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Abstract. Reconstructing cone-beam computed tomography (CBCT)
typically utilizes a Feldkamp-Davis-Kress (FDK) algorithm to ‘translate’
hundreds of 2D X-ray projections on different angles into a 3D CT image.
For minimizing the X-ray induced ionizing radiation, sparse-view CBCT
takes fewer projections by a wider-angle interval, but suffers from an infe-
rior CT reconstruction quality. To solve this, the recent solutions mainly
resort to synthesizing missing projections, and force the synthesized pro-
jections to be as realistic as those actual ones, which is extremely difficult
due to X-ray’s tissue superimposing. In this paper, we argue that the syn-
thetic projections should restore FDK-required information as much as
possible, while the visual fidelity is the secondary importance. Inspired
by a simple fact that FDK only relies on frequency information after
ramp-filtering for reconstruction, we develop a Reconstruction-Friendly
Interpolation Network (RFI-Net), which first utilizes a 3D-2D attention
network to learn inter-projection relations for synthesizing missing pro-
jections, and then introduces a novel Ramp-Filter loss to constrain a
frequency consistency between the synthesized and real projections after
ramp-filtering. By doing so, RFI-Net’s energy can be forcibly devoted to
restoring more CT-reconstruction useful information in projection syn-
thesis. We build a complete reconstruction framework consisting of our
developed RFI-Net, FDK and a commonly-used CT post-refinement. Ex-
perimental results on reconstruction from only one-eighth projections
demonstrate that using RFI-Net restored full-view projections can sig-
nificantly improve the reconstruction quality by increasing PSNR by 2.59
dB and 2.03 dB on the walnut and patient CBCT datasets, respectively,
comparing with using those restored by other state-of-the-arts.

Keywords: Sparse-view computed tomography (SVCT) reconstruction
· FDK algorithm · Reconstruction-friendly projections · Interpolation ·
Ramp-Filter loss.
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1 Introduction

Cone Beam Computed Tomography (CBCT) is one of the key imaging tech-
niques for various clinical applications, e.g., cancer diagnosis [11], image-guided
surgery [5] and so on. The principle of reconstructing CBCT is first to take hun-
dreds of 2D X-ray projections at regular intervals within a certain angle range,
e.g., 360 degrees, and then to utilize a Feldkamp-Davis-Kress (FDK) [24] algo-
rithm to reconstruct a 3D CT image from those projections. Although CBCT
enjoys lots of merits such as fast speed and large range, its brought ionizing
radiation [4] is harmful to patients, which hinders long-term intensive usage [3].
Using fewer projections, that is, widening the sampling angle interval, is a cru-
cial means of lowering CBCT’s radiation dose, which is known as sparse-view
CBCT [2]. However, sparse-view CBCT’s dose reduction comes with a price of
lost structures and streaking artifacts in CT images, which severely degrades
reconstruction quality.

To improve the quality of sparse-view CBCT, several post-refinement meth-
ods [14,26,32] have been studied, and mainly focused on developing deep learning
approaches to refine those FDK-reconstructed sparse-view CBCT images. Their
objective is typically minimizing a voxel-wise L2 distance between the refined
sparse-view and original full-view CBCT images, however, this often yields over-
smoothed refinement results. To overcome the over-smoothness problem [8,29],
Liao et al. [19] used a VGG-based perceptual loss to minimize the L2 distance
between features extracted from the refined sparse-view CBCT image and its
full-view counterpart, which was claimed to well preserve the high-frequency in-
formation in CT images. However, the VGG-network used in [19] was trained
for natural image classification but not for CT image refinement, which may im-
pair the perceptual loss’s capability in CT data. Therefore, Li et al. [18] utilized
a customized perceptual loss, which is based on a trained self-supervised auto-
encoder network using CT data. This expanded the network’s representational
ability for further improving the post-refinement performance. Although some
progress has been made, such CT post-refinement is disengaged from the CBCT
imaging device/system, thus may ignore the valuable information contained in
those raw X-ray projections. That is, the lost structures or streaking artifacts in
sparse-view CBCT are hard to be rectified solely by a post-refinement without
touching the raw projections.

