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Abstract. Recently, some point-wise hash learning methods such as
CSQ and DPN adapted "hash centers" as the global similarity label for
each category and force the hash codes of the images with the same cat-
egory to get closed to their corresponding hash centers. Although they
outperformed other pairwise/triplet hashing methods, they assign hash
centers to each class randomly and result in a sub-optimal performance
because of ignoring the semantic relationship between categories, which
means that they ignore the fact that the Hamming distance between the
hash centers corresponding to two semantically similar classes should be
smaller than the Hamming distance between the hash centers correspond-
ing to two semantically dissimilar classes. To solve the above problem
and generate well-separated and semantic hash centers, in this paper, we
propose an optimization approach which aims at generating hash cen-
ters not only with semantic category information but also distinguished
from each other. Specifically, we adopt the weight of last fully-connected
layer in ResNet-50 model as category features to help inject semantic
information into the generation of hash centers and try to maximize the
expectation of the Hamming distance between each two hash centers.
With the hash centers corresponding to each image category, we propose
two effective loss functions to learn deep hashing function. Importantly,
extensive experiments show that our proposed hash centers and train-
ing method outperform the state-of-the-art hash models on three image
retrieval datasets.

Keywords: Hash Centers · Semantic Category Information · Image Re-
trieval.

1 Introduction

Image hashing method is popular in the field of image retrieval for its highly
efficient storage ability and retrieval speed with the objective of representing an
image using a binary code. Recently, depending on the development of the deep
convolution neural network, deep hashing methods have great improvement in
terms of learning non-linear hash functions which encode tight hash codes for
similar image pairs while encoding hash codes with a large Hamming distance
for dissimilar image pairs.
⋆ Corresponding Author
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Fig. 1. an example to show that the Hamming distance between cat and dog should
be smaller than that between not only dog and car, but also cat and car, because cat
and dog are both animal.

Deep hashing methods can be grouped by how the similarity of the learned
hashing codes are measured, namely point-wise hashing methods (e.g., [26, 30, 20,
4, 27]), pairwise/triplet hashing methods (e.g., [24, 22, 11, 2]) and listwise hashing
methods [28]. Among them, pairwise/triplet hashing methods randomly sample
a mini-batch training sample to learn hashing function with pairwise/triplet
similarity between these training samples which suffer from three questions: low
efficiency in profiling global similarity of the whole dataset, insufficient coverage
of data distribution, and low effectiveness on imbalanced data. To solve these
issues, some point-wise methods propose to learn hash codes for images with
hash centers, by forcing the hash codes of images belonging to the same class to
be as similar as the hash centers of their class.

In deep hashing methods with hash centers, we consider that there are two
main challenges for learning a good hash function: 1) Firstly, it is important to
construct a set of hash centers separated from each other. 2) Secondly, the as-
signment of hash centers for each class should not be ignored. To solve the above
challenges, DPN [4] uses Bernoulli sampling to generate hash centers. CSQ [27]
leverages Hadamard matrix and Bernoulli sampling to construct hash centers,
considering that Hadamard matrix has a nice property that every two rows are
mutually orthogonal. However, both of them choose to assign the generated hash
centers randomly to each class, ignoring the fact that the Hamming distance be-
tween hash centers corresponding to two categories with similar semantic infor-
mation should be smaller than that between hash centers corresponding to two
categories with irrelevant semantic information. For example, as can be seen in
Fig.1, the similarity between dogs and cats should be greater than that between
not only dogs and cars, but also cats and cars, because cats and dogs are both
animals, but the other two pairs do not belong to the same species. The neglect
of semantic relation information between categories makes them get sub-optimal
performance.

To address both challenges, we propose a novel deep hashing method that
employs an optimization procedure with two optimization targets. The first op-
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timization target is to make the expectation of the Hamming distance between
each two hash centers as large as possible to address the first challenge. In terms
of the second optimization target, we introduce a variable called category fea-
ture that contains semantic information of category and makes the inner product
between two hash centers should be close to the inner product between their cor-
responding category features to address the second challenge, which means that
the similarity between two hash centers should be closed to that between their
corresponding category features.

