-50 has
four blocks, and we can insert our method at the beginning or end of each block.
Therefore, we apply our method in the position depicted in Fig. 3 and report the
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Fig. 3. Our LEDF module can be inserted into the position of ResNet-50.

Table 7. Sensitivity analysis of LEDF inserts position.

Position
MS+C2+C3 → M MS+M+C2 → C3 Average
mAP rank-1 mAP rank-1 mAP rank-1

Position1 53.8 79.0 50.6 56.0 52.2 67.50
Position2 51.5 77.0 45.7 47.0 48.6 62.00
Position3 46.8 73.8 43.6 49.5 45.2 61.65
Position4 42.1 69.5 40.5 48.5 41.3 59.00
Position5 36.4 64.0 37.6 46.0 37.0 55.00

results in Tab. 7. We conclude that our method achieves the best performance
when being deployed in the shallow layer while performing poorly when being
deployed in deeper layers. We conjecture that style information is stored in the
shallow layers of deep networks while deep layers are responsible for learning
semantic information. As our method aims at eliminating the domain-shift of
features, it is better to deploy our method in the shallow layers of deep neural
networks.

5 Conclusion

In this paper, we propose a novel domain generalization method to enhance the
generalization of the model in the unseen domain by locating and eliminating
domain-sensitive features (LEDF). In addition, we introduced domain-specific
memory and hybrid memory, which respectively represent two different training
schemes. The former only has the information of its own domain, and the latter
contains the information of all source domains. LEDF locates and eliminates the
domain-sensitive features by comparing the gradient between the two schemes.
A large number of experiments prove that our method LEDF can effectively
improve the generalization ability of the model in person re-identification.
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