Recently, a joint strategy has been proposed by two works [6,15], and it
successively processes X-ray projections and CT images before and after FDK-
reconstruction. Specifically, Hu et al. [15] developed a hybrid-domain neural net-
work (HDNet), which, in the projection domain, first utilizes a non-parametric
linear interpolator to restore the full-view projections, and then introduces a
convolutional neural network (CNN) as a pixel-to-pixel translator to refine those
linearly interpolated projections. However, the linear interpolator hardly handles
rotating, and the caused interpolation errors are too difficult to be corrected. By
comparison, Chao et al. [6] developed a DualCNN which utilized a projection
domain interpolation CNN (PDCNN) to learn a direct interpolation of those
missing projections from the sparse ones. PDCNN restores the full-view pro-
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jections in a multi-step manner, i.e., the number of projections doubles in each
step by synthesizing the middle in every two consecutive ones. Both HDNet and
PDCNN bother forcing an identical appearance between the restored and orig-
inal full-view X-ray projections by minimizing the voxel-wise distance. Thanks
to the rotating projection and X-ray’s tissue superimposing, such objective is
extremely difficult to achieve.

If those restored full-view projections are not necessarily perfect, but just
accurate to contain FDK-required information for reconstruction, the learning
difficulty could be significantly alleviated, and the CNN efficacy is thus maxi-
mized. To this end, a straightforward idea is to have FDK differentiable, making
CT reconstruction errors be back-propagated to guide the projection synthesis.
However, this end-to-end manner involves concurrently processing hundreds of
2D projections and high-dimensional 3D CT images, bringing an unbearable
huge computing cost inevitably.

In this paper, we develop a Reconstruction-Friendly Interpolation Network
(RFI-Net) to trade off the computational efficiency, and introduce a novel Ramp-
Filter Loss (RF-Loss) to have RFI-Net focus on learning the FDK-required pro-
jection information. Specifically, RFI-Net is implemented with a 3D-2D attention
network architecture, which includes a 3D feature extractor, an inter-projection
fusion module, and a 2D projection generator, as shown in Fig. 2. First, sparse
2D projections in a wide-angle range are stacked as a 3D volume that is encoded
into a 3D feature map via the 3D feature extractor. Then, the inter-projection
fusion module integrates features along the angle dimension for converting the
3D feature map to a 2D feature map. Lastly, the 2D projection generator decodes
the 2D map into projections on missing angles.

RF-Loss is motivated by the FDK principle that only information of projec-
tions filtered by a ramp-filter will be used for reconstruction. Therefore, RF-Loss
computes and minimizes the frequency difference between the restored and ac-
tual projections after ramp-filtering, and the ramp-filter in RF-Loss is set to be
identical with that in FDK. With no need to optimize the CT reconstruction,
RFI-Net is still aware of generating reconstruction-friendly full-view projections,
rather than just mimicking the superficial appearance.

The main contributions of this work are as follows:

– We develop a CNN-based interpolator named RFI-Net, which can capture
wide-angle range inter-projection relations, and synthesize reconstruction-
friendly full-view projections, improving the quality of reconstructed sparse-
view CBCT.

– We introduce a novel RF-Loss, which encourages RFI-Net’s synthesized pro-
jections to contain FDK-required frequency information, without resorting
to a computation-intensive end-to-end learning fashion.

– We build a complete reconstruction framework, which consists of a trained
RFI-Net, FDK, and a commonly-adopted CT post-refinement. By enjoying
those reconstruction-friendly projections synthesized by RFI-Net, our frame-
work is experimentally demonstrated to increase PSNR by 2.59 dB and 2.03
dB on sparse-view CBCT reconstructions for the walnut and patient CBCT
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datasets under one-eighth dose, respectively, comparing with other state-of-
the-arts.