Our deep hashing method includes a two-stage pipeline. In the first stage, in-
spired by the existing retrieval/segmentation method([29, 15]), we use the weight
of last fully-connected layer in fine-tuned ResNet-50 model as the category fea-
tures and solve the above optimization problem to obtain the semantic preserved
and separated hash centers for each image class. To solve the NP-hard optimiza-
tion issue, we develop an alternating optimization procedure based on the ℓp-box
binary optimization scheme. In the second stage, with the constructed hash cen-
ters corresponding to each class, we train a deep neural network to learn the
hashing function. Specifically, we define loss functions to encourage that (1) the
hash code of an input image is nearby the hash center of its class but distanced
from other hash centers and (2) quantization errors between continuous code
and hash code are minimized during training.

To evaluate our proposed method, we experiment on three image datasets
for image retrieval. The results demonstrate that the generated hash centers
contain category semantic information of their corresponding class and are sep-
arated from each other. The proposed method achieves superior retrieval per-
formance over the state-of-the-art deep hashing methods. The code is relased in
https://github.com/Wangld5/SHC-IR

2 Related Work

The traditional hashing methods use hand-craft image features and shallow hash
functions to learn hash codes for each input image. For example, SDH [18]
presents an SVM-like formulation to minimize the quantization loss and the clas-
sification loss to learn hash function. SH [25] is a graph-based hashing method
that learns hash function by spectral graph partitioning. Recently, deep hash-
ing methods which learn hash codes for images by DNN have dominated the
hashing research due to the superior learning ability of deep neural network and
can be divided into point-wise hashing methods [26, 30, 20, 4, 27], pairwise/triplet
hashing methods [24, 22, 11, 2, 12, 14, 3], and listwise hashing methods [28].

To keep the similarity structure of data, pairwise/triplet hashing methods
learn hash function by forcing the similar pairs of images to have similar hash
codes while dissimilar pairs of images to have dissimilar hash codes, or maintain-
ing the consistency between the data triplets from the original and Hamming
space. For example, CNNH [24] learn the hash function by forcing the similarity
of the image pairs to that of their corresponding approximate binary code pairs.
DPSH [12] adopts deep networks to learn hash function with the standard form
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Fig. 2. Overview of the proposed method with a pipeline of two stages. Stage 1 (left)
uses a carefully designed optimization procedure to generate hash centers containing
semantic information with the help of category features w where each hash center cor-
responding to an image class and w is the weight of last fully-connected layer obtained
from the fine-tuned ResNet-50 classification model. Stage 2 (right) uses a deep hashing
network trained with two loss functions. The first loss encourages the hash code of an
image to become close to its hash center and faraway from others. The second loss
reduces quantization errors.

of likelihood loss based on similarity information of the image pairs. HashNet [3]
trains the hashing network by adopting maximum likelihood loss with different
weights for each image pair.

To solve the three problems of pairwise/triplet hashing methods mentioned
in Section 1. Point-wise hashing methods use a target as a guide to learn hash
functions. On the one hand, some hashing methods use aware label information
for each sample to guide the learning of the hash functions such as DLBHC [13],
SSDH [26] and Greedy Hash [20]. On the other hand, some hashing methods
generate binary codes called hash centers corresponding to each semantic class in
Hamming space which are distinguished from each other and generate hash codes
for input images with these separated hash centers as supervised information.
For example, DPN [4] proposed to generate hash centers by Bernoulli sampling.
CSQ [27] proposed to use Hadamard matrix and Bernoulli sampling to generate
a set of hash centers, with the expectation that the average Hamming distance
of all pairs of hash centers is half of the code length. However, both CSQ and
DPN randomly allocate hash centers, ignoring the semantic relationship between
their corresponding categories which may lead to inferior retrieval performance.

Inspired by some unsupervised hashing methods [32, 9] using semantic in-
formation, in this work, we propose an optimization approach that generates
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hash centers under the guidance of semantic relationships between categories,
which make the hash centers not only separated from each other but also contain
semantic information.