2 Methods

Fig. 1 presents the built complete CBCT reconstruction framework. First, RFI-
Net synthesizes reconstruction-friendly full-view 2D projections from those sparse
ones. Then, FDK reconstructs a 3D CT image from the synthesized full-view
projections. Finally, a post-refinement network (Post-Net) is employed to fur-
ther refine the FDK-reconstructed CT image. In the following, we detail RFI-Net
and Post-Net, and explain our proposed RF-Loss for training.

Fig. 1. Our built complete framework for sparse-view CBCT reconstruction.

2.1 RFI-Net Architecture

As shown in Fig. 2, RFI-Net is implemented with a 3D-2D attention network,
which contains three components, i.e., a 3D feature extractor, an inter-projection
fusion module and a 2D projection generator. Given full-view projections with
the total number of N , the quarter dose sparse-view projections can be con-
structed as {P4i−3|i = 1, 2, . . . , N/4}, where N is 600 as the number of full-view
projections and P1 can be also denoted as PN+1. Our goal is to restore the three
missing projections {P4i−2, P4i−1, P4i} between every two adjacent sparse-view
projections, i.e., P4i−3 and P4i+1.

The 3D feature extractor stacks consecutive projections { P4i−3, . . . ,
P4(i+D−1)} sampled within a wide-angle range into a 3D volume, and encodes
it into a 3D feature map F3D with the size of C ×H ×W ×D, where C and D
are the number of feature channels, input sparse-view projections, respectively,
and we set D to 4 in this work, where H and W represent the size of X-ray
projection. Specifically, the 3D feature extractor employs 3D ResUNet [31] as
the backbone and has three main advantages: (i) the residual path can avoid
gradient vanishing in the training phase; (ii) the skip connection [25] between
encoder and decoder can fuse low-level features and high-level features to well
express the projection information; (iii) the 3D kernels jointly capture the angle
and spatial information of projections.

The inter-projection fusion module consists of a reshape operation, a 2D
convolution layer and a channel attention module, which bridges the 3D feature
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Fig. 2. The RFI-Net architecture. For example, sparse-view projections P1, P5, P9, P13

are stacked and input into RFI-Net, and the missing projections P̂6, P̂7, P̂8 between
P5 and P9 are synthesized.

extractor and the 2D projection generator. This fusion module first reshapes the
3D feature map F3D to a 2D map with the size of CD × H × W by merging
the angle and channel dimensions, and then employs a 2D convolution layer to
generate the final 2D feature map F2D with size of C × H × W . The channel
attention module finally measures the inter-dependencies between the feature
channels and allows the module to focus on useful ones.

The 2D projection generator has the similar architecture with the 3D
feature extractor, and replaces the 3D kernels with the 2D ones. The output
size of the generator is (M − 1)×H ×W , where M − 1 represents the number
of missing projections for 1/M dose-level. We adjust M according to different
dose-levels, e.g., M = 4 for quarter dose and M = 8 for one-eighth dose. Finally,
the result of the generator is sliced along channel into individual synthesized
projections with the total number of M − 1.

Note that, channel attention (CA) module [9] is embedded into each layer of
the 3D-2D network architecture. In the CA module, global average pooling [20] is
first used to enlarge the receptive field by compressing the spatial features. Then
the following two convolution layers are utilized to capture the non-linear inter-
channel relationships. Finally, sigmoid activation function is used to introduce
non-linearity.

2.2 RF-Loss of RFI-Net

In FDK algorithm, projections are not directly back-projected to reconstruct CT
images, but filtered by the ramp-filter in the frequency domain beforehand. The
ramp-filter is a correction filter that can redistribute the frequency information
by suppressing the low-frequency information but encouraging the pass of high-
frequency information [22]. Motivated by this, we design RF-Loss to make RFI-
Net mainly focus on the ramp-filtered frequency information in projections.
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RF-Loss LRF minimizes the frequency-wise error between the synthesized
{P̂t|t = 1, 2, ...,M − 1} and ground-truth {PGT

t |t = 1, 2, ...,M − 1} projections,
which can be formulated as:

LRF =
1

M − 1

M−1∑
t=1

∣∣∣RF (P̂t)−RF (PGT
t )

∣∣∣ (1)

where RF (∗) represents the frequency representations after ramp-filtering. Specif-
ically, we first convert a projection Pt into its frequency representation Ft(u, v)
by calculating the 2D Fast Fourier Transform (FFT) as follows:

Ft(u, v) =

H−1∑
x=0

W−1∑
y=0

Pt(x, y)×
[
cos 2π(

ux

H
+

vy

W
)− i sin 2π(

ux

H
+

vy

W
)
]

(2)

where u = 0, 1, ...,H − 1, v = 0, 1, ...,W − 1, H and W are the height and width
of the projection, and (x, y) denotes the position in the spatial domain. Pt(x, y)
is the pixel intensity at position (x, y). In the frequency domain, the projection
is decomposed into cosine and orthogonal functions for constituting the real and
imaginary parts of the complex frequency value. After applying the 2D FFT,
a ramp-filter weight matrix α(u, v) [30] is used to multiply with the complex
frequency value Ft(u, v) as follows:

RF (Pt) = |α(u, v)× Ft(u, v)| (3)

L1 loss [28] is also used to minimize the pixel-wise error between the interpo-
lated projections and the references. The total loss LRFINet can be formulated
as:

LRFINet = L1 + γLRF (4)

where γ is the weighting parameter to balance the two losses and is set to 0.1 in
our experiments.

2.3 Post-Net Architecture

In the reconstruction domain, we modified a simple 3D UNet [1] as the post-
processing network to further refine the pre-processed CT images.

As shown in Fig. 3, Post-Net contains four convolutional blocks to extract
rich features and four deconvolution blocks to restore the image contents. The ar-
tifacts distribution is generated through the last layer, and the final high-quality
CT images are produced by subtracting the predicted artifacts distribution from
the pre-processed CT images. The size of kernels used in Post-Net is 3×3×3. A
joint loss [7] that includes a perceptual loss and a SSIM loss is used for optimiz-
ing the Post-Net. Perceptual loss [16] makes Post-Net retain the high-frequency
information in CBCT images to avoid the over-smoothness problem. SSIM loss
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Fig. 3. Post-processing network architecture.

[33] makes Post-Net well preserve the delicate structures in CT images. The joint
loss LPostNet can be formulated as:

LPostNet = βLperc − Lssim (5)

where Lperc and Lssim denote the perceptual loss and SSIM loss, respectively.
β is the weighting parameter to balance the two losses. Lperc and Lssim are
detailed in reference [7]. In the training of Post-Net, the input includes nine
consecutive slices and the weighting parameter β in Eq. 5 is set to 200/3.

3 Experiment

3.1 Dataset

Our experiments are validated on two CBCT datasets:

(i) Walnut dataset: This is a public CBCT dataset provided for deep learn-
ing development [10]. In this dataset, 42 walnuts were scanned with a spe-
cial laboratory X-ray CBCT scanner, with raw projection data. For each
walnut, we take 600 projections evenly over a full circle as the full-view pro-
jections, and explore sparse-view CBCT reconstruction under the quarter
and one-eighth dose by using only 150 and 75 projections, respectively. The
CBCT reconstruction uses the FDK algorithm in ASTRA toolbox [27]. For
each walnut, the size of the projection image is 972 × 768, and the recon-
structed CT volume is 448× 448× 448. The first five walnuts are used for
test, the sixth for validation, and the rest for training.