3 Approach

For the deep hashing problem, given an input image x, hash learning aims to
obtain a mapping function f : x → b ∈ {−1, 1}q that encodes the image to a
binary hash code b with length q for the convenience of image retrieval, so that
similar images or images belonging to the same class are mapping to similar hash
codes with small Hamming distances. In deep hashing methods, f is a non-linear
hashing function implemented by the deep hashing network.

As shown in Fig. 2, to achieve this goal, we propose a deep hashing method of
two stages. In Stage 1, based on the initialization of hash centers with Hadamard
Matrix, we propose an optimization method to optimize and generate the hash
centers with semantic information to ensure that the Hamming distance be-
tween two hash centers is associated with the semantic similarity between their
corresponding categories. More specifically, we try to decrease the root mean
square error between the inner product of two hash centers and that of their
corresponding category features in the optimization procedure to increase the
semantic information of hash centers, each of which corresponds to one class,
respectively. In Stage 2, we train a deep hashing network to learn f with two
losses: 1) the central loss to force hash codes of the input images to not only
get closed to their corresponding hash centers but also separate from other hash
centers with long distance. 2) the quantization loss to decrease errors between
continuous codes and binary codes. We present the details of each stage as fol-
lows.

3.1 Stage 1: Generate Hash Centers by Optimization

In this stage, we propose an optimization method to find a set of separated hash
centers that contain semantic information, which adopts the category feature
extracted from the pre-trained models to inject the semantic information into
hash centers.

Optimization Target For images in m classes, utilizing the category features
w1, w2, ..., wm, we try to learn m hash centers c1, c2, ..., cm by maximizing the
following optimization target. To measure the similarity between a pair of hash
centers and their corresponding category features, we simultaneously enforce
the inner product of two hash centers closed to the inner product of their corre-
sponding category features. Specifically, we formulate an optimization objective
as:

max
c1,...,cm∈{−1,1}q

1

m(m− 1)

∑
i

∑
j:j ̸=i

(||ci − cj ||H − ||cTi cj − wT
i wj ||22) (1)
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where ||.||H represents the Hamming distance, and ||.||2 be the ℓ2 norm
For two hash centers ci, cj ∈ {−1, 1}q, the Hamming distance between them

can be transform to the inner product between ci and cj with the following
equation:

||ci − cj ||H =
1

4
||ci − cj ||22 =

1

4
(cTi ci + cTj cj − 2cTi cj) =

1

2
(q − cTi cj) (2)

where q is the constant hash code length. Therefore, maximizing ||ci − cj ||H is
equivalent to minimizing cTi cj and the objective in Eq.(1) can be equivalent to:

min
c1,...,cm∈{−1,1}q

∑
i

∑
j:j ̸=i

(cTi cj + ||cTi cj − wT
i wj ||22) (3)

Obtaining the category feature w For the objective in Eq.(1), we need to
obtain the semantic category features w for their corresponding class so that the
similarity between any two hash centers ci, cj of their corresponding classes get
closed to the similarity of their corresponding semantic category feature wi, wj .
To address this issue, inspired by the previous work [29, 15], we compare three
pre-trained models including VGG16 [19], ResNet50 [7], AlexNet [1] (the com-
parison results can be seen in supplementary material) and choose to fine-tune
ResNet-50 pre-trained model on three experiment datasets with cross-entropy
loss, and the weight of last fully-connected layer is considered as the category
features for each class. However, the range of the inner product of two category
features wi, wj can not be guaranteed to be the same as the inner product hash
centers ci, cj which is [−q, q]. To solve the problem, we use linear transformation
to transform the range of inner products of two category features into [−q, q].
Specifically, for two category features wi, wj corresponding to hash center ci,
cj , the transformation formula of the inner product between wi and wj can be
defined as:

wT
i wj = −q + 2q

wT
i wj −min(wT

i w∼i)

max(wT
i w∼i)−min(wT

i w∼i)
(4)

where wT
i wj represents the inner product between wi.wj , and w∼i = [w1, ..., wi−1

, wi+1, ..., wm] represents the matrix that consists of wj(1 ≤ j ≤ m, j ̸= i). The
derivation process can be seen in the supplementary material.

Alternative Optimization Procedure Since it is NP-hard to optimize the
target in Eq. 3 for the binary constraint of hash centers. Alternatively, for each
hash center ci, we adopt an optimization procedure that updates ci by fixing
other centers cj (1 ≤ j ≤ m, j ̸= i).

Specifically, with all cj (j ̸= i) being fixed, the sub-problem for ci can be
formulated as:

min
ci∈{−1,1}q

∑
j:j ̸=i

(cTi cj + ||hT
i hj − wT

i wj ||22) (5)
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Inspired by the Proposition 1 in [23], we prove that the binary constraint
z ∈ {−1, 1}q is equivalent to z ∈ [−1, 1]q

⋂
{z : ||z||pp = q} (The proof can be

found in the supplementary material) and adopt the ℓp-box algorithm [23] to
solve the subproblem in Eq.(5). For ease of optimization, hereafter we set p = 2.

With this fact, the binary constraint can be replaced and Eq. 5 can be equiv-
alent to the following form:

min
ci,z1,z2

∑
j:j ̸=i

(cTi cj + ||hT
i hj − wT

i wj ||22)

s.t. ci = z1, ci = z2, z1 ∈ Sb, z2 ∈ Sp,
(6)

where Sb = {z : −1q < z < 1q}, Sp = {z : ||z||22 = q}, 1q represents a q-
dimensional vector with all ones. For ease of solution, the augmented Lagrange
function of Eq.(6) is:

L(ci, z1, z2, y1, y2) =
∑
j ̸=i

(cTi cj + ||cTi cj − wT
i wj ||22) + yT1 (ci − z1) + yT2 (ci − z2)

+
µ

2
||ci − z1||22 +

µ

2
||ci − z2||22 s.t. z1 ∈ Sb, z2 ∈ Sp,

(7)
where y1, y2 are Lagrange multipliers.

Then we will perform the following update steps for ci, z1, z2, y1, y2 through
Alternating Direction Method of Multipliers(ADMM).
Update ci By fixing other variables except ci, the sub-problem in Eq. 7 is an
unconstrained convex function for ci. The gradient of Eq. 7 for hi is

∂L(ci)

∂ci
=2µci + 2C∼iC

T
∼ici +

∑
j ̸=i

cj + y1 + y2 − µ(z1 + z2)− 2(C∼iw
T
∼iwi).

Where C∼i = [c1, ..., ci−1, ci+1, ..., cm] represents a matrix that consists of cj(1 ≤
j ≤ m, j ̸= i). By setting this gradient to zero, we can update ci by

ci ←(2µIq + 2C∼iC
T
∼i)

−1(µ(z1 + z2) + 2(C∼iw
T
∼iwi)−

∑
j ̸=i

cj − y1 − y2). (8)

Update z1, z2 The subproblem of L in Eq.(7) for z1 and z2 areL(z1) = yT1 (ci − z1) +
µ

2
||ci − z1||22 s.t.z1 ∈ Sb

L(z2) = yT2 (ci − z2) +
µ

2
||ci − z2||22 s.t.z2 ∈ Sp

(9)

We update z1 and z2 by setting the gradient of Eq.9 to be zero:
z1 ← PSb

(ci +
1

µ
y1)

z2 ← PSp
(ci +

1

µ
y2)

(10)
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Algorithm 1 Hash Centers generation process
Input: C = [c1, ...cm] initialized by Hadamard Matrix and Bernoulli sampling.
Initialize: learning rate ρ = 1.03, iteration number T = 50, µmax = 1010, tolerance
error ϵ = 10−6, w1, ..., wm obtained from ResNet-50 model.
1: for t = 1, ..., T do
2: for i = 1, ..., c do
3: initialize z1 = z2 = ci, y1 = y2 = 0q, µ = 106