(ii) Patient dataset: This dataset includes 38 real normal-dose 3D CT images
provided by the TCIA data library [21], and the corresponding full- and
sparse-view 2D projections are simulated by forward-projecting the CT
images using the ASTRA toolbox. The number of full-view projections is
600, and the size of simulated projection is 972 × 768, and the size of the
reconstructed CT volume is n× 512× 512, where n is the slice number for
each patient. Five patients are used for test, one patient for validation, and
the rest for training.
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Table 1. Abbreviations of different comparison methods.

Abbreviations Descriptions
FVCT Full-view + FDK (as ground truth).
SVCT Sparse-view + FDK (as baseline).
CNCL [13] Sparse-view + FDK + Post-refinement by CNCL.
SI-UNet [12] Linear interpolation and 2D U-Net enhancement + FDK.
HDNet [15] Linear interpolation and 3D U-Net enhancement + FDK

+ Post-refinement by 3D U-Net.
DualCNN [6] PDCNN interpolation + FDK + Post-refinement by ID-

CNN.
Ours RFI-Net interpolation + FDK + Post-refinement by

Post-Net.

3.2 Implementation Details

Our networks are implemented with Pytorch [23] ver. 1.9, Python ver. 3.7, and
CUDA ver. 11.2. The Adam [17] solver with momentum parameters β1 = 0.9
and β2 = 0.99 is used to optimize RFI-Net with the learning rate of 2e− 4. The
number of training epochs and batch size are set to 150 and 1, respectively. All
networks are trained using a NVIDIA GPU GTX3090 of 24 GB memory.

3.3 Evaluation Metrics and Comparison Methods

We use three evaluation metrics, including the root mean square error (RMSE),
peak signal-to-noise ratio (PSNR), and structural similarity (SSIM), to quantify
the difference or similarity between the full-view CBCT and improved sparse-
view CBCT by different methods. The comparison methods are listed in Table
1. CNCL and DualCNN released their source codes. SI-UNet and HDNet were
reimplemented by us by following their methodological descriptions.

3.4 Comparison with State-of-the-Arts

We first evaluate all methods on reconstructing sparse-view CBCT by using the
quarter number of projections, i.e., 1/4 dose, and the evaluation results of the
three metrics on the walnut and patient datasets are shown in Table 2.

From this table, we can have two major observations:

(i) The sparse-view CBCT reconstructed by our method has the highest qual-
ity compared with those by other state-of-the-arts. For walnut data, our
method decreases RMSE by approximately 16%, increases PSNR by ap-
proximately 6%, and increases SSIM by approximately 11%, compared with
the second-best method DualCNN. For patient data, the three quality met-
rics are improved by approximately 18%, 5% and 2%, respectively;

(ii) The reconstruction quality only using RFI-Net’s restored full-view projec-
tions without any post-refinement is consistently better than those by pro-
jection interpolation only (SI-UNet, HDNet*, PDCNN) or post-refinement
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Table 2. Quantitative quality on the walnut and patient datasets of 1/4 dose sparse-
view CBCT with respect to the full-view CBCT. Best results are in bold. Methods
with the marker ‘*’ discard the post-refinement.

Methods Walnut Dataset Patient Dataset
RMSE PSNR(dB) SSIM RMSE PSNR(dB) SSIM

SVCT 0.128 16.517 0.207 0.025 28.493 0.610

SI-UNet 0.039 26.374 0.662 0.016 31.218 0.870
HDNet∗ 0.035 27.236 0.686 0.018 30.246 0.804
DualCNN∗(PDCNN) 0.034 27.568 0.713 0.012 33.764 0.900
Ours∗(RFI-Net) 0.032 28.305 0.790 0.010 35.594 0.924

CNCL 0.038 26.444 0.548 0.014 33.442 0.874
HDNet 0.032 27.854 0.671 0.014 33.016 0.874
DualCNN 0.031 28.347 0.722 0.011 34.683 0.916
Ours 0.026 30.148 0.799 0.009 36.413 0.934

Fig. 4. Visual effects for the first walnut and the patient labeled L273 CBCT recon-
struction with 1/4 dose sparse-view projections. For each dataset, the first row shows
the representative slices; the second row shows the corresponding magnified ROIs; the
third row shows the absolute difference images between the optimized slices and full-
view slice.
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only (CNCL) methods, and even comparable to those by the two methods
(HDNet, DualCNN), which jointly consider both projection interpolation
and post-refinement.