4: repeat
5: update cti by Eq.8
6: project and update zt1, z

t
2 on Sb, Sp with Eq.11

7: update yt
1, y

t
2 with gradient ascent by Eq.12

8: update µ = min(ρµ, µmax)
9: until max(||cti − zt1||∞, ||cti − zt2||∞) ≤ ϵ

10: end for
11: t=t+1, calculate Lt by Eq.3
12: if the relative change Lt−1−Lt

Lt−1 ≤ ϵ, then break
13: end for
Output: hash centers C = [c1, ..., cm]

Following [23], we project z1 and z2 onto their corresponding space Sb and Sp

and use the following closed form solutions to update them:
z1 ← min(1,max(−1, ci +

1

µ
y1))

z2 ←
√
µq

ci + y2
||ci + y2||2

(11)

Update y1, y2 We use the conventional gradient ascent to update y1 and y2:{
y1 ← y1 + µ(ci − z1)

y2 ← y2 + µ(ci − z2)
(12)

The sketch of the proposed optimization procedure is shown in Algorithm 1.

3.2 Stage 2: Train a Deep Hashing Network

As shown in the right part of Fig. 2, we build a deep hashing network to learn
hash functions with the generated semantic hash centers as label information.
The hashing network can be divided into two blocks.

The first block is a backbone consisting of multiple convolution layers based
on ResNet-50 [7] following a hashing code layer consisting of a fully connected
layer and Tanh activation function. The goal of the first block is to generate
continuous codes v ∈ [−1, 1]q for each input image during the training process.
In the testing process, each continuous code v will be converted to binary hash
code b ∈ {−1,+1}q by quantization. Specifically, we define that the training set
has m hash centers c1, c2, ..., cm, N image I1, I2, ..., IN whose output continuous
codes are v1, v2, ..., vN , respectively,
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The second block is a two-loss function served for the training of hashing
network. One is to encourage the continuous codes of images belonging to the
same class nearby their corresponding hash centers while separated from other
hash centers with a high distance. While another is to reduce the quantization
loss between continuous codes and binary hash codes. We will introduce the
details of these losses, respectively.

Central Loss With the obtained m hash centers from Stage 1, we assign the
hash center to each image class according to the category weights w. We develop
a loss function that forces the continuous code of an image to approach the hash
center assigned to this image’s class while being faraway from the hash centers
of other categories. Specifically, for the image Ij , the loss function that measures
the error between the continuous code vj of Ij and its corresponding hash center
ci can be defined as:

LC,j,i = −(logPj,i +
1

m− 1

m∑
k ̸=i

log(1−Nj,k)) (13)

with

Pj,i =
e−S(vj ,ci)∑m
p=1 e

−S(vj ,cp)
, Nj,k =

e−S(vj ,ck)∑m
p=1 e

−S(vj ,cp)
(14)

where S(x, y) represents the similarity metric between x and y, Pj,i represents the
probability that the continuous code vj of image Ij belongs to its corresponding
hash center ci while Nj,k represents the probability that the continuous code vj
of image Ij belongs to other hash centers of different categories which should be
reduced. Following the existing hashing methods [5, 8], we use the scaled cosine
similarity as the similarity metric, so Pj,i in Eq.(14) can be reformulated as:

Pj,i =
e
√
q cos(vj ,ci)∑m

p=1 e
√
q cos(vj ,cp)

, Nj,k =
e
√
q cos(vj ,ck)∑m

p=1 e
√
q cos(vj ,cp)

, (15)

where cos(x, y) = xT y
||x||2||y||2 represents the cosine similarity between the vectors

x and y, √q is the scale factor with q being the hash code length.

Quantization loss To make it easy to back propagate the gradient of the
loss function, the continuous outputs of the deep hashing network are used as a
relaxation of the binary hash codes during training. To reduce quantization error
between binary hash codes and continuous outputs, similar to existing methods
(e.g. [31]), the quantization loss of continuous code vj is defined as:

LQ,j = |||vj | − 1q||1, (16)

where ||.||1 is the ℓ1 norm, 1q represents a q-dimensional vector with all ones.
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Table 1. Comparison in mAP of Hamming Ranking for different bits on image retrieval.

Method ImageNet (mAP@1000) NABirds (mAP@All) Stanford Cars (mAP@All)
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

SH [25] 0.1705 0.2997 0.4561 0.0107 0.0200 0.0312 0.0130 0.0160 0.0210
ITQ-CCA [6] 0.1907 0.3850 0.5325 0.0135 0.0270 0.0452 0.0163 0.0235 0.0323
SDH [18] 0.3416 0.4956 0.5990 0.0102 0.0225 0.0459 0.0161 0.0231 0.0298

DSH [14] 0.7179 0.7448 0.7585 0.0820 0.1011 0.2030 0.2153 0.3124 0.4309
DPSH [12] 0.6241 0.7626 0.7992 0.1171 0.1855 0.2811 0.1764 0.2949 0.4132
HashNet [3] 0.6024 0.7158 0.8071 0.0825 0.1439 0.2359 0.2637 0.3611 0.4845
GreedyHash [20] 0.7394 0.7977 0.8243 0.3519 0.5350 0.6117 0.7312 0.8271 0.8432
DPN [4] 0.7987 0.8298 0.8394 0.6151 0.6928 0.7244 0.7287 0.8214 0.8488
CSQ [27] 0.8377 0.8750 0.8836 0.6183 0.7210 0.7491 0.7435 0.8392 0.8634
OrthoHash [8] 0.8540 0.8792 0.8936 0.6366 0.7243 0.7544 0.8012 0.8490 0.8676

Ours 0.8616 0.8851 0.8982 0.6693 0.7381 0.7599 0.8218 0.8569 0.8771

Combination of Loss Functions We combine the three loss functions to form
the optimization objective used in the proposed deep hashing network.

L =
1

N

N∑
j=1

LC,j,i + α
1

N

N∑
j=1

LQ,j (17)

where α are trade-off hyper-parameters.

4 Experiments

4.1 Experiment Settings

Three benchmark image dataset for image retrieval are used to conducted our
experiments, including, ImageNet [17], NABirds [21] and Stanford Cars [10].
Following the same settings as in [3, 27], the ImageNet dataset we used consists
of 143,495 images for 100 classes, including 100 images for each class as training
set, 50 images for each class as test queries, and the rest images as the retrieval
database. For Stanford Cars containing 16,185 images in 196 classes and NABirds
containing 48,562 images in 555 classes, the training set in the official train/test
split is used as the training images and the retrieval database, the test set in
the official train/test split as the test queries for retrieval. The identical training
set, test set and retrieval database are applied to our method and all other
comparison methods for a fair comparison.

We compare the performance of the proposed method with nine baselines,
including six popular deep hashing methods OrthoHash [8], CSQ [27], DPN [4],
Greedy Hash [20], HashNet [3], DPSH [12] and DSH [14], three conventional
hashing methods SH [25], ITQ-CCA [6] and SDH [18]. For the three conventional
hashing methods, we adopt the output of the last fully-connected layer in the pre-
trained ResNet-50 model as the input features. For a fair comparison, the pre-
trained ResNet-50 model is used as the backbone for all deep hashing methods.

987



Image Retrieval with Well-Separated Semantic Hash Centers 11

Two widely-used evaluation metrics are used to evaluate the effectiveness
of our method, including Mean Average Precision (MAP) and Precision-Recall
curves. Following [3, 27], we use MAP@1000 as the MAP metric on ImageNet
because it contains a large-scale retrieval database. On NABirds and Stanford
Cars, we use MAP@ALL as the MAP metric.