Fig. 4 visualizes the reconstructed sparse-view CBCT of the walnut and pa-
tient datasets under 1/4 dose by different methods. As can be seen, SVCT with-
out any improvement contains severe streaking artifacts and hazy structures.
SI-UNet, which considers projection interpolation only, suppresses the artifacts
to some extent, but still suffers from the lost structures. CNCL, which considers
post-refinement only, excessively smooths the reconstructed CBCT image, losing
inner textures. HDNet and DualCNN achieve a relatively better visual quality
compared with the projection interpolation only and post-refinement only meth-
ods, but an unsatisfactory reconstruction result on those delicate structures in
Fig. 4. In comparison, our method accurately restores structures without losing
inner textures, especially for those tiny structures indicated by the red arrows in
the walnut and patient, and thus yields the cleanest difference map with respect
to FVCT, as shown in the third rows of the walnut and patient in Fig. 4.

We further explore a more extreme case that reconstructs sparse-view CBCT
using only one-eighth projections, i.e., 1/8 dose. Table 3 presents quantitative as-
sessments. Fig. 5 presents the visual examples of the walnut and patient datasets
for different methods.

Table 3. Quantitative quality on the walnut and patient datasets of 1/8 dose sparse-
view CBCT with respect to the full-view CBCT. Best results are in bold. Methods
with the marker ‘*’ discard the post-refinement.

Methods Walnut Dataset Patient Dataset
RMSE PSNR(dB) SSIM RMSE PSNR(dB) SSIM

SVCT 0.184 13.623 0.131 0.048 22.805 0.437

SI-UNet 0.046 24.400 0.555 0.024 27.169 0.774
HDNet∗ 0.044 24.956 0.576 0.023 27.806 0.773
DualCNN∗(PDCNN) 0.040 25.906 0.620 0.018 29.749 0.833
Ours∗(RFI-Net) 0.037 27.074 0.727 0.015 32.194 0.873

CNCL 0.048 23.580 0.424 0.019 30.045 0.818
HDNet 0.038 26.202 0.582 0.018 29.979 0.831
DualCNN 0.037 26.224 0.633 0.017 30.829 0.865
Ours 0.029 28.814 0.742 0.014 32.863 0.891

Besides the consistently superior performance of our method over others just
like the case of 1/4 dose, we can also have two new observations:

(i) Our method shows more improvement at 1/8 dose compared with 1/4 dose.
On the walnut data, PSNR is improved by 2.59 dB at 1/8 dose and 1.80
dB at 1/4 dose comparing with the second-best method DualCNN. On the
patient data, PSNR is improved 2.03 dB and 1.73 dB under the 1/8 and
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1/4 dose, respectively. This suggests that our method may be useful for the
ultra-sparse-view acquisition;

(ii) Comparing with SI-UNet and HDNet∗, which only consider projection in-
terpolation, RFI-Net can achieve a better reconstruction quality even with
the dose halved. Specially, on the walnut data, with only 1/8 dose, the qual-
ity of sparse-view CBCT reconstructed by our method is still comparable
to the 1/4 dose sparse-view CBCT reconstructed by HDNet and DualCNN
in terms of RMSE and PSNR, and even better in terms of SSIM.