(a) 16bits (b) 32bits (c) 64bits

Fig. 3. Comparison results w.r.t. Precision-Recall curves on ImageNet

(a) 16bits (b) 32bits (c) 64bits

Fig. 4. Comparison results w.r.t. Precision-Recall curves on Stanford Cars

(a) 16bits (b) 32bits (c) 64bits

Fig. 5. Comparison results w.r.t. Precision-Recall curves on NABirds

4.2 Implementation Details

We implement our methods with Pytorch [16]. For all experiments, the opti-
mizer of the deep hashing network in Stage 2 is RMSprop(root mean square
prop) with the initial learning rate lr = 10−5 and the batch size is set as
64. To determine the proper hyper-parameter α in the loss function, we ran-
domly split the official training set into a validation set with 20% images and

988
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a sub-training set with the rest 80% images for each dataset. Then we deter-
mine α through the validation set after the model is trained on the sub-training
set. Finally, we use the obtained α to train the model on the official training
set. In the testing process, each image will be encoded into a hash code with
b = sign(v), where v is the output continuous code of our deep hashing network.

Table 2. Comparison results of the mean
Hamming distance and minimum Ham-
ming distance over all pairs of hash cen-
ters, for different ways to generate hash
centers

Datasets Methods 16bits 32bits 64bits
min mean min mean min mean

ImageNet
DPN Centers 2 7.96 6 15.98 18 32.02
CSQ Centers 2 8.04 6 16.11 32 32.23
Ours Centers 3 8.08 10 16.15 32 32.23

Stanford Cars
DPN Centers 0 7.97 6 15.99 16 32.02
CSQ Centers 0 8.01 6 16.03 16 32.10
Ours Centers 3 8.05 9 16.08 22 32.15

NABirds
DPN Centers 0 7.96 4 15.95 12 31.98
CSQ Centers 0 7.98 4 15.98 14 32.01
Ours Centers 2 8.01 8 16.03 20 32.05

Table 3. Comparison results of the
Mean Average Precision (MAP) for
different ways to generate hash cen-
ters on three image datasets with
the same settings of Stage 2

Datasets Methods 16bits 32bit 64bits

ImageNet
DPN Center 0.8218 0.8501 0.8876
CSQ Center 0.8498 0.8787 0.8982
Ours Center 0.8616 0.8851 0.8982

Stanford Cars
DPN Center 0.7611 0.8378 0.8602
CSQ Center 0.7790 0.8475 0.8681
Ours Center 0.8218 0.8569 0.8771

NABirds
DPN Center 0.6309 0.7090 0.7448
CSQ Center 0.6335 0.7136 0.7527
Ours Center 0.6693 0.7381 0.7599

(a) ImageNet (b) Stanford Cars (c) NABirds

Fig. 6. The KL divergence of the distribution of similarity between hash centers relative
to the distribution of similarity between category features on three experiment datasets
with different length of hash centers

4.3 Results of Retrieval Accuracies

Table 1 shows the Mean Average Precision (MAP) results of retrieval perfor-
mance on three datasets. On all of these datasets, the proposed method achieves
superior retrieval accuracies against the baseline methods. For example, com-
pared to the best baseline, the MAP results of the proposed method indicate a
relative increase of 0.51% ∼0.89% / 1.1% ∼ 2.6% / 0.73% ∼ 5.1% on Ima-
geNet / Stanford Cars / NABirds, respectively. Fig.3, Fig.4, and Fig.5 shows the
retrieval performance in Precision-Recall curves (P-R curve) on three datasets.
The comparison above shows that the well-separated hash centers with seman-
tic information we generated can effectively improve the retrieval effect. Note
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that the proposed method makes large improvements when the number of image
classes is large and the length of hash code is short. For example, when the hash
code is 16-bits, on Stanford Cars with 196 classes or NABirds with 555 classes,
the MAP results of the proposed method show a relative improvement of 2.6%
or 5.1% compared to the best baseline OrthoHash, respectively. The reason may
be that when the code length is short, previous methods will generate two hash
centers with Hamming distance of 0 and contain no semantic information which
make the performance to be sub-optimal. But, with the injection of semantic
relevance, the proposed method not only generates well-separated hash centers
but also contains semantic information.

4.4 Ablation Studies

Effectiveness of Hash Centers The main contribution of this paper is the
proposed optimization procedure to generate mutually separated hash centers
with semantic information. To verify the effectiveness of the generated hash
centers by the proposed method, we adopt two existing methods to generate hash
centers as baselines. The two baselines to be compared are 1) center learning in
CSQ, and 2) center learning in DPN. We train a deep hashing network with
these hash centers by using the same settings as the proposed method in Stage
2. The only difference between these baselines and the proposed method lies in
different ways to generate hash centers.

To explore how much category semantic relation information is contained in
the hash centers generated by not only the proposed method but also baselines,
we calculate the KL divergence of the distribution of similarity between hash
centers relative to the distribution of similarity between category features, where
the similarity between hash centers is expressed by the inner product of them,
and so is the similarity between category features. The results in Fig 6 shows
that in most case, the KL divergence of the similarity distribution between hash
centers generated by our method relative to the similarity distribution between
category features is the smallest which means the hash centers generated by our
method contains more category semantic relation information.

To explore how well the hash centers generated by different methods are
separated from each other, we compare the average of the Hamming distance
over all pairs of hash centers and the minimum Hamming distance between any
two hash centers for both our method and two baselines. The results shown
on Tab. 2 can be observed that (1) In most cases, the minimum Hamming
distance of our method is larger than that of the two baselines, which indicates
that the baselines can not generate well-separated hash centers in some cases.
For example, the minimum Hamming distance between any two hash centers
is 0 with 16 bits on both Stanford Cars and NABirds. (2)Compared to both
the baselines, the hash centers generated by our methods have largest average
Hamming distance. The comparison results show that our method can generate
well-separated hash centers with the help of category features. As shown in Tab
3, on all of the datasets, the proposed method outperforms the baseline with a
clear gap, e.g., for 16-bit codes on NABirds and Stanford Cars. In summary, the
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Table 4. Comparison results w.r.t. MAP for different combinations of loss functions

ImageNet Stanford CAR NABirds
LC LQ 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

! ! 0.8616 0.8851 0.8982 0.8218 0.8569 0.8771 0.6693 0.7381 0.7599
! 0.8572 0.8828 0.8958 0.8048 0.8531 0.8671 0.6526 0.7236 0.7539
CSQ-Lc 0.8543 0.8767 0.8836 0.7761 0.8481 0.8739 0.6429 0.7202 0.7464
DPN-L 0.8323 0.8573 0.8677 0.7643 0.8337 0.8503 0.6604 0.7093 0.7383

ablation results in Fig.6, Tab 2 and 3 verify the hash centers obtained by our
optimization approach, which not only contain category semantic information
but also are well separated, can help to improve the retrieval performance.

Effectiveness of Loss Functions To explore the individual effect of each part
of the loss function, we evaluate different combinations of the central loss LC

and the quantization loss LQ used in the proposed deep hashing network.
In Table 4, with identical hash centers and identical network architecture, we

compare the MAP results of three methods. CSQ-LC is a baseline that uses the
loss LC for hash centers proposed in CSQ [27]. DPN-L is a baseline that uses
the central loss for hash centers proposed in DPN [4]. LC represents only the
central loss LC used for experiments. Two observations can be seen from Table
4: (1) The method with the proposed central loss LC outperforms both CSQ-
LC and DPN-L. Because we not only encourage hash codes to be close to their
corresponding hash centers, but also to be far away from other hash centers. (2)
The loss LQ can also improve the retrieval performance, because we make the
continuous codes get closed to the binary hash codes during training.

5 Conclusion

In this paper, we developed an optimization approach to generate well-separated
hash centers with semantic information, where we adopt the weight of last fully-
connected layer in fine-tuned ResNet-50 model as the category features and force
the inner product between a pair of hash centers closed to the inner product
between their corresponding category features. With these hash centers, each
corresponding to one image class, we propose several effective loss functions to
train deep hashing networks. Empirical evaluations in image retrieval show that
the proposed method has superior performance gain over state-of-the-arts. In
the future, we will continue to explore how to design an effective loss function
that better matches the hash center to improve the effect of image retrieval.
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