Fig. 5. Visual effects for the first walnut and the patient labeled L299 CBCT recon-
struction with 1/8 dose sparse-view projections. For each dataset, the first row shows
the representative slices; the second row shows the corresponding magnified ROIs; the
third row shows the absolute difference images between the optimized slices and full-
view slice.

3.5 Ablation Study

In this section, we investigate the effectiveness of RFI-Net in two aspects: (1) us-
ing different training losses, and (2) considering interpolation only, post-refinement
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Table 4. The investigation results by (1) using different training losses, and (2)
different processing domains. Best results are in bold.

Settings Test images RMSE PSNR(dB) SSIM

Loss

L1

Projections

0.008 39.320 0.955
L1+0.1*LRF 0.008 39.680 0.958
L1+1.0*LRF 0.009 38.553 0.958
L1+10.0*LRF 0.010 37.859 0.957
LRF 0.010 37.869 0.958
L1

CT images

0.038 26.664 0.692
L1+0.1*LRF 0.037 27.074 0.727
L1+1.0*LRF 0.037 26.956 0.725
L1+10.0*LRF 0.038 26.794 0.724
LRF 0.037 27.026 0.726

Domain
Post-Net

CT images
0.048 22.463 0.487

RFI-Net 0.037 27.074 0.727
RFI-Net+Post-Net 0.029 28.814 0.742

only, and both of them. All investigations are performed on the 1/8 dose sparse-
view CBCT reconstruction of walnuts. The results are shown in Table 4.

Ablation Study on RF-Loss. To validate the effectiveness of the proposed
RF-Loss, we train five versions of RFI-Net: one only using L1 loss, one only using
LRF loss and the remaining three using different coefficients on LRF . We assess
the interpolated projections shown in the first five rows, and their reconstructed
CT images shown in the 6th-10th rows of Table 4.

As can be seen, our method achieves the best performance on both projec-
tions and CT images when the coefficient of LRF is set to 0.1. Besides, increasing
the coefficient of LRF or using single LRF somewhat slightly degrades the pro-
jection quality in terms of RMSE and PSNR metrics, but improves the CT image
quality reconstructed from these projections in terms of all the three metrics,
especially for SSIM. These results indicate that RF-Loss can indeed interpolate
the missing projections containing the FDK-required information. This is ex-
actly what we expected since we are concerned with the high-quality CT images
rather than visually similar projections.

Ablation Study on Domain. Furthermore, we build two new complete
reconstruction frameworks which use either RFI-Net only or Post-Net only. The
quantitative comparison results are presented in the last three rows of Table 4.

As can be seen, without those reconstruction-friendly projections interpo-
lated by RFI-Net, Post-Net produces the reconstructed CT images with the
lowest quality especially in terms of SSIM. This verifies that CT post-refinement
has limited capability of further reducing the radiation dose, because it is difficult
to restore the structures already lost in the reconstruction process. Only using
those RFI-Net interpolated projections for reconstruction has already achieved
a promising reconstruction quality by improving the SSIM value to that over
70%, while the quality can be further improved with the assistance of a post-
refinement by Post-Net.
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4 Conclusion

In this paper, we build a sparse-view CBCT reconstruction framework, which
can be deeply embedded in the low-dose CBCT systems. This framework consists
of three parts: (i) our developed RFI-Net to restore reconstruction-friendly pro-
jections from those sparse ones; (ii) FDK to translate 2D X-ray projections into
a 3D CT image; (iii) a post-refinement network named Post-Net to further refine
the quality of the reconstructed CT image. We also carefully design a novel loss
named RF-Loss to help RFI-Net focus on learning FDK-required information
of projections. Therefore, our method is expected to significantly improve the
quality of sparse-view CBCT with no need to train the entire framework in an
end-to-end manner. Experimental results demonstrate that no matter reducing
the dose by four or eight times, the sparse-view CBCT reconstructed by our
method has the highest quality in all comparison methods, with well persever-
ing delicate structures and presenting the closest quality to that of the full-view
CBCT images.
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